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S.1. List of notations.

0k A vector of k zeros

aj hTj (x)βj + hTc (x)ζ, j = 1, . . . , J − 1, given x = (x1, . . . , xd)
T

bj Coefficients in representing fi(z), j = 0, . . . , J − 1

BJ J × J constant matrix used for deriving the coefficients of fi(z),

(st−1)st
C J × (2J − 1) constant matrix, same for all the four logit models

c Vector used for deriving coefficients of fi(z), (c1, . . . , cJ−1)T

cij J × 1 vectors such that (CTD−1
i L)−1 = (ci1, . . . , ciJ)

cj (j + 1)pjJ−1−pfi(1/(j + 1))− jJ−1fi(0), j = 1, . . . , J − 1

cα1,...,αm Coefficient of wα1
1 · · ·wαm

m in the determinant of GTWG

d Total number of design factors

ds ds = (fij(s)− fij(0))/s, s = 1, . . . , q, for coefficients in fij
Di diag(Lπi)

ei m× 1 vector with the ith coordinate 1 and all others 0

F Fisher information matrix of the design, F =
∑m
i=1 niFi

f f(w) = f(w1, . . . , wm) = |GTWG| which is proportional to |F|; or

f(n) = f(n1, . . . , nm) = |
∑m
i=1 niFi| = |F|

Fi Fisher information matrix at the ith design point

fi fi(z) = f(w1(1− z)/(1− wi), . . . , wi−1(1− z)/(1− wi), z, wi+1(1−
z)/(1− wi), . . . , wm(1− z)/(1− wi)) with 0 ≤ z < 1

fij fij(z) = f(n1, . . . , ni−1, z, ni+1, . . . , nj−1, ni +nj − z, nj+1, . . . , nm)

with z = 0, 1, . . . , ni + nj
G Matrix component for Fisher information matrix such that F =

nGTWG, mJ × p
gs g0 = fij(0) and (g1, . . . , gq)

T = B−1
q (d1, . . . , dq)

T

H Matrix component for Fisher information matrix such that F =

HUHT , consisting of H1, . . . ,HJ−1 and possibly Hc, p×m(J − 1)

Hc Matrix for the common component of J−1 categories, (hc(x1), . . . ,hc(xm)),

pc ×m
hc(xi) Vector of pc predictors associated with the pc parameters ζ = (ζ1,

. . . , ζpc)T that are common for all of the response categories as

known functions of the ith experimental setting, (h1(xi), . . . , hpc(xi))
T

Hj Matrix for the jth category only, (hj(x1), . . . ,hj(xm)), pj ×m
hj(xi) Vector of pj predictors associated with the pj parameters βj =

(βj1, . . . , βjpj )T for the jth response category as known functions

of the ith experimental setting, (hj1(xi), . . . , hjpj (xi))
T
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Ik The identity matrix of order k

J Total number of response categories

kmin Smallest possible #{i | αi > 0} such that cα1,...,αm > 0

L Constant (2J − 1)× J matrix, different for the four logit models

m Total number of distinct experimental settings or design points

M(H) Column space of matrix H, that is, the linear subspace spanned by

the columns of H

n Total number of experimental units, n = n1 + · · ·+ nm
n Allocation of experimental units, (n1, . . . , nm)T , ni ≥ 0,

∑
i ni = n

ni Number of replicates at the ith experimental setting

p Total number of parameters

pc Number of common parameters for J − 1 categories

pH dim
(
∩J−1
j=1M(HT

j )
)

pj Number of parameters for the jth category only

q min{2J − 2, p− kmin + 2, p}, upper bound of order of fij(z)

S Collection of all feasible approximate allocations, {(w1, . . . , wm)T ∈
Rm | wi ≥ 0, i = 1, . . . ,m;

∑m
i=1 w1 = 1}

S+ Collection of approximate allocations, {w ∈ S | f(w) > 0}
U Block matrix (Ust)s,t=1,...,J−1, m(J − 1)×m(J − 1)

Ust diag{n1ust(π1), . . . , nmust(πm)}, m×m
ust(πi) cTisdiag(πi)

−1cit for s, t = 1, . . . , J − 1

w Real-valued allocation of experimental units, (w1, . . . , wm)T , wi ≥ 0,∑
i wi = 1

W diag{w1diag(π1)−1, . . . , wmdiag(πm)−1}, mJ ×mJ
wi Proportion of experimental units assigned to the ith experimental

setting, ni/n

wu Uniform allocation, (1/m, . . . , 1/m)T

X Design space, the collection of all design points yielding strictly pos-

itive categorical probabilities of response; or a predetermined set of

design points considered

xi The ith distinct experimental setting or design point, (xi1, . . . , xid)
T

Xi Model matrix at the ith design point, J × p, the last row is all 0’s

βj Vector of parameters for the jth response category only, (βj1, . . . , βjpj )T

γij The cumulative probability from the 1st to jth categories at the ith

experimental setting, γij = πi1 + · · ·+ πij
ζ Vector of common parameters for all of the response categories,

(ζ1, . . . , ζpc)T

ηi Vector of linear predictors at the ith experimental setting, ηi =

(ηi1, . . . , ηiJ)T = Xiθ with ηiJ ≡ 0

θ Vector of all parameters, p× 1

Θ Parameter space, the collection of all feasible parameter vectors

πi Vector of response category probabilities at the ith experimental

setting. πi = (πi1, . . . , πiJ)T , πi1 + · · ·+ πiJ = 1

Λ(α1, . . . , αm) {(i1, . . . , ip) | 1 ≤ i1 < · · · < ip ≤ mJ ; #{l : (k − 1)J < il 6
kJ} = αk, k = 1, . . . ,m}

πij Probability that the response falls into the jth category at the ith

experimental setting

φ Bayesian D-optimal criterion, φ(p) = E(log |F|)
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S.2. Formulae of matrix differentiation. According to Seber (2008, Chap-
ter 17)),

∂y

∂xT
=

(
∂yi
∂xj

)
ij

∂Ax

∂xT
= A

∂z

∂xT
=

∂z

∂yT
· ∂y

∂xT

∂ log y

∂xT
= [diag(y)]−1 ∂y

∂xT

where x = (xi)i, y = (yi)i, z = (zi)i, and thus log y = (log yi)i are vectors, and A is a
constant matrix.

S.3. Explicit forms of (CTD−1
i L)−1 for all the four logit models.

There are the four different kinds of multinomial logistic models in the literature: baseline-
category logit model for nominal responses, cumulative logit model for ordinal responses,
adjacent-categories logit model for ordinal responses, and continuation-ratio logit model for
hierarchical responses. According to Theorem 2.1, (CTD−1

i L)−1 is a key matrix that we
must calculate.

Recall that πi1 + · · ·+ πiJ = 1, i = 1, . . . ,m. Then

(CTD−1
i L)baseline =



1
πi1

0 · · · 0 − 1
πiJ

0 1
πi2

. . .
... − 1

πiJ

...
. . .

. . . 0
...

0 · · · 0 1
πi,J−1

− 1
πiJ

1 1 · · · 1 1


J×J

(CTD−1
i L)cumulative =



1
γi1

− 1
1−γi1

− 1
1−γi1

· · · − 1
1−γi1

1
γi2

1
γi2

− 1
1−γi2

· · · − 1
1−γi2

...
...

. . .
. . .

...
1

γi,J−1

1
γi,J−1

· · · 1
γi,J−1

− 1
1−γi,J−1

1 1 · · · 1 1


J×J

(CTD−1
i L)continuation =



1
πi1

− 1
1−γi1

− 1
1−γi1

· · · − 1
1−γi1

0 1
πi2

− 1
1−γi2

· · · − 1
1−γi2

...
. . .

. . .
. . .

...

0 · · · 0 1
πi,J−1

− 1
1−γi,J−1

1 1 · · · 1 1


J×J

(CTD−1
i L)adjacent =



1
πi1

− 1
πi2

0 · · · 0

0 1
πi2

− 1
πi3

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1
πi,J−1

− 1
πiJ

1 1 · · · 1 1


J×J
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where γij = πi1 + · · ·+ πij is the cumulative categorical probability, j = 1, . . . , J − 1. The

corresponding inverse matrices are

(CTD−1
i L)−1

baseline

=


−π2

i1 + πi1 −πi1πi2 · · · −πi1πi,J−1 πi1
−πi1πi2 −π2

i2 + πi2 · · · −πi2πi,J−1 πi2
...

...
. . .

...
...

−πi1πi,J−1 −πi2πi,J−1 · · · −π2
i,J−1 + πi,J−1 πi,J−1

−πi1πiJ −πi2πiJ · · · −πi,J−1πiJ πiJ


J×J

4
=
(
ci1 ci2 · · · ciJ

)
baseline

where (cij)baseline = πij(ej − πi), j = 1, . . . , J − 1, (ciJ)baseline = πi, and ej here is the

J × 1 vector with the jth coordinate 1 and all others 0. Recall that πi = (πi1, . . . , πiJ)T .

(CTD−1
i L)−1

cumulative

=



γi1(1− γi1) 0 · · · 0 πi1

−γi1(1− γi1) γi2(1− γi2)
. . .

... πi2

0 −γi2(1− γi2)
. . . 0

...
...

. . .
. . . γi,J−1(1− γi,J−1) πi,J−1

0 · · · 0 −γi,J−1(1− γi,J−1) πiJ


J×J

4
=
(
ci1 ci2 · · · ciJ

)
cumulative

where (cij)cumulative = γij(1−γij)(ej−ej+1) with ej defined as above; and (ciJ)cumulative =

πi .

(CTD−1
i L)−1

continuation

=



πi1(1− γi1) 0 · · · 0 πi1

−πi1πi2 πi2(1−γi2)
1−γi1

. . .
... πi2

...
...

. . . 0
...

−πi1πi,J−1 −πi2πi,J−1

1−γi1
· · · πi,J−1(1−γi,J−1)

1−γi,J−2
πi,J−1

−πi1πiJ −πi2πiJ
1−γi1

· · · −πi,J−1πiJ

1−γi,J−2
πiJ


J×J

=
(
ci1 ci2 · · · ciJ

)
continuation

where (ci1)continuation = πi1(1− γi1,−πi2, . . . ,−πiJ)T ,

(cij)continuation =
πij

1−γi,j−1
(0, . . . , 0, 1− γij ,−πi,j+1, . . . ,−πiJ)T with “1− γij” being the
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jth coordinate, j = 2, . . . , J − 1, and (ciJ)continuation = πi .

(CTD−1
i L)−1

adjacent

=


(1− γi1)πi1 (1− γi2)πi1 · · · (1− γi,J−1)πi1 πi1
−γi1πi2 (1− γi2)πi2 · · · (1− γi,J−1)πi2 πi2

...
...

. . .
...

...

−γi1πi,J−1 −γi2πi,J−1 · · · (1− γi,J−1)πi,J−1 πi,J−1

−γi1πiJ −γi2πiJ · · · −γi,J−1πiJ πiJ


J×J

=
(
ci1 ci2 · · · ciJ

)
adjacent

where (cij)adjacent = ((1−γij)πi1, . . . , (1−γij)πij ,−γijπi,j+1, . . . ,−γijπiJ)T , j = 1, . . . , J−
1, and (ciJ)adjacent = πi .

For certain applications, we need to know |CTD−1
i L| (see, for example, Lemma S.9).

Since adding a multiple of one row (column) to another row (column) does not change the

determinant (see, for example, 4.28(f) in Seber (2008, page 58)), we may (1) do row oper-

ations on (CTD−1
i L)baseline and change it into an upper triangular matrix with diagonal

entries π−1
i1 , . . . , π

−1
iJ ; (2) do row operations on (CTD−1

i L)−1
cumulative and change it into an

upper triangular matrix with diagonal entries γi1(1−γi1), . . . , γi,J−1(1−γi,J−1), 1; (3) do

column operations on (CTD−1
i L)adjacent and change it into a lower triangular matrix with

diagonal entries π−1
i1 , . . . , π

−1
iJ ; and (4) do column operations on (CTD−1

i L)continuation and

change it into a lower triangular matrix with diagonal entries π−1
i1 , . . . , π

−1
iJ . Therefore,

(S.1) |CTD−1
i L| =


∏J
j=1 π

−1
ij for baseline-category,

adjacent-categories,

and continuation-ratio logit models∏J−1
j=1 γ

−1
ij (1− γij)−1 for cumulative logit models

As a direct conclusion, |CTD−1
i L| > 0 as long as πij > 0 for all j = 1, . . . , J .

S.4. Positive definiteness of U. In order to determine the positive definite-

ness of F, we first investigate the m(J − 1)×m(J − 1) matrix U defined for Theorem 3.1,

which is symmetric since ust(πi) = uts(πi) and thus Ust = Uts.

Theorem S.3. If ni > 0 for all i = 1, . . . ,m, then U is positive definite.

Theorem S.4. |U| = (
∏m
i=1 ni)

J−1 ·
∏m
i=1(

∏J
j=1 πij)

−1|CTD−1
i L|−2 .

The proofs of Theorems S.3 and S.4 are relegated to Section S.15. Note that Theo-

rem S.3 is not a corollary of Theorem S.4 since nonsingularity itself does not mean positive

definiteness. Theorem S.4 implies that U is singular if ni = 0 for some i = 1, . . . ,m. Note

that F can still be positive definite even if U is singular, as long as H is of full row rank.

In general, given an allocation (n1, . . . , nm) of the n experimental units with ni ≥ 0 and∑m
i=1 ni = n, if we denote k = #{i : ni > 0} and U∗st = diag{niust(πi) : ni > 0}, then

U∗ = (U∗st)s,t=1,...,J−1 is a k(J − 1)× k(J − 1) matrix. After removing all columns of H

associated with ni = 0, we denote the leftover as H∗, which is a p × k(J − 1) matrix. It

can be verified that
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Lemma S.1. HUHT = H∗U∗ (H∗)T .

Lemma S.2. |U∗| = (
∏
i:ni>0 ni)

J−1 ·
∏
i:ni>0(

∏J
j=1 πij)

−1|CTD−1
i L|−2.

Since U∗ is simply U if all ni > 0, we have the following corollary of Theorem S.3:

Corollary S.1. U∗ is positive definite.

S.5. Row rank of H matrix. According to Theorem 3.2, the positive def-

initeness of the Fisher information matrix F depends on the row rank of H or H∗. To

simplify the notations, we assume ni > 0, i = 1, . . . ,m throughout this section. In this

case, H = H∗ and U = U∗. We also assume that

(S.2) m ≥ pj , j = 1, . . . , J − 1 and m ≥ pc if applicable

since H is of full row rank only if rank(Hj) = pj , j = 1, . . . , J − 1 and rank(Hc) = pc if

applicable.

Since H takes different forms for ppo, npo, and po models, we investigate its row rank

case by case.

Theorem S.5. Consider the p×m(J − 1) matrix H in Theorem 3.1.

(1) For npo models, rank(H) = rank(H1) + · · ·+ rank(HJ−1).

(2) For po models, rank(H) = rank(
(
1,HT

c

)
) + J − 2, where 1 is a vector of all 1’s.

(3) For ppo models, rank(H) = rank(H1)+· · ·+rank(HJ−1)+rank(Hc)−dim[M(HT
c )∩

(∩J−1
j=1M(HT

j ))], whereM(HT
c ) stands for the column space of HT

c or the row space

of Hc.

The proof of Theorem S.5 is relegated to Section S.15. In order to apply it to ppo models,

we need an efficient way to calculate dim[M(HT
c )∩(∩J−1

j=1M(HT
j ))]. We provide a formula

for calculating dim(
⋂
jM(HT

j )) for general matrices, Theorem A.1 in the Appendix, and

relegated its proof to Section S.15.

Recall that pH = dim(∩J−1
j=1M(HT

j )). As a direct conclusion of Theorem S.5, we have

Corollary S.2. For ppo models, |F | > 0 only if m > pc + pH .

S.6. Results on the coefficient cα1,...,αm for simplifying |F|.

Lemma S.3. If max1≤i≤m αi ≥ J , then |G[i1, . . . , ip]| = 0 for any (i1, . . . , ip) ∈
Λ(α1, . . . , αm). Therefore, cα1,...,αm = 0 in this case.

Theorem S.6. The coefficient cα1,...,αm as defined in (9) is nonzero only if the re-

stricted Fisher information matrix Fres =
∑
i:αi>0 Fi is positive definite, where Fi is

defined as in (4).

The proofs for Lemma S.3 and Theorem S.6 are relegated to Section S.15. Combin-

ing Theorems 3.2 and S.6, Theorems 3.3 and S.6, respectively, we obtain the following

corollaries:
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Corollary S.3. The coefficient cα1,...,αm is nonzero only if Hα1,...,αm is of full row

rank p, where Hα1,...,αm is the submatrix of H after removing all columns associated with

xi for which αi = 0.

Corollary S.4. The coefficient cα1,...,αm = 0 if #{i | αi > 0} ≤ kmin − 1, where

kmin = max{p1, . . . , pJ−1, pc + pH}. If H1 = · · · = HJ−1, kmin = pc + p1.

We provide an example (Example S.6) in Section S.14 to illustrate that cα1,...,αm could

be nonzero for ppo models with #{i | αi > 0} = pc + pH .

S.7. Expressions for proportional odds (po) models. As special

cases of ppo, po models are degenerate cases of ppo models with hTj (xi) replaced by 1,

j = 1, . . . , J − 1, and thus p1 = · · · = pJ−1 = 1.

In Section 2, the four logit models in the literature with proportional odds are:

log

(
πij
πiJ

)
= βj + hTc (xi)ζ , baseline-category

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= βj + hTc (xi)ζ , cumulative

log

(
πij
πi,j+1

)
= βj + hTc (xi)ζ , adjacent-categories

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= βj + hTc (xi)ζ , continuation-ratio

where i = 1, . . . ,m, j = 1, . . . , J − 1, βj is an unknown parameter for the jth response

category, hTc (·) = (h1(·), . . . , hpc(·)) are known functions to determine the pc predictors

associated with the pc unknown parameters ζ = (ζ1, . . . , ζpc)T that are common for all

categories.

In equation (1), the corresponding model matrix is

(S.3) Xi =



1 0 · · · 0 hTc (xi)

0 1
. . .

...
...

...
. . .

. . . 0 hTc (xi)

0 · · · 0 1 hTc (xi)

0 0 · · · 0 0T


J×p

and the parameter vector θ = (β1, β2, · · · , βJ−1, ζ)T consists of p = J − 1 + pc unknown

parameters in total. The previous βj reduces to βj serving as the cut-off point in this case.

In Section 3, the p×m(J − 1) matrix

(S.4) H =


1T

. . .

1T

Hc · · · Hc


where Hc = (hc(x1), · · · ,hc(xm)).

As a special case of Theorem 3.3,
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Theorem S.7. Consider the multinomial logistic model (1) with m distinct experi-
mental settings xi with ni > 0 experimental units, i = 1, . . . ,m. For proportional odds
models, the Fisher information matrix F is positive definite if and only if m ≥ pc + 1 and
the extended matrix (1,HT

c ) is of full rank pc + 1.

In Section 4, for proportional odds models, the mJ × p matrix

(S.5) G =


c11 · · · c1,J−1

∑J−1
j=1 c1j · hTc (x1)

c21 · · · c2,J−1

∑J−1
j=1 c2j · hTc (x2)

· · · · · · · · · · · ·
cm1 · · · cm,J−1

∑J−1
j=1 cmj · hTc (xm)


As a special case of Corollary S.4,

Corollary S.5. The coefficient cα1,...,αm = 0 if #{i | αi > 0} ≤ kmin − 1, where
kmin = pc + 1 for po models.

As special cases of ppo models, po models imply p1 = · · · = pJ−1 = pH = 1, and
H1 = · · · = HJ−1 implies p1 = · · · = pJ−1 = pH . That is, kmin’s are consistent across
different odds models.

S.8. Expressions for non-proportional odds (npo) models. As spe-
cial cases of ppo, hTc (xi) ≡ 0 leads to npo models. Therefore, pc = 0.

In Section 2, the four logit models in the literature with non-proportional odds are:

log

(
πij
πiJ

)
= hTj (xi)βj , baseline-category

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj , cumulative

log

(
πij
πi,j+1

)
= hTj (xi)βj , adjacent-categories

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj , continuation-ratio

where i = 1, . . . ,m, j = 1, . . . , J − 1, hTj (·) = (hj1(·), . . . , hjpj (·)) are known func-
tions to determine the pj predictors associated with the pj unknown parameters βj =
(βj1, . . . , βjpj )T for the jth response category.

In equation (1), the corresponding model matrix is

(S.6) Xi =



hT1 (xi) 0T · · · 0T

0T hT2 (xi)
. . .

...
...

. . .
. . . 0T

0T · · · 0T hTJ−1(xi)

0T · · · · · · 0T


J×p

and the parameter vector reduces to θ = (β1,β2, · · · ,βJ−1)T , which consists of p =
p1 + · · ·+ pJ−1 unknown parameters in total. Note that we always use p to represent the
total number of parameters.
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In Section 3, the p×m(J − 1) matrix

(S.7) H =

 H1

. . .

HJ−1


where Hj = (hj(x1), · · · ,hj(xm)), j = 1, . . . , J − 1.

As a special case of Theorem 3.3, we have

Theorem S.8. Consider the multinomial logistic model (1) with m distinct experi-

mental settings xi with ni > 0 experimental units, i = 1, . . . ,m. For non-proportional

odds (npo) models, the Fisher information matrix F is positive definite if and only if

m ≥ max{p1, . . . , pJ−1} and xi’s keep Hj of full row rank pj, j = 1, . . . , J − 1.

In Section 4, for non-proportional odds models, the mJ × p matrix

(S.8) G =


c11h

T
1 (x1) · · · c1,J−1h

T
J−1(x1)

c21h
T
1 (x2) · · · c2,J−1h

T
J−1(x2)

· · · · · · · · ·
cm1h

T
1 (xm) · · · cm,J−1h

T
J−1(xm)


As a special case of Corollary S.4, we have

Corollary S.6. The coefficient cα1,...,αm = 0 if #{i | αi > 0} ≤ kmin − 1, where

kmin = max{p1, . . . , pJ−1} for npo models.

As special cases of ppo models, npo models imply pc = 0 and pH ≤ min{p1, . . . , pJ−1}.
That is, kmin’s are consistent across different odds models.

S.9. Model selection. See Tables 4 and 5.

Table 4
Model Comparison for Trauma Clinical Trial Data

Cumulative Cumulative Continuation Continuation Adjacent Adjacent
po npo po npo po npo

AIC 107.75 99.41 108.98 101.36 107.67 101.54
BIC 104.68 94.51 105.91 96.45 104.60 96.63

S.10. Lift-one and exchange algorithms. Following Yang et al. (2017,

Section 3), we define

fi(z) = f

(
w1(1− z)

1− wi
, . . . ,

wi−1(1− z)
1− wi

, z,
wi+1(1− z)

1− wi
, . . . ,

wm(1− z)
1− wi

)
with 0 ≤ z ≤ 1 and w = (w1, . . . , wm)T ∈ S+. Parallel to Theorem 6 in Yang et al. (2017),

we obtain the following result by Theorem 4.2:
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Table 5
Model Comparison for Emergence of House Flies Data

Cumulative Cumulative Continuation Continuation Adjacent Adjacent
po npo po npo po npo

AIC 195.87 121.17 116.40 114.42 209.64 194.47
BIC 195.71 120.96 116.24 114.20 209.47 194.25

Theorem S.9. Given an approximate allocation w = (w1, . . . , wm)T ∈ S+ and an

i ∈ {1, . . . ,m}, for 0 < z < 1,

(S.9) fi(z) = (1− z)p−J+1
J−1∑
j=0

bjz
j(1− z)J−1−j

(S.10) f ′i(z) = (1− z)p−J
J−1∑
j=1

bj(j − pz)zj−1(1− z)J−1−j − pb0(1− z)p−1

where b0 = fi(0), (bJ−1, . . . , b1)T = B−1
J−1c, BJ−1 = (st−1)s,t=1,...,J−1 is a (J−1)×(J−1)

constant matrix, and c = (c1, . . . , cJ−1)T with cj = (j+1)pjJ−1−pfi(1/(j+1))−jJ−1fi(0),

j = 1, . . . , J − 1.

Theorem S.9 shows that fi(z) is an order-p polynomial of z. Since fi(1) = 0, the

solution to maximization of fi(z), 0 ≤ z ≤ 1 can occur only at z = 0 or 0 < z < 1 such

that f ′i(z) = 0, that is,

(S.11)

J−1∑
j=1

jbjz
j−1(1− z)J−j−1 = p

J−1∑
j=0

bjz
j(1− z)J−j−1, 0 < z < 1.

This is an order-(J − 1) polynomial equation in z. For J ≤ 5, (S.11) is a polynomial

equation of order-4 or less, which can be solved analytically. For J ≥ 6, a quasi-Newton

algorithm can be applied for searching numerical solutions.

Lift-one algorithm for D-optimal allocation w = (w1, . . . , wm)T :

1◦ Start with an arbitrary allocation w0 = (w1, . . . , wm)T satisfying 0 < wi < 1,

i = 1, . . . ,m and compute f (w0).

2◦ Set up a random order of i going through {1, 2, . . . ,m}.
3◦ For each i, determine fi(z) according to Theorem S.9. In this step, J determinants

fi(0), fi(1/2), fi(1/3), . . . , fi(1/J) are calculated.

4◦ Use quasi-Newton algorithm to find z∗ maximizing fi(z) with 0 ≤ z ≤ 1. If fi(z∗) ≤
fi(0), let z∗ = 0. Define w

(i)
∗ = (w1(1 − z∗)/(1 − wi), . . . , wi−1(1 − z∗)/(1 −

wi), z∗, wi+1(1−z∗)/(1−wi), . . . , wm(1−z∗)/(1−wi))T . Note that f(w
(i)
∗ ) = fi(z∗).

5◦ Replace w0 with w
(i)
∗ , and f (w0) with f(w

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until convergence, that is, f(w0) = f(w
(i)
∗ ) for each i.
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Following Yang et al. (2016, 2017), we define

fij(z) = f(n1, . . . , ni−1, z, ni+1, . . . , nj−1, ni + nj − z, nj+1, . . . , nm)

with z = 0, 1, . . . , ni + nj given 1 ≤ i < j ≤ m and n = (n1, . . . , nm)T . As a conclusion of

Theorem 4.2, Lemma S.3 and Corollary S.4, we obtain the following result:

Theorem S.10. Suppose n = (n1, . . . , nm)T satisfies f(n) > 0 and ni + nj ≥ q for

given 1 ≤ i < j ≤ m, where q = min{2J − 2, p− kmin + 2, p}. Then

(S.12) fij(z) =

q∑
s=0

gsz
s, z = 0, 1, . . . , ni + nj

where g0 = fij(0), and g1, . . . , gq can be obtained using (g1, . . . , gq)
T = B−1

q (d1, . . . , dq)
T

with Bq = (st−1)s,t=1,...,q as a q × q constant matrix and ds = (fij(s)− fij(0))/s.

Exchange algorithm for D-optimal allocation (n1, . . . , nm)T given n > 0:

1◦ Start with an initial allocation n = (n1, . . . , nm)T such that f(n) > 0.

2◦ Set up a random order of (i, j) going through all pairs {(1, 2), (1, 3), . . . , (1,m),

(2, 3), . . . , (m− 1,m)}.
3◦ For each (i, j), let c = ni + nj . If c = 0, let n∗ij = n. Otherwise, there are two

cases. Case one: 0 < c ≤ q, we calculate fij(z) for z = 0, 1, . . . , c directly and find z∗

which maximizes fij(z). Case two: c > q, we first calculate fij(z) for z = 0, 1, . . . , q;

secondly determine g0, g1, . . . , gq in (S.12) according to Theorem S.10; thirdly cal-

culate fij(z) for z = q+1, . . . , c based on (S.12); fourthly find z∗ maximizing fij(z)

for z = 0, . . . , c. For both cases, we define

n∗ij = (n1, . . . , ni−1, z
∗, ni+1, . . . , nj−1, c− z∗, nj+1, . . . , nm)

T

Note that f(n∗ij) = fij(z
∗) ≥ f(n) > 0. If f(n∗ij) > f(n), replace n with n∗ij , and

f(n) with f(n∗ij).

4◦ Repeat 2◦ ∼ 3◦ until convergence, that is, f(n∗ij) = f(n) in step 3◦ for all (i, j).

S.11. Formulae for calculating πij’s from Xi’s. Following the nota-

tions in model (1), ηi = Xiθ = CT log(Lπi). The formulae towards calculating πij ’s are

listed as follows:

(1) Baseline-category logit model

log(πi) =


1 −1

1 −1

. . .
...

1 −1

−1


J×J

· log




1 0

1 0

. . .
...

1 0

1 1 · · · 1 1


J×J

· exp(ηi)
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(2) Adjacent-categories logit model

log(πi) =


1 −1

1 −1

. . .
...

1 −1

−1


J×J

·

log




1 0

1 0

. . .
...

1 0

1 1 · · · 1 1


J×J

· exp




1 1 · · · 1 0

1 · · · 1 0

. . .
...

...

1 0

1


J×J

· ηi




(3) Continuation-ratio logit model

log(πi) = ηi −


1

1 1
...

. . .

1 1 · · · 1

1 1 · · · 1 1


J×J

·

log




1 0 · · · 0 1

0 1 · · · 0 1

. . .

0 0 · · · 1 1

0 0 · · · 0 1


J×J

· exp(ηi)


(4) Cumulative logit model

log




1

1 1
...

. . .

1 1 · · · 1

0 0 · · · 0 1


J×J

· πi

 =


1 −1

. . .
. . .

1 −1

0 · · · 0 0 · · · −1


J×2(J−1)

· log





1 0

. . .
...

1 0

1 1

. . .
...

1 1


2(J−1)×J

· exp(ηi)


Note that Xiθ in the above models could be po, npo, or ppo.
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S.12. Reparametrization and D-optimality. In general, let θ = (θ1,

. . . , θp)
T be one set of parameters and ϑ = (ϑ1, . . . , ϑp)

T be another set of parameters,

such that, θl = hl(ϑ), l = 1, · · · , p; the map θ = θ(ϑ) = (h1(ϑ), . . . , hp(ϑ))T is one-to-one;

hl’s are differentiable; and the p× p Jacobian matrix J = (hi(ϑ)/∂ϑj)ij is nonsingular.

Consider a design ξ = {(xi, wi), i = 1, . . . ,m} with the distinct experimental settings

xi’s and the corresponding proportions wi ∈ [0, 1]. According to Schervish (1995, page

115), the Fisher information matrix Fξ(ϑ) at ϑ and the Fisher information matrix Fξ(θ)

at θ = θ(ϑ) satisfy Fξ(ϑ) = JTFξ(θ(ϑ))J. Then |Fξ(ϑ)| = |J|2 · |Fξ(θ(ϑ))|, where J

contains no design points but parameters. A locally D-optimal design maximizing |Fξ(ϑ)|
also maximizes |Fξ(θ(ϑ))|. That is, it is mathematically equivalent to find D-optimal

designs for parameters ϑ or θ.

In terms of Bayesian D-optimal criterion, if a prior distribution of ϑ is available, it

induces a prior distribution of θ since θ = θ(ϑ) is one-to-one. Then Eϑ log |Fξ(ϑ)| =

Eϑ log
∣∣JTFξ(θ(ϑ))J

∣∣ = Eϑ log |J|2 + Eϑ log |Fξ(θ(ϑ))| = Eϑ log |J|2 + Eθ log |Fξ(θ)|.
Therefore, a Bayesian D-optimal design that maximizes Eθ log |Fξ(θ)| also maximizes

Eϑ log |Fξ(ϑ)|.

Example S.1. Perevozskaya et al. (2003) considered the po model:

(S.13) log
γj(x)

1− γj(x)
=
x− α′j
β′

j = 2, . . . , J

where γj(x) = P (Y ≥ j|x). Let us reparametrize this model as

(S.14) log
γj(x)

1− γj(x)
= αj + βx j = 2, . . . , J

Let θ = (α2, α3, β)T be the parameters in (S.13), and ϑ = (α′2, α
′
3, β
′)T be the parameters

in (S.14). Then β = 1/β′, α2 = −α′2/β′, α3 = −α′3/β′, and the Jacobian matrix

J =

−
1
β′ 0

α′2
β′2

0 − 1
β′

α′3
β′2

0 0 − 1
β′2


Based on Theorem 2.1, the Fisher information Ii(θ) at xi is

πi1π
2
i2,3πi1,2

πi2
−πi1πi1,2πi2,3πi3

πi2
πi1πi1,2πi2,3xi

−πi1πi1,2πi2,3πi3

πi2

π2
i1,2πi2,3πi3

πi2
πi3πi1,2πi2,3xi

πi1πi1,2πi2,3xi πi3πi1,2πi2,3xi (πi1π
2
i2,3 + πi2(πi1 − πi3)2 + π2

i1,2πi3)x2i


where πij,k = πij + πik . It can be verified that Ii(ϑ) = JT Ii(θ)J equals to the corre-

sponding one given by Perevozskaya et al. (2003). For any given design ξ = {(xi, wi), i =

1, . . . ,m} with proportions wi ∈ [0, 1], the Fisher information matrix Iξ(ϑ) =
∑m
i=1 wiIi(ϑ)

= JT Iξ(θ)J. Then |Iξ(ϑ)| = |J|2 · |Iξ(θ)| and the D-optimal design maximizing |Iξ(θ)| also

maximizes |Iξ(ϑ)|. That is, the D-optimal designs for Models (S.13) and (S.14) are the

same. �
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S.13. More discussion on D-optimality of uniform designs.

Theorem S.11. Consider Multinomial logit model (1) with only two response cate-
gories (J = 2). In this case, the minimum number of support points is m = p. The objec-
tive function f(w) ∝ w1 · · ·wm and the D-optimal allocation among minimally supported
designs is w = (1/m, . . . , 1/m)T .

It can be verified that with J = 2 all of the four logit models are equivalent to the usual
logistic model for binary response. In this case, po, npo, or ppo are essentially the same.
Theorem S.11 confirms the corresponding results for binary responses in the literature (see,
for example, Yang and Mandal (2015)). We provide an independent proof in Section S.15.

Besides the cases with J = 2, for certain npo models with J ≥ 3, uniform allocations
could still be D-optimal among minimally supported designs if p1 = · · · = pJ−1.

Corollary S.7. Consider multinomial logit models (1) with npo assumption. Suppose
p1 = · · · = pJ−1 and there exist p1 distinct experimental settings such that rank(H1) =
· · · = rank(HJ−1) = p1. Then the minimal number of experimental settings is m = p1 and
the uniform allocation is D-optimal among minimally supported designs.

According to Corollary S.7, for “regular” npo models (that is, p1 = · · · = pJ−1),
uniform allocations are still D-optimal among minimally supported designs even with
J ≥ 3. However, the following lemma and example further represent that, if the condition
p1 = · · · = pJ−1 is violated, uniform allocations are not D-optimal in general even for npo
models.

Lemma S.4. Given 0 < c1 ≤ c2 ≤ c3, we consider the maximization problem f(w1, w2,
w3) = w1w2w3(c1w2w3+c2w1w3+c3w1w2) with respect to 0 ≤ wi ≤ 1 and w1+w2+w3 =
1. Then the solution is w1 = w2 = w3 = 1/3 if and only if c1 = c2 = c3.

The proof of Lemma S.4 is relegated to Section S.15, where analytical solutions are
provided for (w1, w2, w3) for general values of c1, c2 and c3.

Example S.2. Consider the npo model adopted by Zocchi and Atkinson (1999) with
h1(xi) = (1, xi, x

2
i )
T , h2(xi) = (1, xi)

T , J = 3, p1 = 3, p2 = 2, and p = 5. Accord-
ing to Corollary S.4, the minimum number of support points is m = max{p1, p2} =
3, which is feasible. The objective function f(w) is an order-5 polynomial with terms
cα1,α2,α3w

α1
1 wα2

2 wα3
3 . Lemma S.3 implies that αi ∈ {0, 1, 2}, i = 1, 2, 3 in order to keep

cα1,α2,α3 6= 0. Combined with Corollary S.4, we further know αi ∈ {1, 2}, i = 1, 2, 3.
According to Theorem 4.2, the objective function is

(S.15) f(w1, w2, w3) = w1w2w3(c122w2w3 + c212w1w3 + c221w1w2)

for all the four logit models. Rewriting (c122, c212, c221) = C · (c1, c2, c3), it can be verified
that for the continuation-ratio logit model adopted by Zocchi and Atkinson (1999) for the
house flies experiment (Example 5.1), C = (x1 − x2)2(x1 − x3)2(x2 − x3)2

∏3
i=1

∏3
j=1 πij ,

c1 = (x2 − x3)2(π−1
12 + π−1

13 ), c2 = (x1 − x3)2(π−1
22 + π−1

23 ), c3 = (x1 − x2)2(π−1
32 + π−1

33 ); for
a cumulative logit model (see, for example, Example 5.2), C = (x1 − x2)2(x1 − x3)2(x2 −
x3)2

∏3
i=1 πi1π

−1
i2 πi3(πi1 + πi2)2(πi2 + πi3)2, c1 = (x2 − x3)2π−1

13 (π11 + π12)−1, c2 = (x1 −
x3)2π−1

23 (π21 + π22)−1, and c3 = (x1 − x2)2π−1
33 (π31 + π32)−1. According to Lemma S.4,

w1 = w2 = w3 = 1/3 is D-optimal if and only if c1 = c2 = c3, which is in general not true
for both continuation-ratio and cumulative logit models with non-proportional odds. �
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S.14. More examples.

Example S.3. (For Section 3) Consider an experiment with a main-effects multino-
mial logistic model with d factors and m distinct experimental settings x1, . . . ,xm, where
xi = (xi1, . . . , xid)

T , i = 1, . . . ,m.
For a main-effects model, the linear predictors may take the form of

(S.16) ηij = βj1 + βj2xi1 + · · ·+ βj,k+1xik + ζ1xi,k+1 + · · ·+ ζd−kxid

where i = 1, . . . ,m, j = 1, . . . , J − 1. In other words, the intercept and the coefficients of
the first k factors depend on j, while the coefficients of the last d− k factors do not.

We claim that the minimum number of experimental settings is simply d + 1 for the
main-effects multinomial logistic model (S.16) with 0 ≤ k ≤ d, regardless of J .

Actually, first we consider 1 ≤ k ≤ d − 1. It is a ppo model. In this case, p1 = · · · =
pJ−1 = k + 1, pc = d− k,

H1 = · · · = HJ−1 =


1 · · · 1

x11 · · · xm1

...
...

...

x1k · · · xmk

 , Hc =

 x1,k+1 · · · xm,k+1

...
...

...

x1d · · · xmd


According to the special case of Theorem 3.3, the Fisher information matrix F is positive
definite if and only if m ≥ pc + p1 = d+ 1 and the matrix

(HT
1 ,H

T
c ) ==

 1 x11 · · · x1d
...

...
...

...

1 xm1 · · · xmd


is of full rank d+ 1.

Now we let k = 0. The model (S.16) leads to a po model. By applying Theorem S.7,
we obtain the same conditions as for the ppo model. Similarly, if we let k = d and apply
Theorem S.8, we get the same conditions for npo models. �

Example S.4. (For Section 3) Consider an experiment with four factors (d = 4), three
response categories (J = 3), and four distinct experimental settings (m = 4). Then the
experimental settings are xi = (xi1, xi2, xi3, xi4)T , i = 1, 2, 3, 4. Consider a multinomial
logistic model with ppo such that

HT
1 =


1 x11 x12 x13
1 x21 x22 x23
1 x31 x32 x33
1 x41 x42 x43

 , HT
2 =


1 x11
1 x21
1 x31
1 x41

 , HT
c =


x14
x24
x34
x44


That is, p1 = 4, p2 = 2, pc = 1, pH = 2, max{p1, p2, pc + pH} = p1 = 4, and there are
p = p1 + p2 + pc = 7 parameters. In this case,

H =

 H1

H2

Hc Hc


is 7×8 with rank 7. That is, the minimum number in Theorem 3.3, m = max{p1, . . . , pJ−1,
pc + pH} = 4, is attained in this case. �
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Example S.5. (For Section 3) Consider an experiment with three factors (d = 3),

three response categories (J = 3), and three distinct experimental settings (m = 3). De-

note the experimental settings as xi = (xi1, xi2, xi3)T , i = 1, 2, 3. Consider a multinomial

logistic model with ppo such that

HT
1 =

 1 x11
1 x21
1 x31

 , HT
2 =

 1

1

1

 , HT
c =

 x12 x13
x22 x23
x32 x33


That is, p1 = 2, p2 = 1, pc = 2, pH = 1, max{p1, p2, pc + pH} = pc + pH = 3, and there are

p = p1 + p2 + pc = 5 parameters. In this case,

H =


1 1 1 0 0 0

x11 x21 x31 0 0 0

0 0 0 1 1 1

x12 x22 x32 x12 x22 x32
x13 x23 x33 x13 x23 x33


is 5 × 6. It can be verified that rank(H) = 5 using Theorem S.5. That is, the minimal

number of experimental settings in this case is m = max{p1, . . . , pJ−1, pc + pH} = 3. �

Example S.6. (For Section 4) Consider an example with responses in J = 4 cat-

egories, d = 5 factors, and m = 5 distinct experimental settings xi = (xi,1, . . . , xi,5)T ,

i = 1, . . . , 5. Suppose a multinomial logistic model with

HT
1 =


1 x11 x12
1 x21 x22
...

...
...

1 x51 x52

 ,HT
2 =


1 x11
1 x21
...

...

1 x51

 ,HT
3 =


1

1
...

1

 ,HT
c =


x13 x14 x15
x23 x24 x25

...
...

...

x53 x54 x55


is used. That is, p1 = 3, p2 = 2, p3 = 1, pH = 1, pc = 3, and p = 9. In this case, G

defined in Theorem 4.1 is 20 × 9 and pc + pH = 4 is the minimum number of #{i |
αi > 0} to keep |G[i1, . . . , ip]| 6= 0 if (i1, . . . , ip) ∈ Λ(α1, . . . , αm). Actually, (i1, . . . , i9) =

(1, 2, 3, 6, 7, 8, 10, 11, 12) ∈ Λ(3, 3, 3, 0, 0) leads to rank(G[i1, . . . , i9]) = 8, while (1, 2, 5, 6,

9, 10, 13, 14, 15) ∈ Λ(2, 2, 2, 3, 0) leads to rank(G[i1, . . . , i9]) = 9. Therefore, |G[i1, . . . , i9]|
6= 0 in general if (i1, . . . , i9) ∈ Λ(2, 2, 2, 3, 0) for such a ppo model. �

Example 5.2. (continued, for Section 5.1) Recall that there are eight parameters with

fitted values β̂ = (β̂11, β̂21, β̂31, β̂41, β̂12, β̂22, β̂32, β̂42)T = (−0.865,−0.094, 0.706, 1.909,

−0.113, −0.269,−0.182,−0.119)T . If we treat the fitted parameter values as the assumed

values, the design space is X = {x ≥ 0 | β11 + β12x < β21 + β22x < β31 + β32x <

β41 + β42x} = {x ≥ 0 | −9.195 < x < 4.942} = [0, 4.942). It is not a surprise that the four

levels {1, 2, 3, 4} in the original dataset are included in the design space. �

Example S.7. (For Section 5.6) Consider a multinomial logistic model with pro-

portional odds for responses with J = 3 categories, d = 1 factors, and m = 2 distinct
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experimental settings x1, x2. Same as in Example S.1, the parameters are β1, β2, ζ1 and

the linear predictors

ηi1 = β1 + ζ1xi, ηi2 = β2 + ζ1xi, i = 1, 2.

According to Theorem 4.2, the objective function of allocation (w1, w2) is an order-3

homogeneous polynomial of w1, w2 consisting of monomials cα1,α2w
α1
1 wα2

2 with coefficients

cα1,α2 ≥ 0. Based on Lemma S.3 and Corollary S.4, cα1,α2 6= 0 only if max{α1, α2} ≤ 2

and #{i | αi > 0} = 2, which implies (α1, α2) is either (2, 1) or (1, 2). That is, the objective

function is

f(w1, w2) = w1w2(c21w1 + c12w2),

which takes the same form as in Corollary 5.2 in Yang et al. (2017). If we rewrite c21 = C ·c2
and c12 = C · c1, that is, f(w1, w2) = C ·w1w2(c2w1 + c1w2), then for a baseline-category

logit model, C = π13π23(x1 − x2)2, c2 = π11π12(1 − π23), c1 = π21π22(1 − π13); for

a cumulative logit model, C = π−1
12 (1 − π13)(1 − π11)π−1

22 (1 − π23)(1 − π21)(x1 − x2)2,

c2 = π11(1− π11)π13(1− π13)π22(1− π22), c1 = π12(1− π12)π21(1− π21)π23(1− π23); for

an adjacent-categories logit model, C = (x1 − x2)2, c2 = π11π12π13(π21π22 + π22π23 +

4π21π23), c1 = π21π22π23(π11π12 +π12π13 + 4π11π13); for a continuation-ratio logit model,

C = (1 − π11)−1(1 − π21)−1(x1 − x2)2, c2 = π11π12π13(1 − π11)[π22π23 + π21(1 − π21)2],

c1 = π21π22π23(1− π21)[π12π13 + π11(1− π11)2]. According to Corollary 5.2 in Yang et al.

(2017), the uniform allocation w∗1 = w∗2 = 1/2 is D-optimal if and only if c1 = c2, which

is not true in general for all the four logit models. �

Example 5.2. (continued, for Section 6) In practice, we may use designs not as extreme

as the D-optimal design. Here are some alternative allocations of subjects, along with

efficiencies:

Table 6
Alternative Designs for Trauma Clinical Trial

Design point x 1 2 3 4 Efficiency(%)

D-optimal design 401 0 0 401 100.0
Original design 210 190 207 195 74.7
1% reallocated 397 4 4 397 99.4
2.5% reallocated 391 10 10 391 98.8
5% reallocated 381 20 20 381 97.6
10% reallocated 361 40 40 361 95.3

We may recommend 2.5% or 5% reallocated design, which is not so extreme but still

highly efficient.

S.15. Proofs.

Proof of Theorem 2.1:

Suppose for distinct xi, i = 1, · · · ,m, we have independent multinomial responses

Yi = (Yi1, · · · , YiJ)T ∼ Multinomial(ni;πi1, · · · , πiJ)
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where ni =
∑J
j=1 Yij . Then the log-likelihood for the multinomial model is

l(θ) = logL(θ)

= log

m∏
i=1

ni!

Yi1! · · ·YiJ !
πYi1
i1 · · ·π

YiJ
iJ

= constant +

m∑
i=1

YT
i logπi

where logπi = (log πi1, · · · , log πiJ)T . Then the score vector

∂l

∂θT
=

m∑
i=1

YT
i diag(πi)

−1 ∂πi

∂θT

∂l

∂θ
= (

∂l

∂θT
)T =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1Yi

Using the formulae of matrix differentiation, we get

∂πi

∂θT
=
∂πi
∂ηTi

· ∂ηi
∂θT

=

(
∂ηi
∂πTi

)−1

·Xi

=

(
∂[CT log(Lπi)]

∂[log(Lπi)]T
· ∂[log(Lπi)]

∂[Lπi]T
· ∂[Lπi]

∂πTi

)−1

·Xi

=
(
CT [diag(Lπi)]

−1L
)−1

Xi

Lemma S.5.
πi

Tdiag(πi)
−1(CTD−1

i L)−1Xi = 0T

Proof of Lemma S.5: Recall that 1Tπi = πi1 + · · ·+ πiJ = 1 for each i; the last row of
Xi is all 0; and

CT =


∗ ∗ · · · 0

∗ ∗ · · · 0

. . .

0 0 · · · 1

 , L =


∗ ∗ · · · ∗
∗ ∗ · · · ∗

. . .

1 1 · · · 1


Then

D−1
i = diag(Lπi)

−1 =


∗ 0 · · · 0

0 ∗ · · · 0

. . .

0 0 · · · 1
1Tπi

 =


∗ 0 · · · 0

0 ∗ · · · 0

. . .

0 0 · · · 1


and

D−1
i L =


∗ · · · ∗
∗ · · · ∗

. . .

1T

 and CTD−1
i L =


∗ · · · ∗
∗ · · · ∗

. . .

1T
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Rewrite (CTD−1
i L)−1 = (ci1, · · · , ciJ). Then 1T ci1 = · · · = 1T ci,J−1 = 0 and 1T ciJ = 1

(just check the last row of CTD−1
i L). Since πTi diag(πi)

−1 = (1, · · · , 1), then

πi
Tdiag(πi)

−1(CTD−1
i L)−1 = (1, · · · , 1)(ci1, · · · , ciJ) = (0, · · · , 0, 1)

Since the last row of Xi is all 0, then πi
Tdiag(πi)

−1(CTD−1
i L)−1Xi = 0T . �

As a direct conclusion of Lemma S.5,

E(
∂l

∂θT
) =

m∑
i=1

niπi
Tdiag(πi)

−1(CTD−1
i L)−1Xi = 0T

Then the Fisher information matrix (see, for example, Schervish (1995, Section 2.3.1))

F = Cov

(
∂l

∂θ
,
∂l

∂θ

)
= E

(
∂l

∂θ
· ∂l

∂θT

)
= E

(
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1Yi ·
m∑
j=1

YT
j diag(πj)

−1 ∂πj

∂θT

)

= E

(
m∑
i=1

m∑
j=1

(
∂πi

∂θT
)Tdiag(πi)

−1YiY
T
j diag(πj)

−1 ∂πj

∂θT

)

Since Yi’s follow independent multinomial distributions, then

E(YiY
T
i ) =

ni(ni − 1)π2
i1 + niπi1 · · · ni(ni − 1)πisπit

...
. . .

...

ni(ni − 1)πisπit · · · ni(ni − 1)π2
iJ + niπiJ


= ni(ni − 1)πiπ

T
i + nidiag(πi)

On the other hand, for i 6= j,

E(YiY
T
j ) = E(Yi) · E(YT

j ) = ninjπiπ
T
j

Then the Fisher information matrix

F =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1ni(ni − 1)πiπ
T
i diag(πi)

−1 ∂πi

∂θT

+
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1nidiag(πi)diag(πi)
−1 ∂πi

∂θT

+
∑
i 6=j

(
∂πi

∂θT
)Tdiag(πi)

−1ninjπiπ
T
j diag(πj)

−1 ∂πj

∂θT

, (a) + (b) + (c)
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where

(b) =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1 ∂πi

∂θT
ni

(a) + (c) =

[
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1πini

][
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1πini

]T

−
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1niπiπi
Tdiag(πi)

−1 ∂πi

∂θT

Actually, let

Ei = πi
Tdiag(πi)

−1 ∂πi

∂θT
= πi

Tdiag(πi)
−1(CTD−1

i L)−1Xi

which is 0T for each i according to Lemma S.5. Then

(a) + (c) =

[
m∑
i=1

niE
T
i

][
m∑
i=1

niE
T
i

]T
−

m∑
i=1

niE
T
i Ei = 0J×J

The arguments above have proved Theorem 2.1. �

Proof of Theorem 3.1: Because the last row of Xi consists of all zeros, the entries in

the last row and last column of Ui actually won’t make any difference. In order to simplify

the notations in this proof, we rewrite

hji , hj(xi) j = 1, . . . , J − 1; i = 1, . . . ,m

hci , hc(xi) i = 1, . . . ,m

usti , ust(πi) s, t = 1, . . . , J − 1; i = 1, . . . ,m

us·i ,
J−1∑
t=1

usti s = 1, . . . , J − 1; i = 1, . . . ,m

u·ti ,
J−1∑
s=1

usti t = 1, . . . , J − 1; i = 1, . . . ,m

u··i ,
J−1∑
s=1

J−1∑
t=1

usti i = 1, . . . ,m

Based on Corollary 3.1, when Xi takes partial proportional odds form (2), the Fisher

information Fi = XT
i UiXi =

u11ih1ih
T
1i · · · u1,J−1,ih1ih

T
J−1,i u1·ih1ih

T
ci

...
. . .

...
...

uJ−1,1,ihJ−1,ih
T
1i · · · uJ−1,J−1,ihJ−1,ih

T
J−1,i uJ−1·ihJ−1,ih

T
ci

u·1ihcih
T
1i · · · u·J−1,ihcih

T
J−1,i u··ihcih

T
ci
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Then the Fisher information matrix F =
∑m
i=1 niFi =

m∑
i=1

niu11ih1ih
T
1i · · ·

m∑
i=1

niu1,J−1,ih1ih
T
J−1,i

m∑
i=1

niu1·ih1ih
T
ci

...
. . .

...
...

m∑
i=1

niuJ−1,1,ihJ−1,ih
T
1i · · ·

m∑
i=1

niuJ−1,J−1,ihJ−1,ih
T
J−1,i

m∑
i=1

niuJ−1·ihJ−1,ih
T
ci

m∑
i=1

niu·1ihcih
T
1i · · ·

m∑
i=1

niu·J−1,ihcih
T
J−1,i

m∑
i=1

niu··ihcih
T
ci


or simply

H1

. . .

HJ−1

Hc · · · Hc


 U11 · · · U1,J−1

...
. . .

...

UJ−1,1 · · · UJ−1,J−1


 HT

1 HT
c

. . .
...

HT
J−1 HT

c


�

Proof of Theorem S.3: Recall that (CTD−1
i L)−1 = (ci1 · · · ciJ) and ust(πi) = cTisdiag(πi)

−1cit,
for s, t = 1, . . . , J − 1 and i = 1, . . . ,m. Denote

C̃ =



cT11
. . .

cTm1

cT12
. . .

cTm2

...
. . .

...

cT1,J−1

. . .

cTm,J−1


m(J−1)×mJ

and W̃ =

n1diag(π1)−1

. . .

nmdiag(πm)−1


mJ×mJ

We claim that U = C̃W̃C̃T . Actually

C̃W̃ =



n1c
T
11diag(π1)−1

. . .

nmcTm1diag(πm)−1

...
. . .

...

n1c
T
1,J−1diag(π1)−1

. . .

nmcTm,J−1diag(πm)−1
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and

C̃W̃C̃T = C̃W̃

c11 · · · c1,J−1

. . .
. . .

. . .

cm1 · · · cm,J−1



=

 U11 · · · U1,J−1

...
. . .

...

UJ−1,1 · · · UJ−1,J−1

 = U

Note that W̃ is diagonal with positive diagonal entries. Thus W̃ is positive definite. By

adjusting the rows, we can verify that rank(C̃) is the same as rank(C̃′), where

C̃′ =



cT11
...

cT1,J−1

cT21
...

cT2,J−1

. . .

cTm1

...

cTm,J−1


That is, C̃ has full row rank and thus U is positive definite. �

Proof of Theorem S.4:

Lemma S.6. |U| = (
∏m
i=1 ni)

J−1|V|, where

V =

 V11 · · · V1,J−1

...
. . .

...

VJ−1,1 · · · VJ−1,J−1



=



u111 · · · u1,J−1,1

. . .
. . .

u11m · · · u1,J−1,m

...
. . .

...

uJ−1,1,1 · · · uJ−1,J−1,1

. . .
. . .

uJ−1,1,m · · · uJ−1,J−1,m


Kovacs et al. (1999) generalized Schur’s Formula (Gantmacher (1960)) as follows:
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Lemma S.7. (Kovacs et al., 1999, Theorem 1)

Assume that M is a k × k block matrix with each block element Aij as an n× n matrix.

M =

A11 · · · A1k

...
. . .

...

Ak1 · · · Akk


If all of Aij’s commute pairwise, that is, AijAlm = AlmAij for all possible pairs of indices

i, j and l, m. Then

(S.17) |M| =

∣∣∣∣∣∣
∑
π∈Sk

(sgnπ)A1π(1)A2π(2) · · ·Akπ(k)

∣∣∣∣∣∣
Here the sum is computed over all permutations π of {1, 2, ..., k}.

In our case, all of Vij ’s are diagonal matrices, so they commute pairwise. Moreover, the

sum of product matrices in Equation (S.17) is a diagonal matrix, in which each element

is the sum of products of the corresponding elements in those matrices. If we apply the

above lemma, we get

|V| =

∣∣∣∣∣∣
∑

π∈SJ−1

(sgnπ)V1π(1)V2π(2) · · ·VJ−1,π(J−1)

∣∣∣∣∣∣
=

m∏
i=1

∣∣∣∣∣∣
∑

π∈SJ−1

(sgnπ)u1π(1)iu2π(2)i · · ·uJ−1,π(J−1),i

∣∣∣∣∣∣
Then the following result is obtained:

Lemma S.8. |V| =
∏m
i=1 |Vi|, where

Vi =

 u11(πi) · · · u1,J−1(πi)
...

. . .
...

uJ−1,1(πi) · · · uJ−1,J−1(πi)


Note that Vi defined above is very similar to Ui define in equation (5).

Lemma S.9. |Vi| =
(∏J

j=1 πij
)−1

· |CTD−1
i L|−2.

Proof of Lemma S.9: It can be verified that ciJ = πi.

Since cTijdiag(πi)
−1ciJ = cTij1 = 0 for j = 1, . . . , J − 1 and 1 for j = J , then[(

CTD−1
i L

)−1
]T

diag(πi)
−1

[(
CTD−1

i L
)−1

]
=

[
Vi 0

0T 1

]
�

Combining Lemmas S.6, S.8, and S.9, we obtain Theorem S.4.
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Remark S.1. Actually, we provide an explicit formula for |CTD−1
i L| in (S.1), which

can further clarify Lemma S.9 as (1) |Vi| =
∏J
j=1 πij for baseline-category, adjacent-

categories, and continuation-ratio logit models; (2) |Vi| = π−1
iJ

∏J−1
j=1 π

−1
ij γ

2
ij(1− γij)2 for

cumulative logit models.

Proof of Theorem S.5:

The simplest case is the npo model whose conclusion is straightforward.

The ppo model is the most general case. In this case, we consider a sequence of linear

subspaces

{0} ⊂ M(HT
c ) ∩ (∩J−1

j=1M(HT
j )) ⊂M(HT

c )

with corresponding dimensions 0 ≤ rc − r0 ≤ rc , rank(Hc), where r0 = rank(Hc) −
dim[M(HT

c )∩(∩J−1
j=1M(HT

j ))]. Then there exist α1, · · · ,αrc−r0 , αrc−r0+1, · · · ,αrc ∈ Rm

s.t. {α1, · · · ,αrc−r0} forms a basis ofM(HT
c )∩(∩J−1

j=1M(HT
j )) and {α1, · · · ,αrc} forms a

basis ofM(HT
c ). By simple operations Hc can be transformed into H∗c = (α1, · · · ,αrc ,0,

· · · , 0)T and Hj can be transformed into

H∗j = (α1, · · · ,αrc−r0 ,α
(j)
rc−r0+1, · · · ,α

(j)
rj ,0, · · · ,0)T

where rj = rank(Hj), j = 1, 2, · · · , J − 1. Then rank(Hppo) = rank(H∗ppo) with

H∗ppo =


H∗1

. . .

H∗J−1

H∗c · · · H∗c


p×m(J−1)

Since the first rc−r0 rows of (H∗c , · · · ,H∗c) can be eliminated by applying row operations

of H∗j onto it separately, then rank(H∗ppo) = rank(H∗∗ppo) where

H∗∗ppo =


H∗1

. . .

H∗J−1

H∗∗c · · · H∗∗c


p×m(J−1)

and H∗∗c = (0, · · · ,0,αrc−r0+1, · · · ,αrc ,0, · · · ,0)T . Therefore, rank(Hppo) = rank(H∗∗ppo)

6 r1 + · · ·+ rJ−1 + r0.

We claim that the nonzero rows of H∗∗ppo are linearly independent which will lead

to the final conclusion. Actually, let’s denote those nonzero rows of H∗∗ppo as Λ
(j)
i , i =

1, 2, · · · , rj , j = 1, 2, · · · , J − 1 and Λrc−r0+1, · · · ,Λrc , where Λ
(j)
i is the ith row of

(0, · · · ,0, H∗j , 0, · · · , 0), and Λi is the ith row of (H∗∗c , · · · ,H∗∗c ). Suppose there ex-

ist a
(j)
i ∈ R, i = 1, 2, · · · , rj , j = 1, 2, · · · , J − 1 and ai ∈ R, i = rc − r0 + 1, · · · , rc s.t.

0 =

J−1∑
j=1

rj∑
i=1

a
(j)
i Λ

(j)
i +

rc∑
i=rc−r0+1

aiΛi
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then for j = 1, . . . , J − 1,

0 =

rc−r0∑
i=1

a
(j)
i αi +

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i +

rc∑
i=rc−r0+1

aiαi

which implies for j = 1, . . . , J − 1,

rc∑
i=rc−r0+1

aiαi = −
rc−r0∑
i=1

a
(j)
i αi −

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i ∈M(HT

c ) ∩M(HT
j )

Thus,
∑rc
i=rc−r0+1 aiαi ∈M(HT

c )
⋂(
∩J−1
j=1M(HT

j )
)
. Then we must have

∑rc
i=rc−r0+1 aiαi

= 0 since {αrc−r0+1, . . . ,αrc} and {α1, . . . ,αrc−r0} are linearly independent. Therefore,

ai = 0 for i = rc − r0 + 1, . . . , rc and thus

0 =

rc−r0∑
i=1

a
(j)
i αi +

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i

It implies a
(j)
i = 0, i = 1, . . . , rc − r0, rc − r0 + 1, . . . , rj since {α1, . . . ,αrc−r0 , α

(j)
rc−r0+1,

. . . , α
(j)
rj } are linear independent.

Therefore, the conclusion on ppo models is justified.

Since po models are special cases of ppo models, the corresponding result is a direct

conclusion. �

Proof of Theorem A.1:

Recall that dim(M(HT
i )) = rank(HT

i ) = ri and dim(M(HT
i1) + · · · +M(HT

ik
)) =

dim(M((HT
i1 , · · · ,H

T
ik

))) = rank((HT
i1 , · · · , HT

ik
)) = ri1,...,ik , for i1 < · · · < ik and k =

2, . . . , n, where “+” stands for the sum of two linear subspaces.

First of all, dim(M(HT
1 ) ∩M(HT

2 )) = dim(M(HT
1 )) + dim(M(HT

2 )) − dim(M(HT
1 ) +

M(HT
2 )) = r1 + r2 − r12. That is, (11) is true for n = 2.

Suppose (11) is true for n = k. Then for n = k + 1,

dim(∩k+1
i=1M(HT

i )) = dim(∩ki=1M(HT
i ) ∩M(HT

k+1))

= dim(∩ki=1M(HT
i )) + dim(M(HT

k+1))− dim(∩ki=1M(HT
i ) +M(HT

k+1))

=

k∑
i=1

ri −
∑

16i1<i26k

ri1i2 + · · ·+ (−1)k−1r12···k + rk+1 −4

where

4 = dim(∩ki=1M(HT
i ) +M(HT

k+1)) = dim(∩ki=1M((HT
i ,H

T
k+1)))

=

k∑
i=1

rank((HT
i ,H

T
k+1))−

∑
16i1<i26k

rank((HT
i1 ,H

T
k+1,H

T
i2 ,H

T
k+1))

+ · · ·+ (−1)k−1rank((HT
1 ,H

T
k+1, · · · ,HT

k ,H
T
k+1))

=

k∑
i=1

ri,k+1 −
∑

16i1<i26k

ri1,i2,k+1 + · · ·+ (−1)k−1r1,2,...,k+1
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Therefore,

dim(∩k+1
i=1M(HT

i ))

=

k∑
i=1

ri −
∑

16i1<i26k

ri1i2 + · · ·+ (−1)k−1r12···k + rk+1

−
k∑
i=1

ri,k+1 +
∑

16i1<i26k

ri1,i2,k+1 + · · ·+ (−1)kr1,2,...,k+1

=

k+1∑
i=1

ri −
∑

16i1<i26k+1

ri1i2 + · · ·+ (−1)(k+1)−1r1,2,...,k+1

That is, (11) is true for n = k + 1 as well. By mathematical induction, (11) is true for

general n. �

Proof of Corollary S.2:

Suppose pH > 0. Then there exist m × 1 vectors α1, · · · ,αpH , which form a basis

of ∩J−1
j=1M(HT

j ). Write Hc = (γ1, · · · ,γpc)T . According to Theorem S.5, if |F| > 0,

then r0 = rank(Hc) = pc, or equivalently, M(HT
c ) ∩

(
∩J−1
j=1M(HT

j )
)

= {0}. Then

α1, · · · ,αpH ,γ1, · · · ,γpc are linearly independent. Thus m ≥ pc + pH . �

Proof of Theorem 4.1:

Actually, according to Theorem 3.1, F = HUHT . From the proof of Theorem S.3, U =

C̃W̃C̃T , where W̃ is a diagonal matrix. Therefore, F = HC̃W̃C̃THT . Let W = W̃/n

and G = C̃THT . Then F = nGTWG, which leads to the final result. �

Proof of Lemma S.3: Actually, max1≤i≤m αi ≤ J . Suppose max1≤i≤m αi ≥ J , which

means max1≤i≤m αi = J . Without any loss of generality, we assume α1 = J . Then ij = j

for j = 1, . . . , J .

According to the proof of Lemma S.5, we have 1T cij = 0 for i = 1, . . . ,m and j =

1, . . . , J − 1. Then 1T (c11 + · · · + c1,J−1) = 0 and thus 1TG[i1, . . . , iJ ] = 0. That is,

rank(G[i1, . . . , iJ ]) ≤ J − 1. Therefore, rank(G[i1, . . . , ip]) ≤ p− 1 and |G[i1, . . . , ip]| = 0.

�

Proof of Theorem S.6: Suppose cα1,...,αm 6= 0 for some (α1, . . . , αm). Therefore, there

exist (i1, . . . , ip) ∈ (α1, . . . , αm) such that G[i1, . . . , ip] is of full rank p. Without any loss

of generality, we assume α1 ≥ · · · ≥ αk > 0 = αk+1 = · · · = αm, that is, {i | αi >
0} = {1, . . . k}. Consider the submatrix G̃ := G[1, . . . , kJ ] which is kJ × p and contains

G[i1, . . . , ip] as a submatrix. Then G̃ is of rank p or G̃T is of full row rank p. Write

W̃ = k−1diag{diag(π1)−1, . . . , diag(πk)−1}. Then the restricted matrix F := n G̃TW̃G̃

is positive definite. On the other hand, F is the Fisher information matrix nGTWG as

defined in Theorem 4.1 with w1 = · · · = wk = 1/k and wk+1 = · · · = wm = 0. According to

Theorem 4.1 and Theorem 2.1, F = nk−1∑k
i=1 Fi. Therefore, Fres :=

∑k
i=1 Fi is positive

definite. �

Proof of Theorem 5.1:

Case 1: Baseline-category logit model
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The baseline-category logit model for nominal response (Agresti, 2013; Zocchi and

Atkinson, 1999) can be extended in general as follows

(S.18) log

(
πij
πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1

Lemma S.10. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Model (S.18), let aj = hTj (xi)βj+

hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if and only if

−∞ < aj <∞, j = 1, . . . , J − 1. In this case,

(S.19) πij =

{
e
aj

ea1+···+eaJ−1+1
1 ≤ j ≤ J − 1

1
ea1+···+eaJ−1+1

j = J

Proof of Lemma S.10: Write yj = log πij , j = 1, . . . , J . Then 0 < πij < 1, j = 1, . . . , J

if and only if yj ∈ (−∞, 0), j = 1, . . . , J . In this case, Model (S.18) implies aj = yj − yJ ∈
(−∞,∞), j = 1, . . . , J − 1.

On the other hand, for any given a1, . . . , aJ−1 ∈ (−∞,∞), yj = aj + yJ , j = 1, . . . , J − 1.

Note that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= ea1+yJ + ea2+yJ + · · ·+ eaJ−1+yJ + eyJ

= eyJ (ea1 + ea2 + · · ·+ eaJ−1 + 1)

Since πij = eyj , we get solutions of πij given in (S.19), and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . #

Case 2: Cumulative logit model

The cumulative logit model for ordinal responses (McCullagh, 1980; Christensen, 2015)

can be described in general as follows:

(S.20) log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1

Lemma S.11. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Model (S.20), let aj = hTj (xi)βj
+ hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist and are unique if and

only if −∞ < a1 < a2 < · · · < aJ−1 <∞. In this case,

(S.21) πij =


exp(a1)

1+exp(a1)
j = 1

exp(aj)

1+exp(aj)
− exp(aj−1)

1+exp(aj−1)
1 < j < J

1
1+exp(aJ−1)

j = J

Proof of Lemma S.11: Taking j = 1 in Model (S.20), then log (πi1/(1− πi1)) = a1
and πi1 = exp(a1)/[1 + exp(a1)]. Then 0 < πi1 < 1 if and only if −∞ < a1 < ∞. For

j = 2, · · · , J − 1,

πij =
exp(aj)

1 + exp(aj)
− exp(aj−1)

1 + exp(aj−1)
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which implies that πij > 0 if and only if aj > aj−1 . Therefore, πiJ = 1 − (πi1 + · · · +
πi,J−1) = 1− exp(aJ−1)/[1 + exp(aJ−1)] = 1/[1 + exp(aJ−1)], which indicates 0 < πiJ < 1

if and only if −∞ < aJ−1 <∞. Given πi1 + · · ·+ πiJ = 1, we have

−∞ < a1 < a2 < · · · < aJ−1 <∞⇔ πij ∈ (0, 1), j = 1, . . . , J

#

Corollary S.8. For the cumulative logit model with proportional odds

(S.22) log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= βj + hTc (xi)ζ , j = 1, . . . , J − 1

The design space has no restriction since −∞ < β1 < β2 < · · · < βJ−1 <∞ is part of the

model assumptions, which implies πij ∈ (0, 1), j = 1, . . . , J .

Case 3: Adjacent-categories logit model

The adjacent-categories logit model for ordinal responses (Liu and Agresti, 2005; Agresti,

2013) can be extended as follows:

(S.23) log

(
πij
πi,j+1

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1

Lemma S.12. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Model (S.23), let aj = hTj (xi)βj
+ hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if and only if

−∞ < aj <∞, j = 1, . . . , J − 1. In this case,

(S.24) πij =

{
exp(aJ−1+···+aj)

exp(aJ−1+···+a1)+exp(aJ−1+···+a2)+···+exp(aJ−1)+1
j = 1, . . . , J − 1

1
exp(aJ−1+···+a1)+exp(aJ−1+···+a2)+···+exp(aJ−1)+1

j = J

Proof of Lemma S.12: Let yj = log πij . Then 0 < πij < 1, j = 1, . . . , J if and only if

yj ∈ (−∞, 0). In this case, Model (S.23) implies aj = yj−yj+1 ∈ (−∞,∞), j = 1, . . . , J−1.

On the other hand, for any given a1, . . . , aJ−1 ∈ (−∞,∞), yj = (aJ−1 + · · · + aj) + yJ ,

j = 1, . . . , J − 1. Note that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= eyJ
(
eaJ−1+···+a1 + eaJ−1+···+a2 + · · ·+ eaJ−1 + 1

)
Since πij = eyj , we get solutions of πij given in (S.24), and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . #

Case 4: Continuation-ratio logit model

The continuation-ratio logit model for hierarchical responses (Agresti, 2013; Zocchi and

Atkinson, 1999) can be rewritten in general as follows:

(S.25) log

(
πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1
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Lemma S.13. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Model (S.25), let aj = hTj (xi)βj
+ hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if and only if

−∞ < aj <∞, j = 1, . . . , J − 1. In this case,

(S.26) πij =

{
eaj
∏j
s=1 (eas + 1)−1 j = 1, . . . , J − 1∏J−1

s=1 (eas + 1)−1 j = J

Proof of Lemma S.13: Let yj = log πij . Then 0 < πij < 1, j = 1, . . . , J if and only if

yj ∈ (−∞, 0). In this case, Model (S.25) implies aj = yj − log(eyj+1 + · · · eyJ ) ∈ (−∞,∞),

j = 1, . . . , J − 1.

On the other hand, for any given a1, . . . , aJ−1 ∈ (−∞,∞), it can be verified by induction

that

eyJ−1 = eyJ eaJ−1

eyJ−2 = eyJ eaJ−2 (eaJ−1 + 1)

eyj = eyJ eaj (eaj+1 + 1) · · · (eaJ−1 + 1) , j = J − 3, J − 4, · · · , 1

Therefore, it can be verified that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= eyJ (ea1 + 1) (ea2 + 1) · · · (eaJ−1 + 1)

Since πij = eyj , we get solutions of πij given in (S.26), and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . #

Theorem 5.1 is obtained as a summary of Lemmas S.10, S.11, S.12, and S.13. �

Proof of Corollary 5.1: We only need to verity the “only if” part. According to The-

orem 3.2, if f(w) > 0 for some w = (w1, . . . , wm)T = (n1, . . . , nm)T /n, then the corre-

sponding H∗ is of full row rank. Note that H∗ can be obtained from H after removing the

columns of H corresponding to ni = 0. Thus H is of full row rank too, which corresponds

to the uniform allocation. That is, f(wu) > 0.

In this case, any w = (w1, . . . , wm)T such that 0 < wi < 1, i = 1, . . . ,m leads to f(w) > 0

since it corresponds to the same H matrix. �

Proof of Theorem S.10: According to Theorem 4.2,

fij(z) =
∑

αi≥0,αj≥0,αi+αj≤p

coefficient · zαi(ni + nj − z)αj

is a polynomial with nonnegative coefficients, whose order depends on the largest possi-

ble αi + αj . Lemma S.3 implies that max{αi, αj} ≤ J − 1 for positive coefficients and

Corollary S.4 further implies that αi + αj ≤ p − (kmin − 2) = p − kmin + 2 for positive

coefficients. Therefore, fij(z) is at most an order-q polynomial of z. �

Proof of Theorem S.11: In this case, the model is essentially a generalized linear model

for binomial response with logit link. Theorem 4.2 says that the objective function f(w) =

|GTWG| is an order-p polynomial consisting of terms cα1,...,αmw
α1
1 · · ·wαm

m . According
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to Lemma S.3, cα1,...,αm 6= 0 only if αi ∈ {0, 1}, i = 1, . . . ,m. Therefore, in order to keep

f(w) > 0, we must have m ≥ p. In other words, a minimally supported design may contain

exactly m = p distinct design points or experimental settings. In this case, the objective

function f(w) ∝ w1 · · ·wm and the D-optimal allocation is w = (1/m, . . . , 1/m)T . �

Proof of Corollary S.7: According to Theorem 3.1, F = HUHT . In this case, there

exist m = p1 experimental settings such that rank(H) = p1(J − 1) = p. On the other

hand, the minimum number of experimental settings is at least max{p1, . . . , pJ−1} = p1
based on Corollary S.4. Therefore, the minimal number is m = p1. In this case, H is a

square matrix and

|F| = |H|2 · |U| ∝

(
m∏
i=1

wi

)J−1

according to Theorem S.4. Thus, the uniform allocation wu = (1/m, . . . , 1/m)T is D-

optimal in this case. Note that m = p1 < p1(J − 1) = p. �

Proof of Lemma S.4: We actually claim more detailed conclusions as follows:

(i) If c1 = c2 = c3, then the solution is w1 = w2 = w3 = 1/3.

(ii) If c1 = c2 < c3, then w1 = w2 > w3 > 0. Actually, w1 = w2 = (−2c1 + c3 + ∆1)/D1

and w3 = c3/D1, where ∆1 =
√

4c21 − c1c3 + c23 and D1 = −4c1 + 3c3 + 2∆1.

(iii) If c1 < c2 = c3, then w1 > w2 = w3 > 0. Actually, w1 = (−c1 + 2c3 + ∆2)/D2 and

w2 = w3 = 3c3/D2, where ∆2 =
√
c21 − c1c3 + 4c23 and D2 = −c1 + 8c3 + ∆2.

(iv) If c1 < c2 < c3, then w1 > w2 > w3 > 0. The procedure of obtaining analytic

solutions of w1, w2, w3 is as follows: (1) obtain y1 from (S.33); (2) obtain y2 from

(S.31); (3) w1 = y1/(y1 + y2 + 1), w2 = y2/(y1 + y2 + 1), w3 = 1/(y1 + y2 + 1).

First of all, we only need to consider the cases of 0 < wi < 1, i = 1, 2, 3 (otherwise,

f(w1, w2, w3) = 0). It can also be verified that 0 < c1 ≤ c2 ≤ c3 implies that w1 ≥ w2 ≥
w3 > 0 (otherwise, for example, if w1 < w2, one may replace w1, w2 both with (w1 +w2)/2

and strictly increase f). The same argument implies that if ci = cj , then wi = wj in the

solution.

According to Theorem 5.10 in Yang et al. (2017), (w1, w2, w3)T maximizes f(w1, w2, w3)

if and only if
∂f

∂w1
=

∂f

∂w2
=

∂f

∂w3

which is equivalent to ∂f/∂w1 = ∂f/∂w3 and ∂f/∂w2 = ∂f/∂w3 and thus equivalent to

(S.27) c3w1w2(w1 − 2w3) + 2c2w1w3(w1 − w3) = c1w2w3(−2w1 + w3)

(S.28) c3w1w2(w2 − 2w3) + 2c1w2w3(w2 − w3) = c2w1w3(−2w2 + w3)

Following Yang et al. (2016b, Section 5.2), we denote y1 = w1/w3 > 0 and y2 = w2/w3 > 0.

Actually, w1 ≥ w2 ≥ w3 > 0 implies y1 ≥ y2 ≥ 1. Since w1 + w2 + w3 = 1, it implies

w3 = 1/(y1 + y2 + 1), w1 = y1/(y1 + y2 + 1), and w2 = y2/(y1 + y2 + 1). Then (S.27) and

(S.28) are equivalent to

c3y1y2(y1 − 2) + 2c2y1(y1 − 1) = c1y2(−2y1 + 1)(S.29)

c3y1y2(y2 − 2) + 2c1y2(y2 − 1) = c2y1(−2y2 + 1)(S.30)
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From (S.29) we get y2[c3y
2
1−2(c3−c1)y1−c1] = 2c2y1(1−y1). If y1 = 1, then we must have

y2 = 1 and c3 − 2(c3 − c1)− c1 = 0, which implies w1 = w2 = w3 = 1/3 and c1 = c2 = c3.

Actually, we can also verify that c1 = c3 implies y1 = 1.

Now we assume y1 > 1, which implies c1 < c3. Then

(S.31) y2 =
2c2(1− y1)y1

c3y21 − 2(c3 − c1)y1 − c1

After plugging (S.31) into (S.30), we get

(S.32) a0 + a1y1 + a2y
2
1 + a3y

3
1 + y41 = 0

where a0 = c21/c
2
3 > 0, a1 = 4c1(−2c1 + c2 + 2c3)/(3c23) > 0, a2 = 2(2c21 − 2c1c2 − 7c1c3 −

2c2c3 + 2c23)/(3c23), and a3 = 4(2c1 + c2 − 2c3)/(3c3).

Denote h(y1) = a0+a1y1+a2y
2
1+a3y

3
1+y41 . Note that h(∞) =∞, h(−c1/c3) = −c21(c21+

8c1c2 − 2c1c3 + 8c2c3 + c23)/(3c43) < 0, h(0) = c21/c
2
3 > 0, h(1) = −(c1 − c3)2/(3c23) < 0,

and h(∞) = ∞. Then h(y1) = 0 yields four real roots in (∞,−c1/c3), (−c1/c3, 0), (0, 1),

and (1,∞), respectively. That is, there is one and only one y1 ∈ (1,∞).

According to Tong et al. (2014, equation (12)),

(S.33) y1 = −a3
4

+

√
A1

2
+

√
C1

2
,

where

A1 = −2a2
3

+
a23
4

+
G1

3× 21/3
,

C1 = −4a2
3

+
a23
2
− G1

3× 21/3
+
−8a1 + 4a2a3 − a33

4
√
A1

,

G1 =

(
F1 −

√
F 2
1 − 4E3

1

)1/3

+

(
F1 +

√
F 2
1 − 4E3

1

)1/3

,

E1 = 12a0 + a22 − 3a1a3 ,

F1 = 27a21 − 72a0a2 + 2a32 − 9a1a2a3 + 27a0a
2
3 .

The calculation of G1, A1, C1, and y1 are operations among complex numbers, while y1
at the end would be a real number.

The procedure of obtaining analytic solutions of w1, w2, w3 would be, (1) obtain y1
from (S.33); (2) obtain y2 from (S.31); (3) w1 = y1/(y1 + y2 + 1), w2 = y2/(y1 + y2 + 1),

w3 = 1/(y1 + y2 + 1).

Now we discuss some special cases.

(i) If c1 = c2 < c3, then w1 = w2 and thus y1 = y2. Both (S.29) and (S.30) yield

y1 = c−1
3 (−2c1 + c3 +

√
4c21 − c1c3 + c23), which implies

w1 = w2 =
−2c1 + c3 + ∆1

−4c1 + 3c3 + 2∆1
, w3 =

c3
−4c1 + 3c3 + 2∆1

where ∆1 =
√

4c21 − c1c3 + c23. Note that w1 > w3 since ∆1 > 2c1.
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(ii) If c1 < c2 = c3, then w2 = w3 and thus y2 = 1. From (S.29) we get y1 = 3c−1
3 (−c1+

2c3 +
√
c21 − c1c3 + 4c23), which implies

w1 =
−c1 + 2c3 + ∆2

−c1 + 8c3 + ∆2
, w2 = w3 =

3c3
−c1 + 8c3 + ∆2

where ∆2 =
√
c21 − c1c3 + 4c23. Note that w1 > w2 since ∆2 > c1 + c3.

(iii) If c1 < c2 < c3, then y1, y2 and thus w1, w2, w3 can be obtained analytically. We

have proven y1 ≥ y2 ≥ 1. Using (S.29) and (S.30), it can be verified that y1 6= y2
unless c1 = c2; and y2 6= 1 unless c2 = c3. That is, y1 > y2 > 1 and w1 > w2 > w3.

�

Proof of Theorem A.2: (i) is straightforward. (ii) follows from the facts in the proof of

Lemma S.5, ciJ ≡ πi; 1T cij = 0, j = 1, . . . , J − 1; and 1T ciJ = 1. (iii) and (iv) can be

verified using the formulae of cij in Section S.3. �
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