Essay 2: Geometry of Cubes

Math 300, Fall 2018, Schneider

1 Content

In this essay you will systematically construct a coherent mathematical theory of N-dimensional cubes. You will formally define these objects using \mathbb{R}^{n} coordinates and prove some enumerative formulas about their structure. Be sure to give concrete examples in dimensions $1,2, \& 3$ via graphical illustrations, on which the reader will base their higher-dimensional intuition.

Please define, explain, and illustrate the notion of an N-cube and its n-elements (vertices, edges, faces, cells, etc.). Prove that the elements of an N-cube are themselves smaller cubes. Justify this observation using your definition. Then, give both recursive and explicit formulas for the number of n-elements. Give a table of values for the element-counts, and prove your formulas using explicit reference to your definitions.

2 Style

Your audience is at least as mathematically sophisticated as yourself. Write in the style of an advanced college math textbook or a research article. I will be looking for well-organized exposition of a coherent mathematical theory. Motivate the theory, define your terms, and prove your theorems. Your proofs should explicitly use your definitions.

Assume your reader is familiar with general properties of \mathbb{R}^{n}, such as its coordinate system, the notion of convexity, and the dimension of a convex set. All the math is presented in class lectures, as well as wikipedia and the notes below.

3 Math

These notes are intentionally condensed, abridged, and abbreviated. Expand them into human-readable form in your essay.

3.1 Definitions

The standard N-cube is the subset of \mathbb{R}^{N} whose vertices are of the form $\left(x_{1}, \ldots, x_{N}\right)$ with each $x_{i}=0$ or 1 .

Any figure in $\mathbb{R}^{m}(m \geq N)$ that is geometrically similar to the standard N cube is an N-cube.

In the standard N-cube, an n-element's vertices are precisely those that match each other in exactly $N-n$ of their coordinates $\left(x_{1}, \ldots, x_{N}\right)$.

3.2 Formulas

Define a function

$$
C(N, n)=\text { number of } n \text {-elements in an } N \text {-cube. }
$$

Demonstrate and prove this recursive formula:

$$
\begin{aligned}
C(N, n) & =2 \cdot C(N-1, n)+C(N-1, n-1) \\
C(N, 0) & =2^{N} \\
C(0, n) & =0 \quad(n \geq 1)
\end{aligned}
$$

and this explicit formula:

$$
C(N, n)=2^{N-n} \cdot\binom{N}{n}
$$

3.3 Table

You should include a table of values. Here's a template.

		Little cube (n)					
		0	1	2	3	4	5
	0						
Big	1						
cube	2						
(N)	3						
	4						
	5						

3.4 Proofs

You have several theorems to state and prove. Here are a few to get you started.

Theorem 1

The n-elements of the standard N-cube are themselves n-cubes.
Proof. In the standard N-cube, the vertices of a n-element agree in $(N-n)$ coordinates. Omitting these coordinates produces the vertices of the standard n-cube.

Theorem 2

The number of n-elements on an N-cube is given by

$$
C(N, n)=2^{N-n} \cdot\binom{N}{n}
$$

Proof. (Presented in lecture)

Theorem 3

The number of n-elements on an N-cube satisfies

$$
\begin{aligned}
C(N, 0) & =2^{N} \\
C(0, n) & =0 \quad(n \geq 1) \\
C(N, n) & =2 \cdot C(N-1, n)+C(N-1, n-1)
\end{aligned}
$$

Proof. (Presented in lecture)

