A WEIGHTED DISPERSIVE ESTIMATE FOR SCHRÖDINGER OPERATORS IN DIMENSION TWO

WILLIAM R. GREEN

Consider the two-dimensional linear Schrödinger equation with potential,

$$iu_t(x,t) + Hu(x,t) = 0,$$
 $u(x,0) = f(x).$

Here $H = -\Delta + V$, where V is a real valued potential on \mathbb{R}^2 satisfying $|V(x)| \leq \langle x \rangle^{-3-}$. When V = 0, it is well-known that the solution operator satisfies the mapping estimate $||e^{-it\Delta}f||_{\infty} \leq |t|^{-1}||f||_1$. With sufficient assumptions on the potential V and the spectrum of H, one can prove a corresponding bound for the perturbed equation, $||e^{itH}P_{ac}f||_{\infty} \leq |t|^{-1}||f||_1$.

In dimensions one and two it is possible to obtain faster decaying estimates at the cost of weights. We prove that if zero is a regular point of the spectrum of $H = -\Delta + V$, then

$$\|w^{-1}e^{itH}P_{ac}f\|_{L^{\infty}(\mathbb{R}^2)} \lesssim \frac{1}{|t|\log^2(|t|)} \|wf\|_{L^1(\mathbb{R}^2)}, \quad |t| > 2,$$

with $w(x) = \log^2(2 + |x|)$. This decay rate was obtained by Murata in the setting of weighted L^2 spaces with polynomially growing weights. This is joint work with Burak Erdoğan.