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Abstract
Modeling sparse data such as microbiome and transcriptomics (RNA-seq) data is very
challenging due to the exceeded number of zeros and skewness of the distribution.
Manyprobabilisticmodels havebeenused formodeling sparse data, includingPoisson,
negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models.
One way to identify the most appropriate probabilistic models for zero-inflated or
hurdle models is based on the p-value of the Kolmogorov–Smirnov test. The main
challenge for identifying the probabilistic model is that the model parameters are
typically unknown in practice. This paper derives the maximum likelihood estimator
for a general class of zero-inflated and hurdlemodels.We also derive the corresponding
Fisher information matrices for exploring the estimator’s asymptotic properties. We
include new probabilistic models such as zero-inflated beta binomial and zero-inflated
beta negative binomial models. Our application to microbiome data shows that our
newmodels are more appropriate for modeling microbiome data than commonly used
models in the literature.

Keywords Zero-inflated model · Zero-altered model · Hurdle model · MLE ·
Microbiome · Fisher information matrix

B Hani Aldirawi
Hani.Aldirawi@csusb.edu

Jie Yang
jyang06@uic.edu

1 Department of Mathematics, California State University-San Bernardino, 5500 University Pkwy,
San Bernardino, CA 92407, USA

2 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851
S Morgan Street, Chicago, IL 60607, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-021-00230-y&domain=pdf
http://orcid.org/0000-0002-4054-7233


   13 Page 2 of 16 Journal of Statistical Theory and Practice            (2022) 16:13 

Table 1 A toy example of taxonomic profile count table

Species/Sample S1 S2 S3 S4 S5 S6 Total

Streptococcus pneumoniae 0 0 102 0 3 0 105

Escherichia coli 13 0 0 75 0 0 88

Staphylococcus aureus 0 14 0 0 138 0 152

Total 13 14 102 75 141 0 345

1 Introduction

The microbiome, a dynamic ecosystem of microorganisms (bacteria, archaea, fungi,
and viruses) that live in and on us, plays a vital role in host-immune responses resulting
in significant effects on host health (see, for example, [1]).Dysbiosis of themicrobiome
has been linked to diseases including asthma, obesity, diabetes, transplant rejection,
and inflammatory bowel disease [2–5]. These observations suggest that modulation of
themicrobiome could become an important therapeuticmodality for some diseases [6–
8].

Modelingmicrobiomedata is very challenging due to the exceeding number of zeros
in the data [9,10]. Dealing with zeros is one of the biggest challenges in microbiome
and transcriptomics studies [11]. It is challenging to model those features which are
skewed and zero-inflated [12]. Table 1 is a toy example of taxonomic profile with a
dimension of 3 × 6, where 3 denotes the number of microbial features and 6 denotes
the number of metagenomic samples. The table shows the sparsity of the microbiome
data. Therefore, zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB),
Poisson hurdle (PH), and negative binomial hurdle (NBH) models are commonly used
to model microbiome data [1].

The selection of an appropriate probabilistic model is critical for microbiome stud-
ies. For example, in order to determine if there is an association between amicrobiome
feature (such as a bacteria), and the disease, we may need to detect the significance of
the difference between two groups of records. With appropriate probabilistic models
identified successfully, we can improve the power of the statistical test significantly.
Recently, [13] proposed a statistical procedure for identifying themost appropriate dis-
crete probabilisticmodels for zero-inflated or hurdlemodels based on the p-value of the
discrete Kolmogorov–Smirnov (KS) test. The same procedure could be used for more
general zero-inflated or hurdle models, including the ones with continuous baseline
distributions.More specifically, the goal is to test if the sample X = {X1, X2, . . . , Xn}
comes from a discrete or mixed distribution with cumulative distribution function
(CDF) Fθ (x) where the parameter(s) θ is unknown. Algorithm 1, which is regener-
ated from [13], provides our procedures in details.

Although the below procedure and algorithm were described, their theoretical jus-
tifications were not provided in [13]. One major step in the above algorithm is to
estimate the distribution parameters (step 3) using the maximum likelihood estimate
(MLE) method. In this paper, we develop a general MLE procedure for estimating the
parameters for general zero-inflated and hurdle models. In addition, we discuss the
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Algorithm 1 Estimating p-value of KS test
1: Given X = (X1, X2, · · · Xn )

2: For b = 1, . . . , B, resample X with replacement to get a bootstrapped sample X(b) = {X (b)
1 , · · · , X (b)

n }.
3: For each b, calculate the MLE θ̂

(b)
of θ .

4: Simulate X(c) = {X (c)
1 , . . . , X (c)

n } iid from F
θ̂
(b) , which is the CDF Fθ (x) with parameter θ = θ̂

(b)
.

5: Calculate the KS statistic D(b)
n = supx |F̂(c)

n (x)−F
θ̂
(b) (x)|,where F̂(c)

n (x) is the empirical distribution

function of X(c).

6: Estimate the p-value by #{b|D(b)
n >Dn }+1
B+1 where Dn = supx |F̂n(x) − F

θ̂
(x)| is the KS statistic based

on the original data and its MLE θ̂ .

asymptotic properties and Fisher information matrix for MLEs, which can be used
for building up the confidence intervals of the distribution parameters. For model-
ing microbiome data, we recommend zero-inflated (or hurdle) beta binomial or beta
negative binomial models.

2 Zero-Altered or Hurdle Models and Their MLEs

Zero-altered models, also known as hurdle models, have been used for modeling data
with an excess or deficit of zeros (see, for example, [1], for a review). A general hurdle
model consists of two components, one generating the zeros and the other generating
nonzeros (or positive values for many applications). Given a baseline distribution
fθ (y), which could be the probability mass function (pmf) of a discrete distribution or
the probability density function (pdf) of a continuous distribution, with parameter(s)
θ = (θ1, . . . , θp)

T , the distribution function of the corresponding hurdle model can
be written as follows:

fZA(y | φ, θ) = φ1{y=0} + (1 − φ) ftr(y | θ)1{y �=0} (1)

where φ ∈ [0, 1] is the weight parameter of zeros, ftr(y | θ) = [1 −
p0(θ)]−1 fθ (y), y �= 0 is the pmf or pdf of the zero-truncated baseline distribution,
and p0(θ) = fθ (0) for discrete baseline distributions or simply 0 for continuous base-
line distributions. Examples with discrete baseline distributions include zero-altered
Poisson (ZAP) or Poisson hurdle (PH), zero-altered negative binomial (ZANB) or
negative binomial hurdle (NBH) models and others, where model (1) provides a new
pmf. Examples with continuous baseline distributions include zero-altered Gaussian
(ZAG) or Gaussian hurdle (GH), zero-altered lognormal or lognormal hurdle models
and others, where model (1) is indeed a mixture distribution with a discrete part with
a probability mass φ at [Y = 0] and a continuous component in [Y �= 0] with density
function (1 − φ) fθ (y), y �= 0.

The zero-altered models can actually be defined with a fairly general baseline
distribution equippedwith a cumulative distribution function (cdf) Fθ (y)= Pθ (Y ≤ y).
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Its corresponding cdf is defined as follows:

FZA(y | φ, θ) = PZA(Y ≤ y | φ, θ) = φ1{y≥0} + (1 − φ)Ftr(y | θ)

where Ftr(y | θ) = [Fθ (y) − Pθ (Y = 0)1{y≥0}]/[1 − Pθ (Y = 0)] is a zero-truncated
cdf. In this paper, we assume that the baseline distribution is either discrete or contin-
uous with pmf or pdf fθ (y).

2.1 Maximum Likelihood Estimate for Zero-Altered or Hurdle Model

The parameters of hurdle model (1) include both φ and θ . Let Y1, . . . ,Yn be a random
sample from model (1). The likelihood function of (φ, θ) is

L(φ, θ) = φn−m(1 − φ)m ·
∏

i :Yi �=0

ftr(Yi | θ) (2)

where m = #{i : Yi �= 0} is the number of nonzero observations. Since φ and θ are
separable in the likelihood function, we obtain the following theorem.

Theorem 1 For model (1) with zero-truncated pmf or pdf ftr(y | θ), the maximum
likelihood estimate (MLE) maximizing (2) is

φ̂ = 1 − m

n
, θ̂ = argmaxθ

∏

i :Yi �=0

ftr(Yi | θ)

Recall that ftr(y | θ) = [1− p0(θ)]−1 fθ (y), y �= 0 for discrete baseline functions or
simply fθ (y), y �= 0 for continuous baseline functions.

Example 1 For zero-altered beta binomial or beta binomial hurdle (BBH) distribution,
the pmf of the baseline distribution is

fθ (y) =
(
n

y

)
beta(y + α, n − y + β)

beta(α, β)

where θ = (n, α, β), y = 0, 1, . . . , n and

p0(θ) = �(n + β)�(α + β)

�(n + α + β)�(β)
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Let L(θ) be the likelihood of zero-truncated beta binomial distribution, then

L(n, α, β) = argmaxθ

∏
i :yi �=0 fθ (yi )

[1 − p0(θ)]m

=
(

�(α + n + β)�(β)

�(α + n + β)�(β) − �(n + β)�(α + β)

)m

·
m∏

i=1

(
�(n + 1)�(yi + α)�(n − yi + β)�(α + β)

�(yi + 1)�(n − yi + 1)�(α + n + β)�(α)�(β)

)

The log likelihood of zero-truncated beta binomial is given by:

l(n, α, β) = m log�(n + 1) + m log�(α + β) − m log�(α) +
n∑

i=1

log�(yi + α)

−m log (�(α + n + β)�(β) − �(n + β)�(α + β))

+
m∑

i=1

log�(n − yi + β) −
m∑

i=1

log�(yi + 1) −
m∑

i=1

log�(n − yi + 1)

Let �(·) = �′(·)/�(·), known as the digamma function. In order to calculate the
MLE, the following formulas are needed:

∂l(n, α, β)

∂n
= m

(
exp(logB − logA)(ψ(n + β) − ψ(n + α + β))

1 − exp(logB − logA)

)
+ mψ(n + 1)

+
m∑

i=1

ψ(n − yi + β) −
m∑

i=1

ψ(n − yi + 1) − mψ(α + n + β)

∂l(n, α, β)

∂α
= m

(
exp(logB − logA)(ψ(n + β) − ψ(n + α + β))

1 − exp(logB − logA)

)

+
m∑

i=1

ψ(yi + α) + mψ(α + β) − mψ(α + n + β) − mψ(α)

∂l(n, α, β)

∂β

= m

(
exp(logB − logA)(ψ(n + β) + ψ(α + β) − ψ(α + n + β) − ψ(β))

1 − exp(logB − logA)

)

−mψ(β) +
m∑

i=1

ψ(n − yi + β) + mψ(α + β) − mψ(α + n + β)

where A = �(n + α + β)�(β), and B = �(n + β)�(α + β). ��
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2.2 Asymptotic Properties and Fisher InformationMatrix of Hurdle MLEs

Let Y1, . . . ,Yn be a random sample from hurdle model (1). In order to find the MLE
numerically, we often consider the log-likelihood function

l(φ, θ) = log L(φ, θ) = logφ ·
n∑

i=1

1{Yi=0} + log(1 − φ) ·
n∑

i=1

1{Yi �=0}

− log[1 − p0(θ)]
n∑

i=1

1{Yi �=0} +
n∑

i=1

log fθ (Yi )1{Yi �=0}

whose first derivatives are

∂l

∂φ
= 1

φ
·

n∑

i=1

1{Yi=0} − 1

1 − φ
·

n∑

i=1

1{Yi �=0}

∂l

∂θ
= p0(θ)

1 − p0(θ)
· ∂ log p0(θ)

∂θ

n∑

i=1

1{Yi �=0} +
n∑

i=1

∂ log fθ (Yi )

∂θ
1{Yi �=0}

Lemma 1

E

(
∂l

∂φ

)
= 0 and E

(
∂l

∂θ

)
= n(1 − φ)

1 − p0(θ)
· E

[
∂ log fθ (Y ′)

∂θ

]

where Y ′ follows the baseline distribution fθ (y).

Proof of Lemma 1: Since P(Yi = 0) = φ, then E(∂l/∂φ) = 0. Let Y ′
1, . . . ,Y

′
n be iid

∼ fθ (y). Then,

E

[
∂ log fθ (Yi )

∂θ
1{Yi �=0}

]
= 1 − φ

1 − p0(θ)
· E

[
∂ log fθ (Y ′

i )

∂θ
1{Y ′

i �=0}
]

= 1 − φ

1 − p0(θ)
·
{
E

[
∂ log fθ (Y ′

i )

∂θ

]
− p0(θ) · ∂ log p0(θ)

∂θ

}

Then,

E

(
∂l

∂θ

)
= 1 − φ

1 − p0(θ)
·

n∑

i=1

E

[
∂ log fθ (Y ′

i )

∂θ

]
= n(1 − φ)

1 − p0(θ)
· E

[
∂ log fθ (Y ′)

∂θ

]

��
As a direct corollary of Theorem 17 in [14], the MLEs of hurdle model have strong

consistency under fairly general conditions.

Theorem 2 Let Y1, . . . ,Yn be a randomsample fromhurdlemodel (1)with true param-
eter value (φ0, θ0) ∈ (0, 1)×�, where � is compact. Let φ̂ = n−1 ∑n

i=1 1{Yi=0} and
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θ̂ = argmaxθ∈�

∏
i :Yi �=0 ftr(Yi | θ) be the MLEs. Suppose (1) fθ (y) is continuous

in θ for all y; (2) fθ (y) = fθ0(y) for all y always implies θ = θ0; and (3) there
exists a nonnegative function K (y) such that E[K (Y )] < ∞ for Y ∼ ftr(y; θ0) and
log[ ftr(y | θ)/ ftr(y | θ0)] ≤ K (y) for all y �= 0 and θ ∈ �. Then, φ̂

a.s.−→ φ0 and

θ̂n
a.s.−→ θ0 as n goes to infinity.

Under regularity conditions, see for example, Chapter 18 in [14] or Section 5f in
[15], E[∂ log fθ (Y ′)/∂θ ] = 0 and thus, E (∂l/∂θ) = 0 according to Lemma 1. We
can further calculate the Fisher information matrix of the random sample

F(φ, θ) = −
⎡

⎣
E

(
∂2l
∂φ2

)
E

(
∂2l

∂φ∂θT

)

E
(

∂2l
∂θ∂φ

)
E

(
∂2l

∂θ∂θT

)

⎤

⎦ (3)

Theorem 3 Let Y1, . . . ,Yn be a random sample from hurdle model (1). Under regu-
larity conditions, the Fisher information matrix of the sample is

FZA = n

[
φ−1(1 − φ)−1 0T

0 FZA22

]

where

FZA22 = − 1 − φ

1 − p0(θ)

(
E

[
∂2 log fθ (Y ′)

∂θ∂θT

]
+ p0(θ)

1 − p0(θ)
· ∂ log p0(θ)

∂θ
· ∂ log p0(θ)

∂θT

)

and Y ′ follows the baseline distribution fθ (y).

Proof of Theorem 3: Since

∂ log fZA(y | φ, θ)

∂φ
= φ−11{y=0} − (1 − φ)−11{y �=0}

∂ log fZA(y | φ, θ)

∂θ
= p0(θ)

1 − p0(θ)
· ∂ log p0(θ)

∂θ
1{y �=0} + ∂ log fθ (y)

∂θ
1{y �=0}

Then,

∂2 log fZA(y | φ, θ)

∂φ2 = −φ−21{y=0} − (1 − φ)−21{y �=0}

∂2 log fZA(y | φ, θ)

∂φ∂θT
= 0T

∂2 log fZA(y | φ, θ)

∂θ∂φ
= 0

∂2 log fZA(y | φ, θ)

∂θ∂θT
= p0(θ)

[1 − p0(θ)]2 · ∂ log p0(θ)

∂θ
· ∂ log p0(θ)

∂θT
1{y �=0}

+ p0(θ)

1 − p0(θ)
· ∂2 log p0(θ)

∂θ∂θT
1{y �=0} + ∂2 log fθ (y)

∂θ∂θT
1{y �=0}
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The rest of the conclusions can be obtained via l(φ, θ) = ∑n
i=1 log fZA(Yi | φ, θ). ��

As direct conclusions of Theorem 18 in [14]: (i)
√
n(φ̂ −φ0)

L→ N (0, φ0(1−φ0));

(ii)
√
n(θ̂ − θ0)

L→ N
(
0, F−1

ZA22

)
; and (iii) φ̂ and θ̂ are asymptotically independent.

These results can be used for building up confidence intervals of φ and θ .

Example 2 For zero-altered Poisson or Poisson hurdle distribution, the pmf of the
baseline distribution is fλ(y) = e−λλy/y! with p0(λ) = e−λ. It can be verified that

E

(
∂ log fλ(Y ′)

∂λ

)
= 0

if Y ′ ∼ fλ(y). The truncated pmf is

ftr(y | λ) = e−λ

1 − e−λ
· λy

y! , y = 1, 2, . . .

The log likelihood for the zero-truncated Poisson is

l(λ) = −mλ − m log(1 − e−λ) +
∑

i :Yi>0

Yi · log λ − log(
∏

i :Yi>0

Yi !)

The MLE λ̂ of λ solves the likelihood equation λ = Ȳ (1 − e−λ) with Ȳ =
m−1 ∑

i :Yi>0 Yi , which can be solved numerically. If the true value λ0 ∈ [λ1, λ2]
for some 0 < λ1 < λ2 < ∞, then K (y) in Theorem 1 can be chosen as

K (y) = log
λ2

λ1
· y + log

1 − e−λ2

1 − e−λ1
+ λ2 − λ1

Since there is no difference in practice as long as 0 < λ1 < λ̂ < λ2 < ∞, we know
λ̂

a.s.→ λ0 as n goes to infinity.
According toTheorem3, theFisher informationmatrix of thePoisson hurdle sample

is

FPH =
[ 1

φ(1−φ)
0

0 1−φ

1−e−λ

(
1
λ

− e−λ

1−e−λ

)
]

Note that 1
λ

− e−λ

1−e−λ > 0 as long as λ > 0. ��

Example 3 For zero-altered negative binomial or negative binomial hurdle distribution,
the pmf of the baseline distribution with parameters θ = (r , p) ∈ (0,∞) × [0, 1] is
given by fθ (y) = �(y+r)

�(y+1)�(r) p
y(1 − p)r , y ∈ {0, 1, 2, . . .}. Then, p0(θ) = (1 − p)r .
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In order to apply Lemma 1, we obtain

log fθ (y) = log�(y + r) − log�(y + 1) − log�(r) + y log p + r log(1 − p)
∂ log fθ (y)

∂r
= �(y + r) − �(r) + log(1 − p)

∂ log fθ (y)

∂ p
= y

p
− r

1 − p

where �(·) = �′(·)/�(·) is known as the digamma function.
If Y ′ ∼ fθ (y), then E(Y ′) = pr/(1 − p) and E

(
∂ log fθ (Y ′)/∂ p

) = 0. On the
other hand, since �(y) = ∫ ∞

0 t y−1e−t dt and �′(y) = ∫ ∞
0 t y−1e−t log tdt for y > 0,

then

E
(
�(Y ′ + r)

) =
∞∑

y=0

�′(y + r)

�(y + r)
· �(y + r)

�(y + 1)�(r)
py(1 − p)r

= (1 − p)r

�(r)

∞∑

y=0

py

y! �′(y + r)

= (1 − p)r

�(r)

∞∑

y=0

py

y!
∫ ∞

0
t y+r−1e−t log tdt

= (1 − p)r

�(r)

∫ ∞

0

⎛

⎝
∞∑

y=0

(pt)y

y! e−pt

⎞

⎠ · tr−1e−t(1−p) log tdt

= (1 − p)r

�(r)

∫ ∞

0
tr−1e−t(1−p) log tdt (let s = (1 − p)t)

= (1 − p)r

�(r)

∫ ∞

0
sr−1e−s [

log s − log(1 − p)
]
ds · (1 − p)−r

= 1

�(r)

[∫ ∞

0
sr−1e−s log sds −

∫ ∞

0
sr−1e−s log(1 − p)ds

]

= 1

�(r)

[
�′(r) − log(1 − p)�(r)

]

= �(r) − log(1 − p)

Therefore, E
(
∂ log fθ (Y ′)/∂r

) = E
(
�(Y ′ + r)

) − �(r) + log(1 − p) = 0.
According to Theorem 3, the Fisher information matrix of a random sample from

the negative binomial hurdle distribution is

FNBH =
[ 1

φ(1−φ)
0T

0 FNBH22

]
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with

FNBH22 = 1 − φ

1 − (1 − p)r
·

{[
A(y, r) 1

1−p
1

1−p
r

p(1−p)2

]
− (1 − p)r

1 − (1 − p)r

[
log2(1 − p) − r log(1−p)

1−p

− r log(1−p)
1−p

r2

(1−p)2

]}

A(y, r) = �1(r) − E�1(Y ′ + r) where �1(·) = � ′(·) is known as the trigamma
function. Since E�1(Y ′+r) does not have a simple form for computation, a numerical
solution for estimating it has been proposed by [16]. ��

3 Zero-InflatedModels and Their MLEs

Unlike zero-altered models, a zero-inflated model always assumes an excess of zeros.
Besides zeros coming from the baseline distribution, such as Poisson or negative
binomial, there are additional zeros modeled by a weight parameter φ ∈ [0, 1].

When the baseline distribution is discrete with a pmf fθ (y), the corresponding
zero-inflated model has a pmf fZI(y | φ, θ) = φ1{y=0} + (1 − φ) fθ (y) as well. In
order to cover both pmf and pdf, we would rather write the distribution function of
the zero-inflated distribution as

fZI(y | φ, θ) = [φ + (1 − φ)p0(θ)]1{y=0} + (1 − φ) fθ (y)1{y �=0} (4)

Recall that p0(θ) = fθ (0) for pmf and 0 for pdf. Similar to zero-altered models, when
the baseline function fθ (y) is a pdf, the zero-inflated model is a mixture distribution
with a probability mass on [Y = 0] and a density in [Y �= 0]. It should be noted that
when the baseline distribution is either continuous with a pdf fθ (y) or discrete but
with p0(θ) = 0, the zero-inflated model is essentially the same as the corresponding
zero-altered model.

Commonly used baseline distributions includeGaussian, half-normal, Poisson, neg-
ative binomial, beta binomial, etc. The corresponding zero-inflated models are known
as zero-inflated Gaussian (ZIG), zero-inflated half-normal (ZIHN), zero-inflated Pois-
son (ZIP), zero-inflated negative binomial (ZINB), zero-inflated beta binomial (ZIBB),
respectively.

3.1 Maximum Likelihood Estimate for Zero-InflatedModels

Given a random sample Y1, . . . ,Yn from the zero-inflated model (4), we adopt the
maximum likelihood estimate φ̂ for φ and θ̂ for θ . Similar as in Section 2, we denote
m = #{i : Yi �= 0}.

If the baseline distribution satisfies Pθ (Y = 0) = 0, then the likelihood func-
tion L(φ, θ) = φn−m(1 − φ)m · ∏

i :Yi �=0 fθ (Yi ). Then, φ̂ = 1 − m/n and θ̂ =
argmaxθ

∏
i :Yi �=0 fθ (Yi ), which are the same as the ones for hurdle models.
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For general cases, the likelihood function for model (4) is

L(φ, θ) = [φ + (1 − φ)p0(θ)]n−m (1 − φ)m (1 − p0(θ))m
∏

i :yi �=0

ftr(Yi | θ) (5)

where ftr(y | θ) = fθ (y)/[1 − p0(θ)], y �= 0 is the pmf or pdf of the zero-truncated
version of the baseline distribution. By reparametrization, we let

ψ = 1 − [φ + (1 − φ)p0(θ)] = (1 − φ)[1 − p0(θ)] (6)

Then, φ = 1 − ψ/[1 − p0(θ)] and the likelihood of ψ and θ is

L(ψ, θ) = (1 − ψ)n−mψm ·
∏

i :Yi �=0

ftr(Yi | θ)

which is separable for ψ and θ .

Theorem 4 Let θ∗ = argmaxθ

∏
i :Yi �=0 ftr(Yi | θ). The maximum likelihood estimate

(φ̂, θ̂) maximizing (5) can be obtained as follows:

(1) If m/n ≤ 1 − p0(θ∗), then θ̂ = θ∗ and φ̂ = 1 − m/n · (1 − p0(θ∗))−1.
(2) Otherwise, θ̂ = argmaxθ (1 − ψ(θ))n−mψ(θ)m

∏
i :Yi �=0 ftr(Yi | θ) and φ̂ = 1 −

ψ(θ̂) · (1 − p0(θ̂))−1, where ψ(θ) = min{m/n, 1 − p0(θ)}.
Proof of Theorem 4: First of all, we denote ψ∗ = argmaxψ(1 − ψ)n−mψm and θ∗ =
argmaxθ

∏
i :Yi �=0 ftr(Yi | θ). It can be verified that ψ∗ = m/n.

On the other hand, ψ = (1 − φ)[1 − p0(θ)] with φ ∈ [0, 1], which implies
ψ ∈ [0, 1 − p0(θ)]. If m/n ≤ 1 − p0(θ∗), then ψ̂ = m/n, θ̂ = θ∗ is the mle. In this
case, the mle of φ is φ̂ = 1 − ψ̂(1 − p0(θ∗))−1.

Otherwise, we have m/n > 1− p0(θ∗). Then, ψ̂ = ψ(θ) = min{m/n, 1− p0(θ)}
is the mle of φ given θ . In order to find the mle of φ and θ , we first find θ∗ =
argmaxθ L(ψ(θ), θ). Then, θ̂ = θ∗ and ψ̂ = ψ(θ∗). ��

Theorem 4 actually makes the connection between MLEs for zero-inflated models
and zero-altered models when m/n ≤ 1 − p0(θ∗). It can also be used for finding
MLEs numerically.

Example 4 Let θ = (n, α, β). The pmf of beta binomial distribution is

fθ (y) =
(
n

y

)
beta(y + α, n − y + β)

beta(α, β)

with y = 0, 1, . . . , n and

p0(θ) = �(n + β)�(α + β)

�(n + α + β)�(β)

p0(θ)

1 − p0(θ)
= �(n + β)�(α + β)

�(n + α + β)�(β) − �(n + β)�(α + β)
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Let�(·) = �′(·)/�(·), known as the digamma function. In order to apply Theorem 4,
we need the following formulas:

∂ log fθ (y)

∂n
= �(n + 1) − �(n − y + 1) + �(n − y + β) − �(n + α + β)

∂ log fθ (y)

∂α
= �(y + α) − �(n + α + β) + �(α + β) − �(α)

∂ log fθ (y)

∂β
= �(n − y + β) − �(n + α + β) + �(α + β) − �(β)

∂ log p0(θ)

∂n
= �(n + β) − �(n + α + β)

∂ log p0(θ)

∂α
= �(α + β) − �(n + α + β)

∂ log p0(θ)

∂β
= �(n + β) + �(α + β) − �(n + α + β) − �(β)

��

3.2 Asymptotic Properties and Fisher InformationMatrix for Zero-InflatedMLEs

Let Y1, . . . ,Yn be a random sample from the zero-inflated model (4). The log-
likelihood function of φ and θ is

l(φ, θ) = log L(φ, θ) = log[φ + (1 − φ)p0(θ)] ·
n∑

i=1

1{Yi=0}

+ log(1 − φ) ·
n∑

i=1

1{Yi �=0} +
n∑

i=1

log fθ (Yi )1{Yi �=0}

Then,

∂l

∂φ
= 1 − p0(θ)

φ + (1 − φ)p0(θ)
·

n∑

i=1

1{Yi=0} − 1

1 − φ
·

n∑

i=1

1{Yi �=0}

∂l

∂θ
= (1 − φ)p0(θ)

φ + (1 − φ)p0(θ)
· ∂ log p0(θ)

∂θ

n∑

i=1

1{Yi=0} +
n∑

i=1

∂ log fθ (Yi )

∂θ
1{Yi �=0}

Lemma 2 Suppose 0 ≤ φ < 1. Then,

E

(
∂l

∂φ

)
= 0 and E

(
∂l

∂θ

)
= n(1 − φ)E

[
∂ log fθ (Y ′)

∂θ

]

which is 0 if and only if E[∂ log fθ (Y ′)/∂θ] = 0, where Y ′ follows the baseline
distribution fθ (y).

123



Journal of Statistical Theory and Practice            (2022) 16:13 Page 13 of 16    13 

Proof of Lemma 2: Since P(Yi = 0) = φ + (1 − φ)p0(θ) and P(Yi �= 0) = (1 −
φ)[1 − p0(θ)], then E(∂l/∂φ) = 0. Let Y ′

1, . . . ,Y
′
n be iid ∼ fθ (y). Then,

E

[
∂ log fθ (Yi )

∂θ
1{Yi �=0}

]
= (1 − φ) · E

[
∂ log fθ (Y ′

i )

∂θ
1{Y ′

i �=0}
]

= (1 − φ)

{
E

[
∂ log fθ (Y ′

i )

∂θ

]
− p0(θ) · ∂ log p0(θ)

∂θ

}

and

E

(
∂l

∂θ

)
= (1 − φ)

n∑

i=1

E

[
∂ log fθ (Y ′

i )

∂θ

]
= n(1 − φ)E

[
∂ log fθ (Y ′)

∂θ

]

��

Under regularity conditions, E[∂ log fθ (Y ′)/∂θ ] = 0 and thus, E (∂l/∂θ) = 0
according to Lemma 2.

Theorem 5 Let Y1, . . . ,Yn be a random sample from zero-inflated model (4). Under
regularity conditions, the Fisher information matrix of the sample is

FZI = n

[
1−p0(θ)

[φ+(1−φ)p0(θ)](1−φ)
p0(θ)

φ+(1−φ)p0(θ)
· ∂ log p0(θ)

∂θT
p0(θ)

φ+(1−φ)p0(θ)
· ∂ log p0(θ)

∂θ
FZI22

]

where

FZI22 = −(1 − φ)
(
E

[
∂2 log fθ (Y ′)

∂θ∂θT

]
+ φ p0(θ)

φ + (1 − φ)p0(θ)
· ∂ log p0(θ)

∂θ
· ∂ log p0(θ)

∂θT

)

and Y ′ follows the baseline distribution fθ (y).

Proof of Theorem 5: Since

∂ log fZI(y | φ, θ)

∂φ
= 1 − p0(θ)

φ + (1 − φ)p0(θ)
1{y=0} − 1

1 − φ
1{y �=0}

∂ log fZI(y | φ, θ)

∂θ
= (1 − φ)p0(θ)

φ + (1 − φ)p0(θ)
· ∂ log p0(θ)

∂θ
1{y=0} + ∂ log fθ (y)

∂θ
1{y �=0}
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Then,

∂2 log fZI(y | φ, θ)

∂φ2 = − [1 − p0(θ)]2
[φ + (1 − φ)p0(θ)]2 1{y=0} − 1

(1 − φ)2
1{y �=0}

∂2 log fZI(y | φ, θ)

∂φ∂θT
= − p0(θ)

[φ + (1 − φ)p0(θ)]2 · ∂ log p0(θ)

∂θT
1{y=0}

∂2 log fZI(y | φ, θ)

∂θ∂φ
= − p0(θ)

[φ + (1 − φ)p0(θ)]2 · ∂ log p0(θ)

∂θ
1{y=0}

∂2 log fZI(y | φ, θ)

∂θ∂θT
= φ(1 − φ)p0(θ)

[φ + (1 − φ)p0(θ)]2 · ∂ log p0(θ)

∂θ
· ∂ log p0(θ)

∂θT
1{y=0}

+ (1 − φ)p0(θ)

φ + (1 − φ)p0(θ)
· ∂2 log p0(θ)

∂θ∂θT
1{y=0} + ∂2 log fθ (y)

∂θ∂θT
1{y �=0}

The rest of the conclusions can be obtained via l(φ, θ) = ∑n
i=1 log fZI(Yi | φ, θ),

P(Yi = 0) = φ + (1 − φ)p0(θ) and P(Yi �= 0) = (1 − φ)[1 − p0(θ)]. ��
As direct conclusions of Theorem 18 in [14], under regularity conditions, we have

(i)

√
n(φ̂ − φ0)

L−→ N

(
0,

[φ + (1 − φ)p0(θ)](1 − φ)

1 − p0(θ)

)

and (ii)
√
n(θ̂−θ0)

L→ N
(
0, F−1

ZI22

)
. However, φ̂ and θ̂ are usually not asymptotically

independent unless p0(θ) = 0 or does not depend on θ . These results can be used for
building up confidence intervals of φ and θ as well.

Example 5 For zero-inflated Poisson (ZIP) model, the pmf of the baseline distribution
is fλ(y) = e−λλy/y!with y = 0, 1, . . ., where p0(λ) = e−λ. Then, ∂ log fλ(y)/∂λ =
y/λ − 1.

According to Theorem 5, the Fisher information matrix of the Poisson sample is

FZIP = n

⎡

⎣
1−e−λ

[φ+(1−φ)e−λ](1−φ)
− e−λ

φ+(1−φ)e−λ

− e−λ

φ+(1−φ)e−λ (1 − φ)
(
1
λ

− φe−λ

φ+(1−φ)e−λ

)
⎤

⎦

Note that 1
λ

− φe−λ

φ+(1−φ)e−λ > 0 as long as λ > 0 and 0 ≤ φ < 1. ��

4 Microbiome Data Application

As an application, the bootstrap KS test with unknown parameters (Algorithm 1)
has been used to a list of 229 bacterial and fungal OTUs [13,17]. We are interested
in knowing how many of the 229 OTU follows each of the following distributions
given that the distribution parameters are unknown: Poisson, negative binomial, beta
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Table 2 Number and percentage of species out of 229 species that do not show significant difference (KS
p-value > 0.05)

Distribution Number Percentage (%)

Poisson 1 0.4

Negative binomial (NB) 23 10

Beta binomial (BB) 76 33

Beta negative binomial (BNB) 60 26

Zero-inflated Poisson (ZIP) 3 2

Zero-inflated negative binomial (ZINB) 25 11

Zero-inflated beta binomial (ZIBB) 89 39

Zero-inflated beta negative binomial (ZIBNB) 110 48

Poisson hurdle (PH) 2 1

Negative binomial hurdle (NBH) 56 24

Beta binomial hurdle (BBH) 92 40

Beta negative binomial hurdle (BNBH) 121 53

binomial, beta negative binomials, and the corresponding zero-inflated and hurdle
models. Table 2, which was regenerated from [13], summarizes the number of features
that do not show significant divergence (p value > 0.05).

Poisson, negative binomial, ZIP, ZINB have been used commonly for modeling
microbiome data. However, as shown in the below table, Poisson, zero-inflated Pois-
son, and Poisson hurdle are not appropriate distributions to model sparse microbial
features as only 0.4%, 2%, 1% out of 229 the features were able to be appropriately
fitted using these distributions, respectively. On the other hand, binomial and negative
binomial families can be used to approximate sparsemicrobial data, with BNBH as the
best distribution to model such dataset (being able to appropriately fit 53% of the 229
features) using the proposed conservative method. In addition, ZIBNB fits about half
of the features followed by BBH and ZIBB which they fit about 40% of the features.

Based on the above table, we conclude that zero-inflated and hurdle beta binomial
or beta negative binomial are more appropriate than commonly used models.

5 Conclusion

Understanding the role of the microbiome in human health and how it can be modeled
is becoming increasingly relevant for preventive medicine and for the medical man-
agement of chronic diseases [18]. However, the microbiome data are highly sparse
and skewed. It is very challenging to select an appropriate probabilistic model.

In this paper, we use the MLE approach to estimate the parameters of general
zero-inflated and hurdle models. We also derive the corresponding Fisher information
matrices for exploring the estimator’s asymptotic properties to build up the confidence
intervals of the parameters.

In the literature, Poisson and negative binomial models have been commonly
used for modeling microbiome data. Based on a real dataset analysis, we show that

123



   13 Page 16 of 16 Journal of Statistical Theory and Practice            (2022) 16:13 

zero-inflated (or hurdle) beta binomial or beta negative binomial models are more
appropriate.
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