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We consider optimal designs for general multinomial logistic mod-
els, which cover baseline-category, cumulative, adjacent-categories and
continuation-ratio logit models, with proportional odds, nonproportional odds
or partial proportional odds assumption. We derive the corresponding Fisher
information matrices in three different forms to facilitate their calculations,
determine the conditions for their positive definiteness, and search for optimal
designs. We conclude that, unlike the designs for binary responses, a feasible
design for a multinomial logistic model may contain less experimental set-
tings than parameters, which is of practical significance. We also conclude
that even for a minimally supported design, a uniform allocation, which is
typically used in practice, is not optimal in general for a multinomial logis-
tic model. We develop efficient algorithms for searching D-optimal designs.
Using examples based on real experiments, we show that the efficiency of an
experiment can be significantly improved if our designs are adopted.

1. Introduction. Experiments with categorical responses arise naturally in a rich variety
of scientific disciplines (Christensen (2019)). While there is a sizable and growing literature
for optimal designs with binary response, the literature for experiments with more than two
categories is limited. On the other hand, there are many applications where three or more cat-
egories arise naturally. For instance, the response of an odor removal study (Yang, Tong and
Mandal (2017)) has three levels, serious odor, medium odor, almost no odor
for manufactured bio-plastics; and the outcome of trauma clinical trial (Chuang-Stein and
Agresti (1997)) has five categories known as the Glasgow Outcome Scale (Jennett and Bond
(1975)), death, vegetative state, major disability, minor disability
and good recovery. In some experiments, responses are hierarchical, such as the out-
come of emergence of house flies (Zocchi and Atkinson (1999)) with categories, died
before opening of the pupae, died before complete emergence and
completely emerged. Other examples include a wine bitterness study (Randall (1989)),
a polysilicon deposition study (Wu (2008)) and a toxicity study (Agresti (2013)). Our aim is
to obtain foundational results for the identification of optimal and efficient designs for exper-
iments with three or more response categories and explore the properties of these designs.

When the response is binary, generalized linear models have been used widely (McCullagh
and Nelder (1989), Dobson and Barnett (2018)) for analyzing the experimental data. For opti-
mal designs of experiments with generalized linear models for univariate responses, there is a
growing body of literature (Atkinson, Donev and Tobias (2007), Khuri et al. (2006), Stufken
and Yang (2012)). In this case, the minimum number of distinct experimental settings re-
quired by a nondegenerate Fisher information matrix is equal to the number of parameters
(Fedorov (1972), Yang and Mandal (2015)). Moreover, for the widely studied D-optimal
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approximate designs, the experimental units are uniformly allocated when a minimally sup-
ported design, that is, a design with the minimum number of distinct experimental settings,
is adopted (Yang and Mandal (2015), Yang, Mandal and Majumdar (2016)).

For responses with three or more categories, these results do not directly apply. The
models used in the literature are special cases of the multivariate generalized linear model
(McCullagh (1980)). According to the relationship among categories, categorical responses
can be of three types: nominal, ordinal and hierarchical (Zocchi and Atkinson (1999)). In
practice, a multinomial distribution is typically used to model the responses for a specified ex-
perimental setting. In the statistical literature, four kinds of logit models have been commonly
used to link the categorical probabilities to experimental settings or values of covariates, the
baseline-category logit model for nominal responses (Agresti (2013), Zocchi and Atkinson
(1999)), the cumulative logit model for ordinal responses (McCullagh (1980), Christensen
(2019)), the adjacent-categories logit model for ordinal responses (Liu and Agresti (2005),
Agresti (2013)) and the continuation-ratio logit model for hierarchical responses (Agresti
(2013), Zocchi and Atkinson (1999)). Also, three different assumptions on parameter struc-
tures have been proposed for the four logit models, proportional odds (po) assuming the same
parameters for different categories (McCullagh (1980)), nonproportional odds (npo) allow-
ing parameters to change across categories (Agresti (2013)) and partial proportional odds
(ppo) containing both po and npo components (Peterson and Harrell (1990)) as special cases.
The four logit models and three odds assumptions generate 12 different models for multino-
mial responses including, for example, a cumulative logit model with proportional odds. All
12 models can be fitted using SAS (Stokes, Davis and Koch (2012)) or R (Yee (2015)), and
AIC or BIC criterion may be used for model selection.

Despite this rich complexity of models, the relevant results in the design literature for
multinomial responses are limited to special classes. Zocchi and Atkinson (1999) constructed
a general framework of optimal designs for multinomial logistic models with nonproportional
odds. Perevozskaya, Rosenberger and Haines (2003) discussed a special class of cumulative
logit models with proportional odds. Yang, Tong and Mandal (2017) obtained results for the
cumulative link model, which is an extension of the cumulative logit models with propor-
tional odds. Although the cumulative logit model with proportional odds is the most popular
model in practice for ordinal responses, Agresti (2010) found strong evidence against the as-
sumption of proportional odds for the trauma clinical trial data. For the emergence of house
flies data (Zocchi and Atkinson (1999)), a continuation-ratio logit model with nonpropor-
tional odds fits better. It is also known that for certain applications, partial proportional odds
may have a better performance than po or npo models (Lall et al. (2002)).

The goal of this work is a comprehensive approach to the study of optimal designs for
multinomial responses. We work in a general framework, which covers all of the 12 models.
The traditional starting point for obtaining an optimal design, given a model, is the Fisher in-
formation matrix for an arbitrary design. This information matrix is then “maximized” using
a criterion function; for instance, the criterion we use, D-optimality, maximizes the determi-
nant of the Fisher information matrix. Our first step is to derive explicit representations of
the Fisher information matrix, thereby providing the foundation for the quest of all optimal
designs. Our next step is to derive conditions for the positive definiteness of the information
matrix, which is necessary for the nondegeneracy of the design and essential for formulating
the criteria functions. This also allows us to determine the minimum number of experimen-
tal conditions needed for positive definiteness, which is necessary to understand the cost-
efficiency of the study. Then we proceed to study D-optimal designs. The Fisher information
matrix for the multinomial logistic models, as in all models except linear models, depends on
the (unknown) model parameters. There are two approaches in the optimal design literature
to deal with this. The first approach, local optimality, which we pursue, uses assumed values
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of the parameters. Difficulties arise when no prior information, such as prior experimental
result, is available; we will address this issue in Section 5.3. The second approach that re-
quires specification of a prior distribution of the parameters is Bayesian optimality (Chaloner
and Verdinelli (1995)). Using the D-criterion, these approaches lead to locally D-optimal and
Bayesian D-optimal designs. Instead of Bayesian optimality, however, we study a variant,
EW optimality (Atkinson, Donev and Tobias (2007), Yang, Mandal and Majumdar (2016),
Yang, Tong and Mandal (2017)), which maximizes the determinant of the expected Fisher
information matrix under a prior on the parameters; this is a good surrogate of Bayesian
D-optimal designs, with substantially reduced computational cost.

Our work shows that the optimal designs for multinomial responses with three or more
categories are remarkably different from the ones for binary responses in two major aspects:
(i) the required minimum number of experimental settings is less than the number of pa-
rameters; (ii) even among minimally supported designs, unlike D-optimal designs for binary
responses, uniform allocation is not D-optimal, except for regular npo models (defined in
Section 5.6). Indeed, we find that uniform designs can be quite inefficient. Theoretically, this
work reveals significant new features of optimal designs for general multinomial models. It
also provides a way to accurately compute efficiency of designs of experiments based on
multinomial models, and shows that widely used designs, like uniform designs, may not be
efficient in these models. More generally, this work indicates that as we go from univariate to
multivariate responses, some widely-applicable tenets of optimal design theory, like uniform
allocation on a minimal set of experimental conditions, may no longer hold.

Similar conclusions for minimally supported designs were observed by Yang, Tong and
Mandal (2017) for cumulative link models and proportional odds. Our results confirm and
extend these to the general setup.

The rest of this paper is organized as follows: In Section 2, we formulate the general multi-
nomial logistic model and its Fisher information matrix; in Section 3, we derive a necessary
and sufficient condition for the Fisher information matrix to be positive definite, which deter-
mines the minimal number of required experimental settings; in Section 4, we formulate the
determinant of the Fisher information matrix as a homogeneous polynomial of allocations
of experimental units and simplify its structure for D-optimality; in Section 5, we develop
numerical algorithms for searching D-optimal designs, as well as some analytical results for
minimally supported designs; we conclude with discussions in Section 6. Although we focus
on D-optimality, our basic results on Fisher information matrix are useful for other criteria
as well, such as A-optimality, E-optimality, etc. We also study two examples extensively,
the trauma clinical trial (Chuang-Stein and Agresti (1997)) and the emergence of house flies
(Zocchi and Atkinson (1999)). These are used to illustrate the results and explore the proper-
ties of the designs, such as efficiency and robustness.

One important point to note is that throughout this paper the major results are expressed
in terms of ppo models only, as this includes both po and npo models as special cases. The
special cases are of considerable interest, however, especially in many applications, and all of
the specific formulae for po and npo models are provided in the Supplementary Material (Bu,
Majumdar and Yang (2020)), so they are readily available to the reader. The Supplementary
Material also contain results that are of further interest.

2. Multinomial logistic model and its Fisher information matrix. This section is
dedicated to the description of the model and the Fisher information matrix, the start-
ing points of the study of optimal designs. We consider an experiment with d ≥ 1 fac-
tors and m ≥ 2 distinct experimental settings xi = (xi1, . . . , xid)T , i = 1, . . . ,m that could
be used in the experiment. For the ith experimental setting, ni ≥ 0 categorical responses
are collected i.i.d. from a discrete distribution with J ≥ 2 categories, with ni = 0 indicat-
ing no experimental unit assigned to this experimental setting. When ni > 0, the responses
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associated with the ith experimental setting are summarized into a multinomial response
Yi = (Yi1, . . . , YiJ )T ∼ Multinomial(ni;πi1, . . . , πiJ ), where πij is the probability that the
response falls into the j th category at the ith experimental setting. Note that πij ’s are func-
tions of the experimental settings and the model parameters (to be introduced next); however,
for simplicity we do not show the dependence in the notation of πij . Throughout this paper,
we assume πij > 0 for all i = 1, . . . ,m and j = 1, . . . , J , which is necessary for a multino-
mial logistic model (in Section 5.1 we examine the implications of this on the design space).

The general structure of models that are considered is a linear regression of log odds on
two components: one specific to the category and the other common to all categories. As
mentioned in the Introduction, we will work with the most general model—the partial pro-
portional odds (ppo) model. For this, we write the four logit models (baseline-category, cu-
mulative, adjacent-categories and continuation-ratio) in terms of ppo structure as follows:

log
(

πij

πiJ

)
= hT

j (xi )βj + hT
c (xi )ζ , baseline-category,

log
(

πi1 + · · · + πij

πi,j+1 + · · · + πiJ

)
= hT

j (xi )βj + hT
c (xi )ζ , cumulative,

log
(

πij

πi,j+1

)
= hT

j (xi )βj + hT
c (xi )ζ , adjacent-categories,

log
(

πij

πi,j+1 + · · · + πiJ

)
= hT

j (xi )βj + hT
c (xi )ζ , continuation-ratio,

where i = 1, . . . ,m, j = 1, . . . , J − 1, hT
j (·) = (hj1(·), . . . , hjpj

(·)) are known func-
tions to determine the pj predictors associated with the pj unknown parameters βj =
(βj1, . . . , βjpj

)T for the j th response category, and hT
c (·) = (h1(·), . . . , hpc(·)) are known

functions to determine the pc predictors associated with the pc unknown parameters ζ =
(ζ1, . . . , ζpc)

T that are common for all categories. As special cases of ppo, hT
j (xi ) ≡ 1 leads

to po models, and hT
c (xi ) ≡ 0 leads to npo models. The corresponding expressions for po and

npo models are provided in the Supplementary Material (Sections S.7 and S.8).
Following Glonek and McCullagh (1995) and Zocchi and Atkinson (1999), we rewrite

these four logit models into a unified form

(1) CT log(Lπ i ) = ηi = Xiθ , i = 1, . . . ,m,

where π i = (πi1, . . . , πiJ )T satisfying
∑J

j=1 πij = 1, ηi = (ηi1, . . . , ηiJ )T ,

CT =
(

IJ−1 −IJ−1 0J−1

0T
J−1 0T

J−1 1

)

is a J × (2J − 1) constant matrix, where Ik is the identity matrix of order k and 0k is a vector
of k zeros, and L is a (2J − 1) × J constant matrix taking different forms across the four
logit models (see Appendix A.1 for details). The model matrix is

(2) Xi =

⎛
⎜⎜⎜⎜⎝

hT
1 (xi ) hT

c (xi )
. . .

...

hT
J−1(xi ) hT

c (xi )

0T
p1

· · · 0T
pJ−1

0T
pc

⎞
⎟⎟⎟⎟⎠

J×p

and the parameter vector θ = (βT
1 , . . . ,βT

J−1, ζ
T )T consists of p = p1 + · · · + pJ−1 + pc

unknown parameters in total. Note that πi1 + · · ·+πiJ = 1 implies that ηiJ = 0, and thus the
last row of Xi is all 0’s. We keep ηiJ and the last row of Xi in (1) for convenience following
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Glonek and McCullagh (1995). Model (1) covers all four logit models and all three odds
structures (po, npo and ppo).

EXAMPLE 2.1. Yee (2015) considered a ppo model with d = 4 factors, J = 3 response
categories, and parameter vector θ = (β11, β12, β13, β21, β22, β23, ζ1, ζ2)

T . At the ith exper-
imental setting xi = (xi1, xi2, xi3, xi4)

T ,

Xi =
⎛
⎝1 xi1 xi2 0 0 0 xi3 xi4

0 0 0 1 xi1 xi2 xi3 xi4
0 0 0 0 0 0 0 0

⎞
⎠ .

We will revisit this example in Section 4.

Using matrix differentiation formulae (see, e.g., Seber (2008), Chapter 17), we obtain the
Fisher information matrix for model (1) as follows.

THEOREM 2.1. Consider the multinomial logistic model (1) with independent observa-
tions. The Fisher information matrix

(3) F =
m∑

i=1

niFi ,

where

(4) Fi =
(

∂π i

∂θT

)T

diag(π i )
−1 ∂π i

∂θT

with ∂π i/∂θT = (CT D−1
i L)−1Xi and Di = diag(Lπ i ).

Theorem 2.1 is a special case of Glonek and McCullagh (1995) who built a more general
framework for multiple categorical responses. We provide independent proofs in the Supple-
mentary Material (Section S.15), as well as a result, Lemma S.5, for use later on. Our results
apply to more general models than Zocchi and Atkinson (1999).

REMARK 2.1. The Fisher information matrix F plays a key role in optimal design the-
ory. For example, a D-optimal design maximizes the determinant of F, an A-optimal design
minimizes the trace of F−1 and an E-optimal design maximizes the minimum eigenvalue
of F. Given experimental settings x1, . . . ,xm and the parameter vector θ , one can calculate
F1, . . . ,Fm using (4). Then Theorem 2.1 provides a convenient way for calculating F as a
function of the allocation (n1, . . . , nm). The nonsingularity of the key matrix CT D−1

i L was
guaranteed by Glonek and McCullagh ((1995), Theorem 1). To facilitate calculations, we
derive explicit forms of (CT D−1

i L)−1 for all of the four logit models in the Supplementary
Material (Section S.3).

3. Positive definiteness of the Fisher information matrix. Positive definiteness of the
information matrix is essentially a necessary condition for the existence of unbiased esti-
mators of parameters with finite variance (Stoica and Marzetta (2001)). In this section, our
focus is the determination of conditions for the positive definiteness. We also determine the
minimal number of experimental settings required for positive definiteness, which is a basic
question, since it deals with the cost of experimentation. In order to do that, we first derive a
more amenable representation of F.
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To study the structure of F, we first denote (CT D−1
i L)−1 = (ci1, . . . , ciJ ), with cij

denoting the J × 1 column j . For the ith experimental setting, we define ust (π i ) =
cT
is diag(π i)

−1cit , for s, t = 1, . . . , J − 1 and then a J × J matrix

(5) Ui =

⎛
⎜⎜⎜⎝

u11(π i ) · · · u1,J−1(π i ) 0
...

. . .
...

...

uJ−1,1(π i ) · · · uJ−1,J−1(π i ) 0
0 · · · 0 1

⎞
⎟⎟⎟⎠ .

Then we can rewrite the Fisher information at the ith experimental setting Fi into a simpler
form as a corollary of Theorem 2.1.

COROLLARY 3.1. Under the setup of Theorem 2.1, Fi = XT
i UiXi .

In order to reformulate the Fisher information matrix F into a form that facilitates the
discussion of the positive definiteness of F, we further define an m(J − 1) × m(J − 1) ma-
trix U = (Ust )s,t=1,...,J−1 with Ust = diag{n1ust (π1), . . . , nmust (πm)}, and a p × m(J − 1)

matrix

(6) H =

⎛
⎜⎜⎜⎝

H1
. . .

HJ−1
Hc · · · Hc

⎞
⎟⎟⎟⎠ ,

where Hj = (hj (x1), . . . ,hj (xm)) and Hc = (hc(x1), . . . ,hc(xm)).
With the aid of Corollary 3.1, we obtain the theorem below, whose proof is relegated to

the Supplementary Material (Section S.15).

THEOREM 3.1. Consider the multinomial logistic model (1) with independent observa-
tions. The Fisher information matrix F = HUHT .

It can be verified that the matrix U is positive definite if ni > 0 for all i = 1, . . . ,m (see
Section S.4). For general cases, if ni = 0 for some i, one can denote k = #{i : ni > 0}
and U∗

st = diag{niust (π i ) : ni > 0}, then the reduced k(J − 1) × k(J − 1) matrix U∗ =
(U∗

st )s,t=1,...,J−1 is still positive definite. In this case, one can remove all columns of H asso-
ciated with ni = 0 and denote the leftover as H∗, which is a p × k(J − 1) matrix.

THEOREM 3.2. The Fisher information matrix F is positive definite if and only if H∗ is
of full row rank. Furthermore, if ni > 0 for all i = 1, . . . ,m, then F is positive definite if and
only if H is of full row rank.

Detailed discussion on the row rank of the matrix H is relegated to the Supplementary
Material (Section S.5). As a direct conclusion, we obtain the main result for the positive
definiteness of the Fisher information matrix F.

THEOREM 3.3. Consider the multinomial logistic model (1) with m distinct experimen-
tal settings xi and ni > 0 experimental units, i = 1, . . . ,m. The Fisher information matrix F
is positive definite if and only if:

(1) m ≥ max{p1, . . . , pJ−1,pc + pH }, where pH = dim(
⋂J−1

j=1 M(HT
j )) and M(HT

j )

stands for the column space of HT
j ; and
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(2) xi ’s keep Hj of full row rank pj , j = 1, . . . , J − 1; and keep Hc of full row rank pc;
as well as M(HT

c ) ∩ (
⋂J−1

j=1 M(HT
j )) = {0}.

As a special case, if H1 = · · · = HJ−1, then F is positive definite if and only if m ≥ pc + p1
and the extended matrix (HT

1 ,HT
c ) is of full rank pc + p1.

Since the determination of M(HT
c ) ∩ (

⋂J−1
j=1 M(HT

j )) in Theorem 3.3 is not straightfor-
ward, we provide a formula for its calculation in Appendix A.2.

Theorem 3.3 implies that the number m of distinct experimental settings could be as low
as max{p1, . . . , pJ−1,pc +pH }, denoted as kmin, which is strictly less than the number of pa-
rameters p = p1 + · · · + pJ−1 + pc if J ≥ 3. If the model is constructed with the same set of
predictors for different categories, for example, a main-effects model, then H1 = · · · = HJ−1
and kmin is just pc + p1. This confirms the finding by Yang, Tong and Mandal ((2017), The-
orem 3) on cumulative link models and extends it to the general case covering all the 12
multinomial logistic models. We examine examples in Section 5, and revisit the issue of min-
imal support in Section 5.6. For the applications that we have examined, kmin experimental
settings ensure the positive definiteness of F. We provide more examples in the Supplemen-
tary Material (Section S.14).

4. Determinant of the Fisher information matrix. Until now, we have derived basic
results that are needed for the identification of optimal designs irrespective of the specific
criterion. We also derived a result on the minimal number of experimental settings. Now
we turn our focus to D-optimal designs. The D-criterion for optimal designs maximizes the
determinant of the Fisher information matrix F. In order to study D-optimal designs and
their properties, we start with a characterization of the structure of |F|. Recall that n is the
total number of observations with ni of them assigned to the ith experimental setting xi . We
further define a mJ × mJ diagonal matrix W = diag{w1 diag(π1)

−1, . . . ,wm diag(πm)−1}
with proportions wi = ni/n, and a mJ × p matrix

(7) G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11hT
1 (x1) · · · c1,J−1hT

J−1(x1)

J−1∑
j=1

c1j · hT
c (x1)

c21hT
1 (x2) · · · c2,J−1hT

J−1(x2)

J−1∑
j=1

c2j · hT
c (x2)

· · · · · · · · · · · ·
cm1hT

1 (xm) · · · cm,J−1hT
J−1(xm)

J−1∑
j=1

cmj · hT
c (xm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we can reformulate F into the form of GT WG so that |F| becomes a homogeneous
polynomial of allocations.

THEOREM 4.1. Consider the multinomial logistic model (1) with independent observa-
tions. The Fisher information matrix F = nGT WG.

In order to find D-optimal designs, we need to maximize |GT WG|. Since W is diagonal,
we obtain the following theorem as a direct consequence of Theorem 1.1.2 of Fedorov (1972)
or Lemma 3.1 of Yang and Mandal (2015).

THEOREM 4.2. The determinant of the Fisher information matrix is

(8) |F| = np
∣∣GT WG

∣∣ = np
∑

α1≥0,...,αm≥0:∑m
i=1 αi=p

cα1,...,αm · wα1
1 · · ·wαm

m
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with

cα1,...,αm

= ∑
(i1,...,ip)∈�(α1,...,αm)

∣∣G[i1, . . . , ip]∣∣2 ∏
k:αk>0

∏
l:(k−1)J<il≤kJ

π−1
k,il−(k−1)J(9)

≥ 0,

where α1, . . . , αm are nonnegative integers, �(α1, . . . , αm) = {(i1, . . . , ip) | 1 ≤ i1 < · · · <

ip ≤ mJ ;#{l : (k − 1)J < il ≤ kJ } = αk, k = 1, . . . ,m}, and G[i1, . . . , ip] is the submatrix
consisting of the i1th, . . . , ipth rows of G.

It follows from Theorem 4.2, that the determinant of the Fisher information matrix is an
order-p homogeneous polynomial of the proportions w1, . . . ,wm, with coefficients cα1,...,αm ,
which must be nonnegative. As a matter of fact, the structure of the determinant can be further
simplified quite significantly. This is given in Lemma S.3, Theorem S.6 and Corollaries S.3
and S.4, in the Supplementary Material (Section S.6).

EXAMPLE 2.1 (continued). In this example, the number of factors is d = 4, and the
experimental settings are xi = (xi1, xi2, xi3, xi4)

T , i = 1, . . . ,m. Since p1 = p2 = 3, pc = 2,
and the number of parameters p = p1 + p2 + pc = 8, the minimal number of experimental
settings is m = p1 + pc = 5 by Theorem 3.3. We consider the simplest case m = 5. That is,

HT
1 = HT

2 =
⎛
⎜⎝

1 x11 x12
...

...
...

1 x51 x52

⎞
⎟⎠ , HT

c =
⎛
⎜⎝

x13 x14
...

...

x53 x54

⎞
⎟⎠ .

By (8) of Theorem 4.2, |F| is an order-8 homogeneous polynomial of allocations to the 5
experimental settings, which may contain up to (8 + 5 − 1)!/(8!(5 − 1)!) = 465 terms. How-
ever, Lemma S.3 implies cα1,...,α5 	= 0 only if αi ∈ {0,1,2}. On the other hand, Corollary S.4
says cα1,...,α5 	= 0 only if #{i | αi > 0} ≥ p1 +pc = 5, that is, αi > 0 for each i. Therefore, |F|
contains only 5!/(3!2!) = 10 nonzero terms with αi ∈ {1,2}. That is,

|F| = n8 ·
5∏

i=1

wi · ∑
1≤i1<i2<i3≤5

ei1,i2,i3wi1wi2wi3

for some coefficients ei1,i2,i3 . Actually, in terms of the notation cα1,...,αm in (9) of Theo-
rem 4.2, ei1,i2,i3 = cα1,...,α5 with αi = 2 for i ∈ {i1, i2, i3} and 1 otherwise. For example,
e1,2,3 = c2,2,2,1,1.

REMARK 4.1. The reformulation of F in Theorem 4.1 enables us to conclude that |F|
is an order-p homogeneous polynomial of allocations or proportions in Theorem 4.2. It es-
tablishes the foundation for an efficient numerical algorithm for searching D-optimal designs
(Section 5). On the other hand, the simplification of |F| based on Lemma S.3 and Corol-
lary S.4 allows us to obtain D-optimal designs analytically for minimally supported designs,
which is critical for investigating their theoretical properties (Section 5.6).

With the aid of Theorem 4.1, Theorem 4.2 is derived in a more straightforward way. It
is broader and with more detailed structures than Theorem 2 in Yang, Tong and Mandal
(2017), which focused on po models only. Lemma S.3 and Corollary S.4 also extend the
corresponding results in Yang, Tong and Mandal ((2017), Lemmas S.4 and S.5 in their Sup-
plementary Material).
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5. D-optimal designs. This section is dedicated to D-optimal designs. Our main focus
is on locally D-optimal designs, in which the information matrix is computed at an assumed
value of the model parameter θ . Later, in Section 5.4, we study EW D-optimal designs under
a prior distribution of the parameters. We consider both approximate designs, which specify
proportions of observations at experimental settings without regard to the number of obser-
vations n, as well as exact designs where allocation of the n observations to the locations is
determined. To start with, we fix a given set of experimental settings xi , i = 1, . . . ,m, and
consider D-optimal designs (n1, . . . , nm) or (w1, . . . ,wm) that maximizes the determinant of
the Fisher information matrix |F|. Then we consider the optimization problem over experi-
mental settings as well, using a grid-point search algorithm. While we are thus treating the
factor space as discrete in analytical and computational results, in Section 5.5 we will address
the problem of determining D-optimal designs in a continuous factor space.

5.1. Design space for multinomial logistic models. The experimental settings xi ’s appear
in the multinomial logistic model through the categorical probabilities πij ’s, which are func-
tions of the parameter vector θ and the xi ’s. Our first result examines the restriction imposed
on the xi ’s by the requirement 0 < πij < 1, j = 1, . . . , J . This gives us the collection of all
feasible experimental settings, known as the design space,

X = {
x = (x1, . . . , xd)T | 0 < πj < 1, j = 1, . . . , J

}
.

THEOREM 5.1. Let aj = hT
j (x)βj + hT

c (x)ζ , j = 1, . . . , J − 1. The design space is

X = {x = (x1, . . . , xd)T | aj ∈ (−∞,∞), j = 1, . . . , J − 1} for baseline-category, adjacent-
categories and continuation-ratio logit models; and X = {x = (x1, . . . , xd)T | −∞ < a1 <

a2 < · · · < aJ−1 < ∞} for cumulative logit models.

Theorem 5.1 essentially places no restriction on the design space for models other than
cumulative logit models, regardless of the odds structure. Its proof and an illustrative example
are provided in the Supplementary Material (Sections S.15 and S.14, resp.).

5.2. D-optimal approximate designs. Given distinct experimental settings xi ∈ X , i =
1, . . . ,m, we look for a D-optimal approximate design w = (w1, . . . ,wm)T that maximizes
the quantity |GT WG| defined in Theorem 4.1. The collection of all feasible approximate
designs S = {(w1, . . . ,wm)T ∈ R

m | wi ≥ 0, i = 1, . . . ,m;∑m
i=1 w1 = 1} is a bounded closed

convex set. The objective function

f (w) = ∣∣GT WG
∣∣

is an order-p homogeneous polynomial by Theorem 4.2. Therefore, a D-optimal approximate
design that maximizes f (w) must exist. For typical applications, we need designs coming
from S+ = {w ∈ S | f (w) > 0} to avoid degenerate cases. Due to Theorem 2.1 and the log-
concavity of the determinant on positive semidefinite matrices, we know f (w) is log-concave
(Silvey (1980), Yang, Tong and Mandal (2017)) and S+ is convex. A useful result as a corol-
lary of Theorem 3.2, with a proof provided in the Supplementary Material (Section S.15), is
the following.

COROLLARY 5.1. S+ is nonempty if and only if f (wu) > 0, where wu = (1/m, . . . ,

1/m)T is the uniform allocation. In this case, f (w) > 0 for any w = (w1, . . . ,wm)T such
that 0 < wi < 1, i = 1, . . . ,m.
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In order to avoid trivial cases, we assume f (wu) > 0 from now on. Following Yang, Tong
and Mandal ((2017), Section 3), we define

fi(z) = f

(
w1(1 − z)

1 − wi

, . . . ,
wi−1(1 − z)

1 − wi

, z,
wi+1(1 − z)

1 − wi

, . . . ,
wm(1 − z)

1 − wi

)

with 0 ≤ z ≤ 1 and w = (w1, . . . ,wm)T ∈ S+. As a special case of the general equivalence
theorem (Atkinson, Donev and Tobias (2007), Fedorov and Leonov (2014), Kiefer (1974),
Pukelsheim (1993), Stufken and Yang (2012), Yang, Mandal and Majumdar (2016), Yang,
Tong and Mandal (2017)), w is D-optimal if and only if fi(z) attains its maximum at z = wi

for each i = 1, . . . ,m. Actually, fi(z) = n−p|F| for the approximate design w + (ei − w) ·
(z − wi)/(1 − wi), where ei is an m × 1 vector with the ith coordinate 1 and all others 0.
Parallel to Theorem 6 in Yang, Tong and Mandal (2017), we obtain an explicit formula for
fi(z) as an order-p polynomial of z (see Theorem S.9 in the Supplementary Material).

In order to find D-optimal designs numerically, we use a lift-one algorithm (Section S.10
in the Supplementary Material), which is essentially the same as the one in Yang, Tong and
Mandal (2017) for cumulative link models. The lift-one algorithm is of general-equivalence-
theorem type (Yang, Mandal and Majumdar (2016)). Its convergence to a global maximum
is guaranteed (Yang and Mandal (2015)).

We use the following real experiment as an illustration. In the application (Zocchi and
Atkinson (1999)), a uniform design and a continuation-ratio logit model with npo component
was used for the analysis. As noted earlier, the theoretical results for the npo model, as special
cases of the results for the ppo model, are given in the Supplementary Material (Section S.8).

EXAMPLE 5.1 (Emergence of house flies). Zocchi and Atkinson (1999) discussed an ex-
periment on emergence of house flies originally reported by Itepan (1995). In this experiment,
n = 3500 pupae were grouped evenly into seven sets and exposed to seven doses of radia-
tion (in units Gy), xi = 80,100,120,140, 160, 180, 200, respectively. After a period of time,
for each set of ni = 500 pupae, the summarized responses are the number yi1 of flies that
died before the opening of the pupae (unopened pupae), the number yi2 of flies out of
opened pupae but died before complete emergence and the number yi3 = ni − yi1 − yi2
of flies out of opened pupae and completely emerged. Following Zocchi and Atkinson
(1999), we assume that the responses of the ni = 500 pupae in the ith set are independent
and follow the same distribution. Then the summary responses (yi1, yi2, yi3) follow a multi-
nomial distribution and have a clearly nested or hierarchical structure (see Table 1 of Zocchi
and Atkinson (1999) for the experimental data). We confirm that the continuation-ratio logit
model with npo component fits the data the best in terms of AIC and BIC (see Table 5 in the
Supplementary Material); this model was adopted by Zocchi and Atkinson (1999) as follows:

log
(

πi1

πi2 + πi3

)
= β11 + β12xi + β13x

2
i , log

(
πi2

πi3

)
= β21 + β22xi.

The model has 5 parameters with fitted values β̂ = (β̂11, β̂12, β̂13, β̂21, β̂22)
T = (−1.935,

−0.02642,0.0003174,−9.159,0.06386)T .
Considering a followup experiment with the fitted parameter values as the assumed values,

we obtain the locally D-optimal approximate design (Table 1) using the lift-one algorithm.
The efficiency of the original uniform allocation is (|Foriginal|/|FD-opt|)1/5 = 83.1%. The D-
optimal approximate design only requires 4 rounds (doses) of experiments. It is interesting to
note that in this example the D-optimal design does not allocate observations to high doses
of radiation; we will revisit this issue in Section 6. The D-optimal exact design, Bayesian and
EW D-optimal designs listed in Table 1 will be described in Sections 5.3 and 5.4, respectively.
We will return to this example later.
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TABLE 1
Exact and approximate allocations for house flies experiment

Dose of radiation (Gy) 80 100 120 140 160 180 200

Original allocation 500 500 500 500 500 500 500
D-optimal exact 1091 0 1021 374 1014 0 0

Original proportion 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
D-optimal approximate 0.3116 0 0.2917 0.1071 0.2896 0 0
Bayesian D-optimal 0.3159 0.0000 0.2692 0.1160 0.2990 0.0000 0.0000
EW D-optimal 0.3120 0 0.2911 0.1087 0.2882 0 0

5.3. D-optimal exact designs. In practice, a design should specify an integer-valued al-
location of the n experimental units to the m distinct experimental settings xi , i = 1, . . . ,m.
An integer-valued allocation n = (n1, . . . , nm)T that maximizes |∑m

i=1 niFi | as defined in (3)
with

∑m
i=1 ni = n is known as a D-optimal exact design.

Although different rounding algorithms have been proposed in the literature to obtain an
exact allocation from an optimal approximate allocation, an algorithm searching for optimal
exact designs directly is still needed (see Yang, Tong and Mandal (2017), Section 4 and ref-
erence therein). For simplicity, we denote the objective function as f (n) = f (n1, . . . , nm) =
|∑m

i=1 niFi | if there is no ambiguity. Following Yang, Mandal and Majumdar (2016) and
Yang, Tong and Mandal (2017), we define fij (z) = f (n1, . . . , ni−1, z, ni+1, . . . , nj−1, ni +
nj −z,nj+1, . . . , nm) with z = 0,1, . . . , ni +nj given 1 ≤ i < j ≤ m and n = (n1, . . . , nm)T .
Similar to Theorem 9 in Yang, Tong and Mandal (2017), we can obtain an explicit formula
for fij (z) (see Theorem S.10 in the Supplementary Material) from Theorem 4.2, Lemma S.3
and Corollary S.4.

Given n > 0, we assume that there exists an exact allocation n = (n1, . . . , nm)T such that
f (n) > 0. An exchange algorithm (Section S.10 in the Supplementary Material), which is
essentially the same as the one in Yang, Tong and Mandal (2017), is used for obtaining an
exact design. Note that the integer-valued allocation found by the exchange algorithm is not
guaranteed to be D-optimal, especially when n is relatively small compared with m (Yang,
Mandal and Majumdar (2016)).

The following real experiment shows that a minimally supported design can be D-optimal
for a cumulative logit model with npo assumption.

EXAMPLE 5.2 (Trauma clinical trial). Chuang-Stein and Agresti (1997) studied a dataset
of trauma patients that has five ordered response categories, death, vegetative state,
major disability, minor disability and good recovery, describing their
clinical outcomes. These five categories are often called the Glasgow Outcome Scale (GOS)
in the literature of critical care (Jennett and Bond (1975)). Agresti (2010) found strong evi-
dence against the assumption of proportional odds for the trauma data. We fit the data with
different logit models, as well as different odds assumptions, and confirm that the cumulative
logit model with npo assumption fits the trauma data the best in terms of AIC and BIC (see
Table 4 in the Supplementary Material). Thus the model is

(10) log
(

πi1 + · · · + πij

πi,j+1 + · · · + πi5

)
= βj1 + βj2xi, i = 1,2,3,4; j = 1,2,3,4.

The fitted parameter values are β̂ = (β̂11, β̂12, β̂21, β̂22, β̂31, β̂32, β̂41, β̂42)
T = (−0.865,

−0.113,−0.094,−0.269,0.706,−0.182,1.909,−0.119)T . The clinical trial with 802 pa-
tients assigned 210, 190, 207, 195 patients to the four treatment groups, Placebo, Low
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dose, Medium dose and High dose, respectively, which is roughly uniform on dosage.
If we treat the fitted parameter values as the assumed values for local optimality, using the
exchange algorithm, we find the D-optimal exact design (401, 0, 0, 401), which is minimally
supported and uniform on its supporting points. If a followup experiment is considered and
the fitted parameter values are the true values, the efficiency of the original allocation com-
pared with our D-optimal design is only 74.7%.

EXAMPLE 5.1 (Emergence of house flies (continued)). In this experiment, the allocation
of experimental units used by the scientists is 500 for each of the seven doses of radiation.
Using the exchange algorithm, we obtain the D-optimal exact allocation (Table 1), which
is similar to the D-optimal approximate design. Actually, the proportions of the D-optimal
exact design (1091,1021,374,1014)/3500 = (0.3117,0.2917,0.1069,0.2897) on the four
support points are roughly the same as the ones in the D-optimal approximate design. If
the fitted parameter values are the true values, the efficiency of the allocation used in the
experiment is 83.1% compared with the D-optimal exact allocation.

REMARK 5.1. Our D-optimal exact designs are “locally” D-optimal since they require
assumed parameter values. When there is no pilot study available for a good parameter es-
timate, D-optimal designs can still be used in a multistage design (see Khuri et al. (2006)
for a review). In the trauma clinical trial, for example, we may consider a two-stage design
with 802 patients in total. At Stage 1, we may assign 240 patients (about 30%) randomly
and uniformly to the four treatment groups. After collecting the outcomes of the patients
from Stage 1, we obtain the estimated coefficients and then find the corresponding D-optimal
exact design for the rest 562 patients, known as Stage 2. The parameter estimates from the
two-stage design are based on the outcomes of all the 802 patients. In terms of root mean
squared error (RMSE) from the assumed parameter values, the two-stage design achieves
0.149 for the intercepts β11, . . . , β41 and 0.053 for the slopes β12, . . . , β42, on average over
100 simulations. The corresponding average RMSEs from the original design are 0.190 and
0.070, respectively. The reductions in RMSEs by using our D-optimal exact designs in the
two-stage design are both significant.

5.4. EW D-optimal designs. The D-optimal approximate and exact designs discussed
thus far are locally D-optimal designs using assumed parameter values. Bayesian D-
optimality (Chaloner and Verdinelli (1995)), which maximizes E(log |F|) with a given prior
distribution on the unknown parameters, provides an alternative approach. A drawback of
the Bayesian approach is its computational intensity since the objective function deals with
multiple integrals. An alternative solution is the EW D-optimality (Atkinson, Donev and To-
bias (2007), Yang, Mandal and Majumdar (2016), Yang, Tong and Mandal (2017)), which
maximizes log |E(F)| or |E(F)| instead. Among all of the criteria proposed by Atkinson,
Donev and Tobias ((2007), Table 18.1) as surrogates for Bayesian D-optimality, including
− logE(|F|−1), − log |E(F−1)|, and logE|F|, EW D-optimal design requires the minimum
computation. Yang, Mandal and Majumdar (2016) showed that an EW D-optimal design
could be highly efficient in terms of the Bayesian criterion in comparison to the Bayesian
D-optimal design, while computational time is essentially the same as a locally D-optimal
design. Yang, Tong and Mandal (2017) also used EW-criterion for cumulative link models
with proportional odds and confirmed its high-efficiency.

By Theorem 2.1 and Corollary 3.1, the Fisher information matrix in our case is F =∑m
i=1 niXT

i UiXi , where Ui consists of ust (π i ), the only components involving model pa-
rameters. In order to calculate E(F) with respect to a prior distribution on parameters, we
first calculate E(ust (π i )) and then use the results and algorithms developed for locally D-
optimal designs to get EW D-optimal designs.
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We provide formulae in both the proof of Theorem 5.1 and Section S.11 (in matrix form)
in the Supplementary Material for calculating πij ’s given Xi’s and the parameter values. We
also provide formulae in Appendix A.3 for calculating ust (π i ) = cT

is diag(π i )
−1cit ’s given

πij ’s.
By Theorem 5.1, for baseline-category, adjacent-categories and continuation-ratio logit

models, there is essentially no restriction on values of parameters for a given design point x =
(x1, . . . , xd)T . The corresponding E(ust (π i )) can be obtained by integrating over the same
range of parameter values for different design points. However, for cumulative logit models,
where the parameters should satisfy a1 < a2 < · · · < aJ−1 with aj = hT

j (x)βj + hT
c (x)ζ , the

domain of integration is typically not rectangular.

EXAMPLE 5.2 (Trauma clinical trial (continued)). In this example, the cumulative
logit model (10) with nonproportional odds was adopted. Given the predetermined set
X = {1,2,3,4} consisting of m = 4 design points, the feasible parameter space is � =
{θ = (β11, β12, β21, β22, β31, β32, β41, β42)

T | β11 + β12x < β21 + β22x < β31 + β32x <

β41 + β42x, for x ∈ X }, which is not rectangular. Zocchi and Atkinson (1999) used a multi-
variate normal prior with its variance-covariance matrix estimated from an initial dataset. For
the computations in this example, we bootstrap the 802 observations from the initial dataset
for 1000 times and denote the corresponding fitted parameters as θ1, . . . , θ1000. Then an es-
timate of the Bayesian criterion φ(w) = E(log |F(w, θ)|) for design w = (w1, . . . ,wm)T is

φ̂(w) = 1

1000

1000∑
j=1

log
∣∣F(w, θ j )

∣∣ = 1

1000

1000∑
j=1

log

∣∣∣∣∣
m∑

i=1

wiFi(θ j )

∣∣∣∣∣.
The Bayesian D-optimal design listed in Table 2 maximizes φ̂(w), while the EW D-optimal
design maximizes |∑m

i=1 wiÊ(Fi )| with estimated entry-by-entry expectation Ê(Fi ) =∑1000
j=1 Fi (θ j )/1000. The two designs are essentially the same in this case.

EXAMPLE 5.1 (Emergence of house flies (continued)). Similar to the trauma example,
we bootstrap the original observations 1000 times and obtain the corresponding Bayesian
and EW D-optimal designs (see Table 1). In this case, EW D-optimal design is close to
the Bayesian design. In order to check the robustness of these designs toward misspecified
parameter values, we consider the same set of bootstrapped parameter vectors θ1, . . . , θ1000.
For j = 1, . . . ,1000, we apply our lift-one algorithm to find the corresponding D-optimal
allocation pj with θ j as the assumed parameter value. The efficiencies of a target design
p with respect to pj is defined as (|F(p, θ j )|/|F(pj , θ j )|)1/p with p = 5 parameters in this
case. The summary statistics of efficiencies in Table 3 show that the Bayesian and EW D-
optimal designs are highly robust in terms of parameter misspecification; the EW design is
slightly better. Both of them are much better than the uniform design used in the study.

TABLE 2
D-optimal designs for trauma clinical trial

Design point x 1 2 3 4
Treatment group Placebo Low Medium High

Original allocation 210 190 207 195
D-optimal exact 401 0 0 401

Original proportion 0.2618 0.2369 0.2581 0.2431
D-optimal approximate 0.5 0 0 0.5
Bayesian D-optimal 0.4997 1.0 × 10−8 2.5 × 10−8 0.5003
EW D-optimal 0.5 0 0 0.5
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TABLE 3
Efficiencies of designs for house flies experiment

Design Min 1st Quartile Median 3rd Quartile Max

Bayesian D-optimal 0.9912 0.9985 0.9989 0.9992 0.9998
EW D-optimal 0.9934 0.9991 0.9996 0.9998 1.0000
Uniform design 0.7762 0.8181 0.8304 0.8445 0.8861

5.5. Grid point search for continuous factors. Both the lift-one and exchange algorithms
are appropriate for searching optimal designs with a predetermined finite set of experimental
settings. When a factor is continuous, one common practice is to partition the continuous
region of the factor levels into finite subintervals and consider only the grid points as its
discrete levels. It works reasonably well with a moderate number of continuous factors (see
Yang, Biedermann and Tang (2013) for a discussion on the efficiency of optimal designs
based on grid-point experimental settings).

Once a set of grid points is chosen for each continuous factor, the design problem becomes
an allocation problem on a finite set of design points. Hence, all of the previous algorithms
and results can be applied. We use the example of house flies for the purpose of illustration.

EXAMPLE 5.1 (Emergence of house flies (continued)). The sole factor in this experi-
ment, dose of radiation, is by nature a continuous factor. In the emergence of house flies
experiment, seven levels ranging equidistantly from 80 to 200 were used, that is, with grid
distance 20. Suppose a followup experiment is considered and dose levels with grid distance
5 are feasible (which technically depends on the sensitivity of the radiation device). Then
there are 25 dose levels available as 80, 85, 90, . . . , 195, 200. The D-optimal approximate
design given the 25 grid-5 design concentrates on five design points 80, 120, 125, 155, 160
with optimal allocation 0.3163, 0.1429, 0.2003, 0.1683, 0.1723, respectively. If we further
consider the set of 121 grid-1 dose levels, the D-optimal design is supported on five design
points 80, 122, 123, 157, 158 with allocations 0.3163, 0.0786, 0.2636, 0.2206, 0.1209. The
optimal design seems to converge to a three-point design as the grid points become finer and
finer. Actually, if we reallocate the grid-1 D-optimal design, denoted as p1, into a minimally
supported design p1m at dose levels 80, 123, 157 with weights 0.3163, 0.3422, 0.3415, then
the efficiency of p1m compared with p1 is as high as 99.99%.

5.6. Minimally supported designs. An important question in design theory is, what is the
least number of design points we need to keep F positive definite? In other words, what is
the number of distinct experimental settings for a minimally supported design? Theorem 3.3
provides a lower bound, which has been denoted as kmin. For typical models proposed in the
literature, for example, main-effects models (see Example S.3), kmin is the minimal number
of experimental settings since the conditions in Theorem 3.3 are satisfied. Answers to general
cases rely on the specific forms of the predictor functions hj and hc if applicable.

Another question is whether a uniform allocation is D-optimal among minimally supported
designs. The answer is known to be “Yes” for J = 2 since all of the four logit models are
equivalent to the usual logistic model for binary responses.

Nevertheless, for po models, Yang, Tong and Mandal (2017) showed analytically that uni-
form allocations are not D-optimal among minimally supported designs for cumulative link.
We use Example S.7 in the Supplementary Material to show that the conclusion is the same
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for po models with baseline-category, adjacent-categories and continuation-ratio logit links
as well. Actually, the objective functions take the same form for the four different logit mod-
els. Since po models are special cases of ppo models, we conclude that uniform allocations
are not D-optimal in general for ppo models as well.

As for npo models with J ≥ 3, in general, uniform allocations are not D-optimal either (see
Section S.13 in the Supplementary Material). Nevertheless, for “regular” npo models, that
is, when p1 = · · · = pJ−1, uniform allocations are D-optimal among minimally supported
designs (see Corollary S.7 in the Supplementary Material), which theoretically confirms the
D-optimal design for trauma clinical trial in Example 5.2.

6. Discussion. A criticism of optimal designs is that their rigid reliance on the assumed
model does not allow exploration of different models; this is mainly due to the frugality of
the number of experimental settings. Nevertheless, the results can be used to identify efficient
designs that allow flexibility. For instance, in the trauma clinical trial example (Example 5.2),
the D-optimal exact design assigns 401 observations to the placebo (1) and high dose (4),
but none to the low (2) or medium (3) levels. If instead we allocate 361 observations to each
of 1 and 4, and 40 observations to each of 2 and 3, we gain some flexibility with a loss of
efficiency (in comparison to the D-optimal design) of only 5%. This is further discussed in
the Supplementary Material (Table 6).

In Example 5.1, the support of the D-optimal design did not include some of the extreme
points of the experimental region. This is a departure from the nature of D-optimal designs
for univariate responses, and is something that will be studied in the future.

For EW and Bayesian D-optimal designs, the choice of the prior on the parameter space
� is critical. Suppose the parameters are θ1, . . . , θp with individual ranges θi ∈ Ii . As a com-
mon practice for generalized linear models, a uniform prior or independent normal prior may
be assumed for a rectangular domain I1 × · · · × Ip (Yang, Mandal and Majumdar (2016)).
One issue with multinomial logit models is that the feasible domain of � may not be rect-
angular, at least for cumulative logit models. For the two examples in Section 5.4, we use
bootstrapping to obtain an empirical prior. Zocchi and Atkinson (1999) adopted a multivari-
ate normal prior with mean vector and covariance structure estimated from previous exper-
imental data. For the two examples that we study, our results are essentially the same when
we use the multivariate normal prior. However, when we use uniform or independent normal
prior, the EW D-optimal design is not as good as the Bayesian D-optimal design in terms of
robustness. We will further investigate the choice of prior and criteria other than EW opti-
mality.

When a pilot study or experimental data is not available for locally or EW optimal designs,
sequential design or multistage design may be used to obtain an initial guess or a reasonable
prior for unknown parameters. In Remark 5.1, we provide a two-stage design for the trauma
clinical trial as an example. Further investigation needs to be done toward best multistage
designs for multinomial logistic models.

When confronted with model uncertainty, npo versus ppo for instance, our work may pro-
vide the experimenter the option to choose a design, for instance, that is highly efficient for
both ppo and npo models. Further investigations along this line would be practically useful.

In the literature, model parameters other than θ = (βT
1 , . . . ,βT

J−1, ζ )T for linear predictors
ηij = hT

j (xi )βj + hT
c (xi )ζ were also used, for example, in Perevozskaya, Rosenberger and

Haines (2003). It can be verified that D-optimal designs will not be affected by the choice of
parameters (see Section S.12 in the Supplementary Material).
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APPENDIX

A.1. Constant matrix L in equation (1).

Lbaseline =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 0 · · · 0 1
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 1
1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Lcumulative =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
1 1 0 · · · 0
...

...
. . .

...

1 1 · · · 1 0
0 1 · · · 1 1
0 0 1 · · · 1
...

...
. . .

. . .
...

0 0 · · · 0 1
1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Lcontinuation =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 1 · · · · · · 1
0 0 1 · · · 1
...

...
. . .

. . .
...

0 0 · · · 0 1
1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ladjacent =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 1
0 1
...

. . .

0 1
1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A.2. Formula toward M(HT
c ) ∩ (

⋂J−1
j=1 M(HT

j )) in Theorem 3.3.

THEOREM A.1. Suppose Hi is of pi × m with rank ri , i = 1, . . . , n. Denote rank((HT
i1
,

. . . ,HT
ik
)) = ri1,...,ik for any 2 ≤ k ≤ n and 1 ≤ i1 < · · · < ik ≤ n. Then

dim

(
n⋂

i=1

M
(
HT

i

)) =
n∑

i=1

ri − ∑
i1<i2

ri1,i2

+ ∑
i1<i2<i3

ri1,i2,i3 − · · · + (−1)n−1r1,2,...,n.

(11)

The proof of Theorem A.1 is relegated to the Supplementary Material. Note that M(HT
c )∩

(
⋂J−1

j=1 M(HT
j )) = {0} if and only if its dimension is 0.

A.3. Formulae for calculating ust (πi)’s given πij ’s.

THEOREM A.2. Consider the multinomial logit model (1). For i = 1, . . . ,m:

(i) ust (π i ) = uts(π i ), s, t = 1, . . . , J ;
(ii) usJ (π i ) = 0 for s = 1, . . . , J − 1 and uJJ (π i ) = 1;

(iii) For s = 1, . . . , J − 1,

uss(π i ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πis(1 − πis) for baseline-category,

γ 2
is(1 − γis)

2(
π−1

is + π−1
i,s+1

)
for cumulative,

γis(1 − γis), for adjacent-categories,

πis(1 − γis)(1 − γi,s−1)
−1 for continuation-ratio;



D-OPTIMAL DESIGNS FOR MULTINOMIAL LOGISTIC MODELS 999

(iv) For 1 ≤ s < t ≤ J − 1,

ust (π i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−πisπit for baseline-category,

−γisγit (1 − γis)(1 − γit )π
−1
it for cumulative, t − s = 1,

0 for cumulative, t − s > 1,

γis(1 − γit ) for adjacent-categories,

0 for continuation-ratio;
where γij = πi1 + · · · + πij , j = 1, . . . , J − 1; γi0 ≡ 0 and γiJ ≡ 1.

Acknowledgments. The first and third authors were supported by the LAS Award for
Faculty of Science at UIC.

SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/19-AOS1834SUPP; .pdf). It contains: (1) list of
notation; (2) formulae of matrix differentiation; (3) explicit forms of (CT D−1

i L)−1 for all
the four logit models; (4) positive definiteness of U; (5) row rank of H matrix; (6) results
on the coefficient cα1,...,αm for simplifying |F|; (7) expressions for po models; (8) expres-
sions for npo models; (9) model selections for trauma clinical trial and emergence of house
flies; (10) lift-one and exchange algorithms; (11) formulae for calculating πij ’s from Xi’s;
(12) reparametrization and D-optimality; (13) more discussion on D-optimality of uniform
designs; (14) more examples; (15) proofs of Theorems 2.1, 3.1, S.3, S.4, S.5, A.1, 4.1, S.6,
5.1, S.10, S.11, A.2, Corollaries S.2, 5.1, S.7 and Lemmas S.5, S.9, S.3, S.10, S.11, S.12,
S.13, S.4.
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