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S.1. List of notations.

Ok
a;

B,

A vector of k zeros

h?(x)ﬁj +hI(x)¢, j=1,...,J -1, given x = (x1,...,24)7
Coefficients in representing fi(z), j =0,...,J —1

J x J constant matrix used for deriving the coefficients of f;(z),

(St— l)st
J x (2J — 1) constant matrix, same for all the four logit models
Vector used for deriving coefficients of fi(z), (c1,...,cs-1)T

J x 1 vectors such that (CTDi_lL)*1 = (ci1,-.-,Cit)

G+ D27/ H+1) =37 Hi(0), =1, T =1

Coefficient of w" ---w%™ in the determinant of GTWG

Total number of design factors

ds = (fi;(s) — f;(0))/s, s =1,...,q, for coefficients in f;;

diag(Lr;)

m X 1 vector with the ith coordinate 1 and all others 0

Fisher information matrix of the design, F = """ n;F;

f(w) = f(wi,...,wn) = |GTWG| which is proportional to |F|; or

fm) = flna,...onm) =307, niFi| = [F|

Fisher information matrix at the ith design point

fi(2) = Flwn (L= 2)/(1 = wi), ..., wima (1 — 2)/(1 = wy), 2, wisr (1 —

2)/(1 —wi),...,wm(1—2)/(1—w;)) with0<z< 1

fz](z) = f(nl, ey M—1, 2, N1y -0y M —1, My +nj —Z, N1y ey nm)

with 2 =0,1,...,n; + n;

Matrix component for Fisher information matrix such that F =

nGTWG, mJ x p

go = flJ(O) and (917 s agQ)T = Bq_l(dla R dQ)T

Matrix component for Fisher information matrix such that F

HUHT, consisting of Hy,...,H;_1 and possibly Hc, p x m(J —

Matrix for the common component of J—1 categories, (hc(x1), .. .,

Pe XM

Vector of p. predictors associated with the p. parameters ¢ = ((1,
.., ¢pe)T that are common for all of the response categories as

known functions of the ith experimental setting, (h1(x;), - - . , hp, (x:))T

Matrix for the jth category only, (h;(x1),...,h;(Xm)), pj X m

Vector of p; predictors associated with the p; parameters 8; =
(B, - - .,ijj)T for the jth response category as known functions

of the ith experimental setting, (hj1(x:), ..., hjp; (x:)*

2

o(Xm))s
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The identity matrix of order k

Total number of response categories

Smallest possible #{i | a; > 0} such that ca,,....ap, >0

Constant (2J — 1) x J matrix, different for the four logit models
Total number of distinct experimental settings or design points
Column space of matrix H, that is, the linear subspace spanned by
the columns of H

Total number of experimental units, n =ni + --- 4+ nm,

Allocation of experimental units, (n1,...,nm)", n; > 0, D ni=mn
Number of replicates at the ith experimental setting

Total number of parameters

Number of common parameters for J — 1 categories

dim (N2 M(H]))

Number of parameters for the jth category only

min{2J — 2,p — kmin + 2,p}, upper bound of order of f;;(z)
Collection of all feasible approximate allocations, {(ws, ..., wm)T €
R™|w; >0,i=1,...,m;> - w1 =1}

Collection of approximate allocations, {w € S| f(w) > 0}

Block matrix (Ust)s,¢=1,...,0-1, m(J — 1) x m(J — 1)
diag{niust(m1),...,nmust(Tm)}, m x m

cldiag(mw;) " tey for s,t=1,...,J — 1

Real-valued allocation of experimental units, (w1, ... ,wm)T7 w; > 0,
dwi=1

diag{widiag(m1) 7", ..., wmdiag(mm) "}, mJ x mJ

Proportion of experimental units assigned to the ith experimental
setting, n;/n

Uniform allocation, (1/m,...,1/m)T

Design space, the collection of all design points yielding strictly pos-
itive categorical probabilities of response; or a predetermined set of
design points considered

1

The ith distinct experimental setting or design point, (i1, ..., Zid)”
Model matrix at the ith design point, J X p, the last row is all 0’s
Vector of parameters for the jth response category only, (851, - ., Bjp; I

The cumulative probability from the 1st to jth categories at the ith
experimental setting, vi; = mi1 + -+ 4+ ™y
Vector of common parameters for all of the response categories,
(Cla Tt CPc)T
Vector of linear predictors at the ith experimental setting, n, =
(7]7;1, ... ,mj)T = X,;0 with 7 =0
Vector of all parameters, p x 1
Parameter space, the collection of all feasible parameter vectors
Vector of response category probabilities at the ith experimental
setting. m; = (mi1,. .., 7T7;J)T, T+ +my=1

{1, yip) |1 <t < <dp <md;#{l: (k—1)J <4 <
kJ} =ap,k=1,...,m}
Probability that the response falls into the jth category at the ith
experimental setting
Bayesian D-optimal criterion, ¢(p) = E(log |F|)
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S.2. Formulae of matrix differentiation. According to Seber (2008, Chap-

ter 17)),

ay _ ayi

oxT ox; ) ;i
0Ax

oxT A

Jz 0Oz . dy
oxT — 9yT OxT
dlogy ... -1 Oy
axT - [dlag(y)] 8XT

where x = (2:)i, ¥ = (¥i)i, z = (2:)i, and thus logy = (logy;); are vectors, and A is a

constant matrix.

S.3. Explicit forms of (CTDi_lL)_1 for all the four logit models.
There are the four different kinds of multinomial logistic models in the literature: baseline-
category logit model for nominal responses, cumulative logit model for ordinal responses,
adjacent-categories logit model for ordinal responses, and continuation-ratio logit model for
hierarchical responses. According to Theorem 2.1, (CTD;'L)™! is a key matrix that we

must calculate.
Recall that m;1 +---+ms=1,7=1,...,m. Then

L 0o .- 0 _ 1
i1 Ty
0 1 . . 1
T2 : T
Tr—1
(C Dz L)baseline = .. .
. 0 :
1 1
0 0 _
i, J—1 i J
11 1 1
JxJ
S 1
Yil 1—7vi1 1—;1 T—mi1
L 1 1 __1
Vi2 Yi2 1="i2 1=7i2
T 71 . .
(C Dz L)cumulative = ..
L 1 1 _ 1
Vi, J—1 Vi, J—1 Vi, J—1 T—7i,7-1
JIxJ
1 _ 1 _ 1 _ 1
il 1—7;1 l—iy“ T—i1
Ti2 1=7i2 T 1740
T 71 . .
(C Dz L)continuation = .. :
1 1
0 0 _
T, J—1 1—v; 0-1
1 1 1 1
JxJ
11 0 0
il T§2
0 1 _ 1
Ti2 i3
Tr—1
(C Dz L)adjacent = : . - .
1 1
0 0 : -
Ti,J—1 TiJ
1 1 1 1

JIxJ
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where ;5 = 71 + - - - + 75 is the cumulative categorical probability, j = 1,...,J — 1. The
corresponding inverse matrices are

Toy—17\—1
(C Dz L)baseline
2
—Ti + T —Ti1Ti2 — 1T, J—1 i1
2
— i1 T2 —Tip + T2 - — 2T, J—1 32
2
—Mil T, J—1  —Ti2Ti,j—1 -+  —T g1 +Ti,g-1 T Jj—1
—Ti1TiJ —Ti2TiJ =T, J—1TiJ TiJ IxJ
A
= (Cil Ci2 T Ci‘l)baseline

where (€ij)pasetine = mij(€; — m:), j=1,...,J — 1, (€iJ)baseline = Ti, and e; here is the
J x 1 vector with the jth coordinate 1 and all others 0. Recall that m; = (71, ... ,mJ)T

Tr—1 -1
(C D'L L)cumulative

Yir (1 — 1) 0 0 il
—va(l=va)  yie(l—vi2) - : Ti2
- 0 —vi2(1 = yi2) - 0
: . Yi,g—1(1 —vi,s—1) i, -1
0 0 —vig-1(1—"ig-1) g I
A
= (Cil Ci2 o ci‘])cumulative

where (C;5)cumulative = Vij (1—7:5)(ej—e;4+1) with e; defined as above; and (€;5)cumulative =

™5 .

TH—1 —1
(C Dz L)continuation
mi1 (1 — i) 0 0 i1
mi2(1—7i2) . :
— 1T . : ™
117042 T—7i1 12
- . . . 0
T2, g1 mi,g—1(1=vi,g—1)
T _Mi2Ti,Jg—1 i J 1027, J=1) o
17, J—1 T—vi1 T—i7_2 i,J—1
T2 T, J—1TiJ
i T _Ti2T4J .. _ T, J-1TT T
i1t 1—vi1 1=7vi,7-2 LA AN
= (c; C;i ey )
( il i2 i continuation
h . ) o — (1 — . —1 . T
where (Czl)conmnuatwn = 7711( Yily, —Ti2, .- -, 7TZJ) s

Tij

ﬁ(o7 s 0, =g, =T 1, ey 77Ti‘])T with “1 —~;;” being the

(Cij ) continuation —
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jth coordinate, j = 2,...,J — 1, and (CiJs)continuation = i -
Tyy—1l7\—1
(C Dz L)adjacent
(1 —v)m1 (1 —vy2)mar -+ (1 —7i,g—1)ms1 i1
—Yi1Ti2 (1 —vi2)miz -+ (1 —vi,5-1)mi2 Ti2
—vVi1Ti, -1 —YieTi,g—1 -+ (L= ,0-1)T,0-1  Ti,0-1
—Yi1Tig —Yi2Tig e —Yi,J 1T s ) 5
= (C“ Ci2 o Ci‘])adjacent
where (¢ij)adjacent = (1=ij) ity -+, (1= Tigy =VigTi 15+ oy —Yigmig) , § = 1,00, J =

1, and (Ci])adjacent = T; .

For certain applications, we need to know |CTD;'L| (see, for example, Lemma S.9).
Since adding a multiple of one row (column) to another row (column) does not change the
determinant (see, for example, 4.28(f) in Seber (2008, page 58)), we may (1) do row oper-
ations on (CTDi_lL)baselme and change it into an upper triangular matrix with diagonal
entries 7;,", ..., 7' (2) do row operations on (C*D; 'L)_! . and change it into an
upper triangular matrix with diagonal entries v;1(1 — 1), ..., Vi,g—1(1 —73,7-1),1; (3) do
column operations on (CTDi_lL)adjacent and change it into a lower triangular matrix with

diagonal entries 71;11, .. ,77{,1; and (4) do column operations on (CTDflL)commuation and
change it into a lower triangular matrix with diagonal entries 7r;117 e ,7T;I1. Therefore,
1., =t for baseline-categor
j=1"4j gory,

(S.1) |CTD1-_1L\ _ adjacent—.categ.ories, . .
and continuation-ratio logit models

H;.’;ll fyl.;l(l — ;)" for cumulative logit models
As a direct conclusion, |CTD; 'L| > 0 as long as m;; >0 forall j = 1,...,J.

S.4. Positive definiteness of U. In order to determine the positive definite-
ness of F, we first investigate the m(J — 1) x m(J — 1) matrix U defined for Theorem 3.1,
which is symmetric since ust(7;) = ues(7;) and thus Ug, = Uys.

THEOREM S.3. Ifn; >0 foralli=1,...,m, then U is positive definite.

TueoREM S4. [U|= ([T, n:)” " T, (IT2, ™) ' CTD; 'L ~2

The proofs of Theorems S.3 and S.4 are relegated to Section S.15. Note that Theo-
rem S.3 is not a corollary of Theorem S.4 since nonsingularity itself does not mean positive
definiteness. Theorem S.4 implies that U is singular if n; = 0 for some ¢ = 1,...,m. Note
that F' can still be positive definite even if U is singular, as long as H is of full row rank.
In general, given an allocation (n1,...,nm) of the n experimental units with n; > 0 and
> ni = n, if we denote k = #{i : n; > 0} and U}, = diag{nius(m;) : n; > 0}, then
U* = (Uz)sy=1,...,0—1 is a k(J — 1) x k(J — 1) matrix. After removing all columns of H
associated with n; = 0, we denote the leftover as H*, which is a p x k(J — 1) matrix. It
can be verified that
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LEmMA S.1. HUHT = H*U* (H*)”.
LemMA S.2. [U*| = ([T, 5070)” " Tliim, s0(ITj=; ™) ' CTD; L2
Since U™ is simply U if all n; > 0, we have the following corollary of Theorem S.3:
COROLLARY S.1. U™ is positive definite.

S.5. Row rank of H matrix. According to Theorem 3.2, the positive def-
initeness of the Fisher information matrix F depends on the row rank of H or H*. To
simplify the notations, we assume n; > 0,7 = 1,...,m throughout this section. In this
case, H= H" and U = U*. We also assume that

(S.2) m>p;j, j=1,...,J—1 and m > p. if applicable

since H is of full row rank only if rank(H;) =p,, j =1,...,J — 1 and rank(H.) = p. if
applicable.

Since H takes different forms for ppo, npo, and po models, we investigate its row rank
case by case.

THEOREM S.5. Consider the p x m(J — 1) matriz H in Theorem 3.1.

(1) For npo models, rank(H) = rank(H1) + - - - + rank(Hj-1).

(2) For po models, rank(H) = rank((1,HY)) + J — 2, where 1 is a vector of all 1’s.

(3) For ppo models, rank(H) = rank(Hy)+- - -+rank(H _1)+rank(H.)—dim[MHI)N
(ﬁ;-’:_f./\/l(HjT))], where M(HT) stands for the column space of HZ or the row space
of He.

The proof of Theorem S.5 is relegated to Section S.15. In order to apply it to ppo models,
we need an efficient way to calculate dim[M(HZ )N (ﬂ]J:_f/\/l(H]T))] We provide a formula
for calculating dim(; M(HT)) for general matrices, Theorem A.1 in the Appendix, and
relegated its proof to Section S.15.

Recall that py = dzm(ﬂj;llM(HJT)) As a direct conclusion of Theorem S.5, we have

COROLLARY S.2. For ppo models, |F| > 0 only if m > pc + pu.

S.6. Results on the coefficient cq,.....a,, for simplifying |F

.

LEMMA S.3. If maxi<i<m i > J, then |Gli,...,i¢]| = 0 for any (i1,..., ip) €
Alai,...,am). Therefore, cay,...,a,, = 0 in this case.

THEOREM S.6. The coefficient ca,,...,a,, s defined in (9) is nonzero only if the re-
stricted Fisher information matric Fres = Y F; is positive definite, where F; is
defined as in (4).

i:a; >0

The proofs for Lemma S.3 and Theorem S.6 are relegated to Section S.15. Combin-
ing Theorems 3.2 and S.6, Theorems 3.3 and S.6, respectively, we obtain the following
corollaries:
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COROLLARY S.3. The coefficient ca,...,a,, % nonzero only if Hy, .. is of full row
rank p, where Hq, ..., is the submatriz of H after removing all columns associated with
X; for which a; = 0.

Qm

Am

COROLLARY S.4. The coefficient cay,....am = 0 if #{i | as > 0} < kmin — 1, where
kmin = max{p1,...,ps-1,pc +pu}. If Hi = - =Hj_1, kmin = pc + p1.

We provide an example (Example S.6) in Section S.14 to illustrate that ca, could

be nonzero for ppo models with #{i | a; > 0} = pc + pu .

»»»»» Qm

S.7. Expressions for proportional odds (po) models. As special
cases of ppo, po models are degenerate cases of ppo models with hJT (x;) replaced by 1,
j=1,...,J—1,and thus p1 =--- =pyj_1 = 1.

In Section 2, the four logit models in the literature with proportional odds are:

log (@)
TiJ

log( mi1 + - 4 Ty )
Tij+1+ -+ g

log (77%' )
i, j+1

log(—™i
& Tij+1 + e+ Tig

B + th(xi)C , baseline-category

B; +hl (x;)¢ , cumulative

B + hz(xi)c , adjacent-categories

B; + h! (x:)¢ , continuation-ratio

where i = 1,...,m, j =1,...,J — 1, B; is an unknown parameter for the jth response
category, hZ (-) = (h1(-),...,hp.(+)) are known functions to determine the p. predictors
associated with the p. unknown parameters ¢ = ((i, ..., §pC)T that are common for all
categories.

In equation (1), the corresponding model matrix is

1 0 -+ 0 h¥(x)
0 1 . :
(S.3) X; = : . C 0 W)
0 -~ 0 1 hl(x)
0 0 o 0" /),
and the parameter vector @ = (81, B2, ,B-1,¢)7 consists of p = J — 1 + p. unknown

parameters in total. The previous 3, reduces to 3; serving as the cut-off point in this case.
In Section 3, the p x m(J — 1) matrix

1T

(S.4) H-—

where He = (he(x1),-++ , he(xm)).
As a special case of Theorem 3.3,
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THEOREM S.7. Consider the multinomial logistic model (1) with m distinct experi-
mental settings x; with n; > 0 experimental units, © = 1,...,m. For proportional odds
models, the Fisher information matriz F is positive definite if and only if m > p. +1 and
the extended matriz (1, HY) is of full rank p. + 1.

In Section 4, for proportional odds models, the m.J x p matrix

C11 C1,J-1 Z;j 11 Cij - hZ(Xl)
(S.5) Go| e e X e hi(xe)
Cmi  Cmuo1 Doy €my-hl(xm)

As a special case of Corollary S.4,

COROLLARY S.5. The coefficient cay,....am = 0 if #{i | as > 0} < kmin — 1, where
kmin = pe + 1 for po models.

As special cases of ppo models, po models imply p1 = -+ = pj_1 = pg = 1, and
H; = --- = Hjy_; implies p1 = --- = pyj—1 = pmg. That is, knin’s are consistent across
different odds models.

S.8. Expressions for non-proportional odds (npo) models. As spe-
cial cases of ppo, hT (x;) = 0 leads to npo models. Therefore, p. = 0.
In Section 2, the four logit models in the literature with non-proportional odds are:

log <@)
TiJ
e e e ﬂ'zg
log
Tij4+1 + -+ Tig

h?(xi)ﬂj , baseline-category

= th(Xi),@j , cumulative

log( ) = hJT(xi)ﬂj , adjacent-categories
Ti,j+1

lo = hT(x;)8. , continuation-ratio
g(ﬂ'zj+l+ s+ T J ( Z)ﬂj
where i = 1,...,m, j = 1,...,J — 1, h](-) = (hj1(+)s- -5 hjp;(+)) are known func-
tions to determine the p; predictors associated with the p; unknown parameters 3; =
(Bits- -, ijj)T for the jth response category.

In equation (1), the corresponding model matrix is

hf(x;) o7 ... o”
OT hg(Xl)
o” e 0" h7_(x)
ol . ... o’
JXp
and the parameter vector reduces to 8 = (8,,8,, --,8,_;)7, which consists of p =

p1 + -+ -+ ps—1 unknown parameters in total. Note that we always use p to represent the
total number of parameters.
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In Section 3, the p x m(J — 1) matrix

H,
(S.7) H=
H;

where H; = (h;j(x1), -+ ,hj(xm)), j=1,...,J — 1.
As a special case of Theorem 3.3, we have

THEOREM S.8. Consider the multinomial logistic model (1) with m distinct experi-
mental settings x; with n; > 0 experimental units, ¢ = 1,...,m. For non-proportional
odds (npo) models, the Fisher information matriz F is positive definite if and only if
m > max{p1,...,psj-1} and x;’s keep H; of full row rank p;, j=1,...,J — 1.

In Section 4, for non-proportional odds models, the mJ x p matrix

cith] (x1) -+ e1,y-1hT_i(x1)
8) G- cathf (x2) -+ c2,y-1hi_i(x2)
cmihf (xm) - cms-1h%_;(xm)

As a special case of Corollary S.4, we have

COROLLARY S.6. The coefficient cay,....am = 0 if #{i | & > 0} < kmin — 1, where
kmin = max{p1,...,ps—1} for npo models.

As special cases of ppo models, npo models imply p. = 0 and pg < min{p1,...,psj-1}.
That is, kmin’s are consistent across different odds models.

S.9. Model selection. See Tables 4 and 5.

TABLE 4
Model Comparison for Trauma Clinical Trial Data

Cumulative Cumulative Continuation Continuation Adjacent Adjacent

po npo po npo po npo
AIC 107.75 99.41 108.98 101.36 107.67 101.54
BIC 104.68 94.51 105.91 96.45 104.60 96.63

S.10. Lift-one and exchange algorithms. Following Yang et al. (2017,
Section 3), we define

l—w; 77777 1—wy 777 1—wy T 1—wy

fi(z):f(wl(l—z) wi-il=2)  wiri(l—-2) wm(l—z))

with0 < z < land w = (w1, ..., wm)? € Sy. Parallel to Theorem 6 in Yang et al. (2017),
we obtain the following result by Theorem 4.2:
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TABLE 5
Model Comparison for Emergence of House Flies Data

Cumulative Cumulative Continuation Continuation Adjacent Adjacent

po npo po npo po npo

AIC 195.87 121.17 116.40 114.42 209.64 194.47

BIC 195.71 120.96 116.24 114.20 209.47 194.25
THEOREM S.9. Given an approzimate allocation w = (wi,...,wn)T € Sy and an

ie{l,...,m}, for0<z<1,

(89) fz(Z) — (1 _ Z);DwaLl i: bjzj(l . Z)Jilij
(S.10) filz) =1 =2 Zb (G —p2)2" T =2)" 71 = pbo(1—2)"!

where by = fi(O), (bjfl,. . .7b1)T = B;ilc, B, = (Stil)s t=1,...,J—1 15 @ (J l)X(J—l)
constant matriz, and ¢ = (c1,...,cy—1)T withc; = (F+1)P77 7P £,(1/(54+1)) =57~ £:(0),
j=1,...,J—1.

Theorem S.9 shows that f;(z) is an order-p polynomial of z. Since f;(1) = 0, the
solution to maximization of f;(z),0 < z < 1 can occur only at z =0 or 0 < z < 1 such
that f;(z) = 0, that is,

J—1

(S.11) Z]bjz (1—2)"77 1—pr]z (1-2)77"" 0<z<1.
7=0

This is an order-(J — 1) polynomial equation in z. For J < 5, (S.11) is a polynomial
equation of order-4 or less, which can be solved analytically. For J > 6, a quasi-Newton
algorithm can be applied for searching numerical solutions.

Lift-one algorithm for D-optimal allocation w = (w1, ..., W)’ :
1° Start with an arbitrary allocation wo = (wl,...,wm)T satisfying 0 < w; < 1,
t=1,...,m and compute f (wpo).

2° Set up a random order of i going through {1,2,...,m}.

3° For each i, determine f;(z) according to Theorem S.9. In this step, J determinants
£i(0), fi(1/2), fi(1/3), ..., fi(1/J) are calculated.

4° Use quasi-Newton algorithm to find 2z, maximizing f;(z) with 0 < z < 1. If f;(z.
£i(0), let z. = 0. Define w' = (wi(1 — 2.)/(1 —wl) L Wi 1(1 —z)/(
Wiy 2o, Wit 1 (1= 24) /(1 =w;), . . ., wm (1—24)/(1—w;))T . Note that f(w* )= fi(z

5° Replace wo with Wff), and f (wo) with f(wff)).

6° Repeat 2° ~ 5° until convergence, that is, f(wo) = f(wii)) for each 1.

) <
1 -
<)
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Following Yang et al. (2016, 2017), we define
fii(2) = fna, oo i1, 2, M1y ooy M—1, MG T — 2, M1y ey Tm)

with 2 =0,1,...,n;4+n; given 1 <i < j<mand n= (n1,...,nn,)7. As a conclusion of
Theorem 4.2, Lemma S.3 and Corollary S.4, we obtain the following result:

THEOREM S.10.  Suppose n = (ni1,...,nm)" satisfies f(n) > 0 and n; +n; > q for
giwen 1 <i < j <m, where ¢ = min{2J — 2,p — kmin + 2,p}. Then

q

(S.12) fij(z):ngzs, z=0,1,...,n; +n;
s5=0
where go = fi;(0), and g1,...,gq can be obtained using (g1,...,94)" =By (d1, ..., dg)"

with By = (8" Hs,t=1,....q as a q¢ X g constant matriz and ds = (fi;(s) — fi;(0))/s.

Ezxchange algorithm for D-optimal allocation (ni,...,nm)" givenn > 0:

1° Start with an initial allocation n = (n,...,n.,)7 such that f(n) > 0.

2° Set up a random order of (i,j) going through all pairs {(1,2), (1,3), ..., (1,m),
(2,3), ...,(m—=1,m)}.

3° For each (i,4), let ¢ = n; +n; . If ¢ = 0, let nj; = n. Otherwise, there are two
cases. Case one: 0 < ¢ < g, we calculate f;;(z) for z = 0,1,...,cdirectly and find z*
which maximizes f;;(z). Case two: ¢ > ¢, we first calculate f;;(z) for 2 =0,1,...,¢;
secondly determine go, g1, - .., gq in (S.12) according to Theorem S.10; thirdly cal-
culate f;;(z) for z = g+1, ..., cbased on (S.12); fourthly find z* maximizing f;;(z)
for z =0,...,c. For both cases, we define

* * * T
n;; 7(n1,...,ni_1,z sMi41yeoyNj—1,C— 2 ,nj+1,...,nm)

Note that f(nj;) = fi;(z*) > f(n) > 0. If f(nj;) > f(n), replace n with nj; , and

f(n) with f(nj;).
4° Repeat 2° ~ 3° until convergence, that is, f(nj;) = f(n) in step 3° for all (4, j).

S.11. Formulae for calculating m;;’s from X;’s. Following the nota-
tions in model (1), n; = X;0 = CT log(Lm;). The formulae towards calculating 7;;’s are
listed as follows:

(1) Baseline-category logit model

1 —1 1 0
1 -1 1 0
log(m;) = -log -exp(n;)
1 -1 1 0
-1 1 1 1 1

IxJ IxJ
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(2) Adjacent-categories logit model

1 -1
1 -1
log(mi) = :
1 -1
1 5
1 0 1 1 1 0
1 0 1 1 0
log - exp X
1 0 1
11 11 JIxJ 1 JIxJ
(3) Continuation-ratio logit model
1
1 1
log(mi) = m, -
11 - 1
11 -~ 1 1 Jns
1 0 0 1
0 1 0 1
log -exp(1;)
0 0 1 1
0 0 0 1 Jns
(4) Cumulative logit model
1
11 1 -1
) 1 —1
1 1 1
0 --- 0 0 --- -1
0 O 0 1 oy Ix2(J—1)
1 0
1 0
log | | 1 ~exp(n;)
1 1

2(J—1)xJ

Note that X;0 in the above models could be po, npo, or ppo.



D-OPTIMAL DESIGNS FOR MULTINOMIAL LOGISTIC MODELS S13

S.12. Reparametrization and D-optimality. In general, let 8 = (61,

.., 0,)T be one set of parameters and 9 = (Y1, ..., ¥,)7 be another set of parameters,

such that, 6; = hy(9),1=1,--- ,p; the map 6 = () = (h1(9), ..., hp(8))T is one-to-one;
h’s are differentiable; and the p X p Jacobian matrix J = (h;(9)/99,)i; is nonsingular.

Consider a design £ = {(xs,w;),i = 1,...,m} with the distinct experimental settings
x;’s and the corresponding proportions w; € [0,1]. According to Schervish (1995, page
115), the Fisher information matrix F¢(19) at ¥ and the Fisher information matrix F¢(0)
at 0 = 0(9) satisfy Fe(9) = JTF:(8(89))J. Then |[Fe(9)] = |[J|> - |[Fe(0())|, where J
contains no design points but parameters. A locally D-optimal design maximizing |F¢(9)|
also maximizes |F¢(0(49))|. That is, it is mathematically equivalent to find D-optimal
designs for parameters 1 or 6.

In terms of Bayesian D-optimal criterion, if a prior distribution of 9 is available, it
induces a prior distribution of @ since 8 = 6(9) is one-to-one. Then Ey log |F¢(9)| =
Elog|J"Fe(0(9))J| = Eplog|J|® + Eglog|Fe(0(9))| = Eglog|I|> + Eglog|Fe¢(0)].
Therefore, a Bayesian D-optimal design that maximizes Eglog|F¢(0)| also maximizes
E,g log ‘Fg(’ﬁ)‘

EXAMPLE S.1. Perevozskaya et al. (2003) considered the po model:

75 (@) T — aj ,
1 1 = =2,...
(5.13) %8 T ) 5 i=2,...,J

where 7;(z) = P(Y > j|z). Let us reparametrize this model as

J() >
S.14 log ———— = a; + Bz =2,...,J

Let 8 = (a2, a3, 8)" be the parameters in (S.13), and 9 = (a4, o, )T be the parameters
in (S.14). Then 8 =1/8", a2 = —a4 /B, a5 = —ai/B’, and the Jacobian matrix

% 0 g
=0 -F s
0 0 —5»

Based on Theorem 2.1, the Fisher information I;(0) at x; is

2
TilTi2,3Mil,2 Ti1T41,27i2,37i3 . X .
o - Tio T31741,2T42,3%4
T31741,2742,37T43 7r"1,27ri2,37ri3
s B Mi3Mi1,2Mi2,3%4
’ 2 2 2 2
T§17i1,2Ti2,3%4 Ti3Til,2Mi2,3%:  (MinTia,3 + Ti2(We1 — mi3)* + Wiy 2me3) X

where 7, = mi; + mix . It can be verified that I;(9) = J71;(0)J equals to the corre-
sponding one given by Perevozskaya et al. (2003). For any given design £ = {(xs, w;),i =
1,...,m} with proportions w; € [0, 1], the Fisher information matrix I (9) = > 1", wil;(9)
= JT1:(0)J. Then |I¢(®)| = |J|*-|I¢(8)| and the D-optimal design maximizing |I¢(8)| also
maximizes |I¢(¢)|. That is, the D-optimal designs for Models (S.13) and (S.14) are the
same. g
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S.13. More discussion on D-optimality of uniform designs.

THEOREM S.11. Consider Multinomial logit model (1) with only two Tesponse cate-
gories (J =2). In this case, the minimum number of support points is m = p. The objec-
tive function f(w) o< w1 - - wm and the D-optimal allocation among minimally supported
designs is w = (1/m,...,1/m)7.

It can be verified that with J = 2 all of the four logit models are equivalent to the usual
logistic model for binary response. In this case, po, npo, or ppo are essentially the same.
Theorem S.11 confirms the corresponding results for binary responses in the literature (see,
for example, Yang and Mandal (2015)). We provide an independent proof in Section S.15.

Besides the cases with J = 2, for certain npo models with J > 3, uniform allocations
could still be D-optimal among minimally supported designs if p1 = --- = pj_1.

COROLLARY S.7.  Consider multinomial logit models (1) with npo assumption. Suppose
p1 = --- = pj—1 and there exist p1 distinct experimental settings such that rank(Hl) =
- =rank(Hjy_1) = p1. Then the minimal number of experimental settings is m = p1 and
the uniform allocation is D-optimal among minimally supported designs.

According to Corollary S.7, for “regular” mpo models (that is, p1 = -+ = pj_1),
uniform allocations are still D-optimal among minimally supported designs even with
J > 3. However, the following lemma and example further represent that, if the condition
p1 = --- = py_1 is violated, uniform allocations are not D-optimal in general even for npo
models.

LEMMA S4. Given 0 < ¢1 < ¢2 < c3, we consider the mazimization problem f(w1,wa,
w3) = wiwaws(crwaws + cowiws + cawiws ) with respect to 0 < w; < 1 and w1 + w2 +ws =
1. Then the solution is w1 = we = w3 = 1/3 if and only if c1 = c2 = c3.

The proof of Lemma S.4 is relegated to Section S.15, where analytical solutions are
provided for (w1, w2, ws) for general values of ¢1, c2 and cs.

ExAMPLE S.2. Consider the npo model adopted by Zocchi and Atkinson (1999) with
hi(z:) = (1, zi,2)7, ho(z) = (L,z:)T, J = 3, p1 = 3,p2 = 2, and p = 5. Accord-
ing to Corollary S.4, the minimum number of support points is m = max{p1,p2} =
3, which is feasible. The objective function f(w) is an order-5 polynomial with terms
Car,an,a3 W1 T we2ws®. Lemma S.3 implies that «; € {0,1,2},7 = 1,2,3 in order to keep
Cay,a0,a5 7 0. Combined with Corollary S.4, we further know «; € {1,2},i = 1,2,3.
According to Theorem 4.2, the objective function is

(S.15) fwi, w2, w3) = wiwaws(cra2waws + c212wWiW3 + C221W1W?2)

for all the four logit models. Rewriting (ci22, c212, c221) = C' - (c1, c2, ¢3), it can be verified
that for the continuation-ratio logit model adopted by Zocchi and Atkinson (1999) for the
house flies experiment (Example 5.1), C = (21 — x2)?(z1 — x3) (22 — 23)* [[._, H?zl iz,
c1 = (22 —3)(my 7)), c2 = (21— 23) (7' + M), €3 = (21 — @2)* (mgy' +m33'); for
a cumulative logit model (see, for example, Example 5.2), C' = (1 — 2)* (21 — 23)* (22 —
553)2 H?Zl 7Ti17Ti_217Ti3(7ri1 + 7Ti2)2(77i2 + 7Ti3)2, c1 = (z2 — $3)27T1_31(7T11 + 71'12)717 c2 = (1 —
x3)27r2_31 (m21 + 71'22)71, and c3 = (z1 — m2)2773731(7r31 + 7132)714 According to Lemma S.4,
w1 = we = ws = 1/3 is D-optimal if and only if ¢; = ¢2 = ¢3, which is in general not true
for both continuation-ratio and cumulative logit models with non-proportional odds. [
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S.14. More examples.

EXAMPLE S.3. (For Section 8) Consider an experiment with a main-effects multino-
mial logistic model with d factors and m distinct experimental settings x1,...,Xm, where
X; = (x“,.,,,xid)T, = 1,...,m.

For a main-effects model, the linear predictors may take the form of

(S.16) Mij = Bj1 + Bjexiar + -+ + Bjkr1Tik + Qi k1 + -+ Ca—rTid

where i =1,...,m, j=1,...,J — 1. In other words, the intercept and the coefficients of
the first k factors depend on j, while the coefficients of the last d — k factors do not.

We claim that the minimum number of experimental settings is simply d + 1 for the
main-effects multinomial logistic model (S.16) with 0 < k < d, regardless of J.

Actually, first we consider 1 < k < d — 1. It is a ppo model. In this case, p1 = --- =
PJ—1 :k-f—l,pc:d—k’,

1 1
T1,k+1 Tm,k+1
T11 Tm1 ’ ’
H=--=H,.1= , He =
Z1d ce Tmd
Tik - Tmk

According to the special case of Theorem 3.3, the Fisher information matrix F is positive
definite if and only if m > p. + p1 = d 4+ 1 and the matrix

1 211 - w4
(H{ ,H) ==
1 Zmi - Tmd

is of full rank d + 1.

Now we let k = 0. The model (S.16) leads to a po model. By applying Theorem S.7,
we obtain the same conditions as for the ppo model. Similarly, if we let k& = d and apply
Theorem S.8, we get the same conditions for npo models. O

EXAMPLE S.4. (For Section 3) Consider an experiment with four factors (d = 4), three
response categories (J = 3), and four distinct experimental settings (m = 4). Then the
experimental settings are x; = ($¢1,$i2,$i3,$i4)T, i = 1,2,3,4. Consider a multinomial
logistic model with ppo such that

1 z11 712 713 1 =i T14

T 1 x21 T22 23 T 1 z21 T T24
Hl = ) H2 = ) Hc =

1 x31 =32 33 1 31 T34

1 x4 Ta2 743 1 za T4

That is, p1 = 4,p2 = 2,pc = 1,py = 2, max{p1, p2,pc + pu} = p1 = 4, and there are
p = p1 + p2 + p. = 7 parameters. In this case,

H;
H = H,
H. H.
is 7x 8 with rank 7. That is, the minimum number in Theorem 3.3, m = max{p1,...,ps—1,

pe + pu} = 4, is attained in this case. 0
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EXAMPLE S.5. (For Section 3) Consider an experiment with three factors (d = 3),
three response categories (J = 3), and three distinct experimental settings (m = 3). De-
note the experimental settings as x; = (i1, 2, mig)T, i =1,2,3. Consider a multinomial
logistic model with ppo such that

1 11 1 Ti2 T13

T T T
H) = 1 x|, Hy = 1 |, H; = | 222 23
1 x31 1 T32 T33

That is, p1 = 2,p2 = 1,pc = 2,pu = 1, max{p1,p2,pc + pr} = pc +pu = 3, and there are
p = p1+ p2 + pc = 5 parameters. In this case,

1 1 1 0 0 0
11 21 w31 0 0 0
H= 0 0 0 1 1 1

Ti2 T22 T32 Ti12 T22 I32
r13 X23 T33 T13 T23 T33

is 5 x 6. It can be verified that rank(H) = 5 using Theorem S.5. That is, the minimal
number of experimental settings in this case is m = max{p1,...,ps—1,pc +pu} =3. O

EXAMPLE S.6. (For Section 4) Consider an example with responses in J = 4 cat-

egories, d = 5 factors, and m = 5 distinct experimental settings x; = (z4,1,... ,a:,',g,)T,
i=1,...,5. Suppose a multinomial logistic model with
1 z11 712 1 zn1 1 T13 T4 T1s
1 21 w22 1 xo21 1 T2z T4 T2s
a? — H? — HY — HT —
1 — . . . ) 2 — . . ) 3 — . ) c —
1 z51 o502 1 z5 1 T53 Tsa Tss

is used. That is, p1 = 3,p2 = 2,p3 = 1, pg = 1, pc = 3, and p = 9. In this case, G
defined in Theorem 4.1 is 20 X 9 and p. + pg = 4 is the minimum number of #{i |
a; > 0} to keep |Gli1,...,ip]| # 0 if (i1,...,%p) € Ala1,...,am). Actually, (i1,...,49) =
(1,2,3,6,7,8,10,11,12) € A(3,3,3,0,0) leads to rank(Gli1,...,is]) = 8, while (1,2,5,6,
9, 10,13,14,15) € A(2,2,2,3,0) leads to rank(Glii,...,19]) = 9. Therefore, |G[i1,...,i9]|
# 0 in general if (i1, ..., i9) € A(2,2,2,3,0) for such a ppo model. O

EXAMPLE 5.2. (continued, for Section 5.1) Recall that there are eight parameters with
fitted values B = (Bi1, Pa1, Bs1, Bar, Bra, Paz, Baa, Baz)” = (—0.865,—0.094,0.706, 1.909,
—0.113, —0.269, —0.182, —0.119)T. If we treat the fitted parameter values as the assumed
values, the design space is X = {z > 0 | S11 + B2z < P21 + Paoz < P31 + Bzez <
Ba1 + Paoz} = {x > 0] —9.195 < = < 4.942} = [0,4.942). It is not a surprise that the four
levels {1,2,3,4} in the original dataset are included in the design space. O

EXAMPLE S.7. (For Section 5.6) Consider a multinomial logistic model with pro-
portional odds for responses with J = 3 categories, d = 1 factors, and m = 2 distinct



D-OPTIMAL DESIGNS FOR MULTINOMIAL LOGISTIC MODELS S17

experimental settings x1,z2. Same as in Example S.1, the parameters are 1, 82,1 and
the linear predictors

ni1 = P+ Q& Miz = P2+ Gz, 1=1,2.

According to Theorem 4.2, the objective function of allocation (wi,w2) is an order-3
homogeneous polynomial of w1, w2 consisting of monomials ca, a,wy ! wy? with coefficients
Cay,ae > 0. Based on Lemma S.3 and Corollary S.4, ca,,ay 7 0 only if max{ai,as} <2
and #{i | a; > 0} = 2, which implies (a1, a2) is either (2, 1) or (1,2). That is, the objective
function is

fwi,w2) = wiwz(ca1wr + crowa),

which takes the same form as in Corollary 5.2 in Yang et al. (2017). If we rewrite c21 = C-c2
and c12 = C - ¢, that is, f(w1,w2) = C' - wiwz(c2wi + c1wz), then for a baseline-category
1ogit modeL C = 7l'137T23($1 — 172)2, C2 = 7T117T12(1 — 71'23)7 cl1 = 71'217T22(1 — 71'13); for
a cumulative logit model, C' = 75 (1 — m13)(1 — m11)7s (1 — w23)(1 — w21) (21 — 22)?,
c2 = m1(1 — mi1)mi3(1 — mi3) w22 (1 — ma2), c1 = m12(1 — m12)mo1 (1 — m21) 23 (1 — ma3); for
an adjacent-categories logit model, C = (x1 — 22)?, c2 = mi1mi2m13(ma1 a2 + Toom23 +
47‘('2171’23), C1 = T21T227T23 (7I'1171'12 —+ miomi13 + 471'1171'13); for a continuation-ratio logit model,
C=(1-m)""(1—ma) "(z1 — $2)27 co = miimiemis(1 — mi1)[maamas + w1 (1 — 7T21)2L
c1 = mo1maamas(1 — ma1)[m1amis + 11 (1 — 711)?]. According to Corollary 5.2 in Yang et al.
(2017), the uniform allocation wi = w3 = 1/2 is D-optimal if and only if ¢; = ¢z, which
is not true in general for all the four logit models. g

EXAMPLE 5.2. (continued, for Section 6) In practice, we may use designs not as extreme
as the D-optimal design. Here are some alternative allocations of subjects, along with
efficiencies:

TABLE 6
Alternative Designs for Trauma Clinical Trial

Design point x 1 2 3 4 Efficiency(%)
D-optimal design 401 0 0 401 100.0
Original design 210 190 207 195 4.7
1% reallocated 397 4 4 397 99.4
2.5% reallocated 391 10 10 391 98.8
5% reallocated 381 20 20 381 97.6
10% reallocated 361 40 40 361 95.3

We may recommend 2.5% or 5% reallocated design, which is not so extreme but still
highly efficient.

S.15. Proofs.

Proof of Theorem 2.1:
Suppose for distinct x;,7 = 1,--- , m, we have independent multinomial responses

Y; = (Y, - ,YiJ)T ~ Multinomial(ng; w1, -+, miy)
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where n; = Z;Zl Yij. Then the log-likelihood for the multinomial model is

1(0) =log L(0)
Y;
IOgHY YJ' 11 by

= constant + Z Y/ log 7;

i=1

where log7; = (log w1, -, log mJ)T. Then the score vector
ol N T . 1 Oy
— = Y, diag(m;
267 2 8(m) " ot
ol ol on;

55 = Gor) =2 (5 ) diag(m) 'Y;
06 06" ;aeT

Using the formulae of matrix differentiation, we get

or; om; Om;

~ on? aeT
(8”

00T

9[CT log(Lm:)] dllog(L:)] L]\ ™"
Olog(L;)]™ O[Lm;]T onT

(CT[dlag (L] L)_1 X,

LEMMA S.5.
;i diag(m;) ' (CTD; 'L)'X; = 0"

Proof of Lemma S.5: Recall that 177w; = 1 + -+ - + ms = 1 for each 4; the last row of
X, is all 0; and

* % 0 * % *
* * e 0 * *
ch=| . , L=
0 O 1 1 1 1
Then
* 0 * 0
0 = 0 0 = 0
D; " = diag(Lm;) = =
0 0 T 0 0 1
and
* * * *
* * * *
D;'L= and C"D; 'L =

1 1
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Rewrite (CTD;lL)_1 = (€1, - ,¢iy). Then 1T¢y1 =+ = 1TCi7J_1 =0and 17¢;y =1
(just check the last row of CTD;'L). Since 7f diag(w;)~* = (1,---,1), then

ﬂ-deia'g(ﬂ-i)_l(CTDi_lL)_l = (17 Tty 1)(61'1, e 7ciJ) = (07 e 703 1)
Since the last row of X; is all 0, then ﬂdeiag(m)fl(CTDi_lL)lei =07, O
As a direct conclusion of Lemma S.5,

ol

E(W) => nm, " diag(m,) H(CTD; L)X, = 07
=1

Then the Fisher information matrix (see, for example, Schervish (1995, Section 2.3.1))
ol ol ol ol
El=Z. 2
Cov (ae ae) (69 aeT>
= K Z( 0 ) diag(m;) 'Y, - iYTdiag(Try1 Om;
90" v e T oe”

Since Y;’s follow independent multinomial distributions, then

F

)" diag (i)~ 1YiY;‘-Pdiag(7rj)_l g;r% )

ni(ni — D)wh +nimin -+ N (s — 1)misTis
E(Y.Y]) = : :
ni(ni — 1)mismie g — Dl 4 namg

=n;(n; — 1)7r¢7riT + n;diag(m;)
On the other hand, for 7 # j,
E(Y,Y])=E(Y:) E(Y])=nmjmm,

Then the Fisher information matrix

Z dlag ﬂz)_lni(ni - 1)7Ti7"?diag(7"i)_1 8‘"”}
2 00
m d B d d 1 8771
+ Z GT 1ag(7n) n;diag(m;)diag(m;)” 00T
_ on;
4 Z GT Y diag(ms) tninj ™5 T diag(m;) " 80%
i
2 (a)+ (b) + (o)
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where
is (97r, 1 07
T dia; 5
; a8 T
T -1 T \T 5. 1
diag(m; TTiN; diag(7; TN
g atmy | |30 i
Z dlag W,)_lnm'iﬂ'deiag(ﬂi)_l aﬂ-Ti
i=1 06
Actually, let
T3 N1 0mi 7 1/ ~Ty-—11 -1
E; = ;" diag(m;) 56T — m; diag(w;)” (C'D; L) X;
which is 07 for each i according to Lemma S.5. Then
T m
[Z niE Zn, — > niE/Ei =0,y
i=1
The arguments above have proved Theorem 2.1. O

Proof of Theorem 3.1: Because the last row of X; consists of all zeros, the entries in
the last row and last column of U; actually won’t make any difference. In order to simplify
the notations in this proof, we rewrite

hj; 2 hjx) j=1,...,J—-1; i=1,...,m

hs 2 he(x:) i=1,...,m

Usti = Ust (7r3) s,t=1,...,J—-1; i=1,....m
J-1

Us-i £ Zusti s=1, ,J =1, =1, ,m
t=1
J-1

Uy = Zusti t=1,...,J—-1;, +=1,....m
s=1
J-1J-1

U..q £ ZZum i:1,...,m
s=1 t=1

Based on Corollary 3.1, when X; takes partial proportional odds form (2), the Fisher
information F; = X,TUiXi =

T
uii;hishy;

T
uy—1,1,:hs5-1,:hy;
T
u.uhcihli

T
u1,s—1,ihihy_q ;

T
uj-1,5-1,hy-1,hj_q
T
u.g-1,ihehy_q;

T
’u,1<¢h17;hci

T
wy—1.hj_1:hg;
T
u..;heihg;
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Then the Fisher information matrix F = ZZ"ZI n,F; =

NgE!

& T
> nsurihishy;
i=1 1

2

NgE!

m
T
nsug—1,1,:h5-1,:hy;
i=1

T
niju,g-1,:hhy_q

i T
> msutshishg
i=1

m
T T
niug_1, 10y 1hy_q ;Y niug_1shyoqihg

i=1

=1 =

' - T - T - T

Z niu.lihcihli Z niu.‘],lyihcih‘],u Z niu”ihcihci

i=1 i=1 i=1
or simply

H; T T

Uy U571 H; H_
H, , : : . -

Uj-11 Uj_1,0-1 H; , H
H. H., ' . J-1 c

Proof of Theorem S.3: Recall that (CTD;'L)™! = (ci1 - -

O

~ciy) and ug(m;) = cz;diag(ﬂ'i)_lcit,

for s,t=1,...,J—1and i=1,...,m. Denote

(@l
I

nldiag(ﬂ'lf1

and W =

We claim that U = CWCT. Actually

nicidiag(m) "

nlclT’J_ldiag(ﬂ'l)fl

Cm, 71/ (i —1)xmJ

nmdiag(ﬂm)’l mJxmJ

nmcgldiag(ﬂm) -1

e diag(mn)
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and
C11 R & B S §
CWC” =CwW
Cm1 - Cm,J—1
Uny Ui,j-1
= ; . : =U
Uj-11 - Uj_15

Note that W is diagonal with positive diagonal entries. Thus W is positive definite. By

adjusting the rows, we can verify that rank(C) is the same as rank(C'’), where

T
Ci1
T
Cij—1
T
C21
=~
C == T
C2y-1
T
Cmi1
T
Cm,J—1
That is, C has full row rank and thus U is positive definite. O
Proof of Theorem S.4:
_ m NJS—1
LEmMA S.6. |U| = (T2, ne)’ |V, where
Vi Vi
V= . . .
Vyoi1 -+ Vi1,
U111 Ui, j—1,1
Ullm ot Ui, j—1,m
Uj—1,1,1 e UJ—-1,0-1,1
Uj—-1,1,m o UJ-1,J-1,m

Kovacs et al. (1999) generalized Schur’s Formula (Gantmacher (1960)) as follows:
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LEMMA S.7.  (Kowvacs et al., 1999, Theorem 1)
Assume that M is a k x k block matriz with each block element A;; as an n X n matriz.

A o Ay
A o A

If all of Ai;’s commute pairwise, that is, AijAim = AimAij for all possible pairs of indices
i, 7 and l, m. Then

(5.17) M| = Z (sgnm)Arr(1)Aor(2) - Ak
TESE
Here the sum is computed over all permutations 7 of {1,2,...,k}.

In our case, all of V;;’s are diagonal matrices, so they commute pairwise. Moreover, the
sum of product matrices in Equation (S.17) is a diagonal matrix, in which each element
is the sum of products of the corresponding elements in those matrices. If we apply the
above lemma, we get

V| = Z (sgnm)Viz(1)Var(ay - Vio1,x(1-1)

weSy_1
m
H E (Sgnﬂ)ulw(l)iuzw@)i Uy —1,mw(J—1),i
i=1 |m€Sy_1

Then the following result is obtained:

LEMMA S.8. |V| =]I", [Vi|, where

U11(7l'i) Ul,J—l(ﬂ'i)
V=

wj—1,1(mi) oo ug—1,g5-1(m)

Note that V; defined above is very similar to U; define in equation (5).
-1
LEMMA S.9. |V;| = (szl Wij) |[C'DL R

Proof of Lemma S.9: It can be verified that ¢;; = ;.
Since ¢f;diag(m;) 'eis =c1=0for j=1,...,J — 1 and 1 for j = J, then

{(CTDflL)_l}Tdiag(m)_l [(CTDi—lL)_I] = { 3’;’ (1) }

Combining Lemmas S.6, S.8, and S.9, we obtain Theorem S.4.
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REMARK S.1.  Actually, we provide an explicit formula for [CTD; L] in (S.1), which
can further clarify Lemma S.9 as (1) [V;| = H]J=1 mi; for baseline-category, adjacent-
categories, and continuation-ratio logit models; (2) |V;| = ;' 7J:_11 TI';jl’}/izj(l — ~i5)? for
cumulative logit models.

Proof of Theorem S.5:
The simplest case is the npo model whose conclusion is straightforward.
The ppo model is the most general case. In this case, we consider a sequence of linear
subspaces
{0} € M(HEL) N (N2 M(H])) € M(H)

with corresponding dimensions 0 < r. — 19 < 7o = rank(H.), where ro = rank(H.) —

dzm[M(Hf)ﬂ(ﬂj;llM(HjT))] Then there exist a1, - -+, Qtry—rgs Qro—ro+1, -+, Qr, € R™
st. {a1, @ —ry } forms a basis ofM(HZ)m(mj;fM(H;f)) and {a1,- - ,ar, } forms a
basis of M(H?Z). By simple operations H. can be transformed into H} = (a1, - -+ , @y, 0,

-, 0)T and H; can be transformed into

* () ) T
Hj - (alv"' y Ore—rg, Oy _pop15 """ Oy 0,0 70)

where r; = rank(Hj), j =1,2,--- ,J — 1. Then rank(H,,,) = rank(H,,,) with

Hi
H;po = .
Hj
HC HC pxm(J—1)
Since the first r.—rg rows of (HY, - - - , H}) can be eliminated by applying row operations

of H} onto it separately, then rank(H},,) = rank(H}},) where
Hi
ppo = .
Hj
HC HC pxm(J—1)
and H;* = (0, ,0,0tr.—rg+1, s @, 0, -+ ,0)T. Therefore, rank(Hypo) = rank(Hj,)
<ri+-+ryo1+ro.

We claim that the nonzero rows of Hj;, are linearly independent which will lead
to the final conclusion. Actually, let’s denote those nonzero rows of H;, as AEJ >,i =
1,2, ,r5,f = 1,2,-++,J — 1 and Ap,_rgs1,--+  Ap., where AY) is the ith row of
(0,---,0, Hj, 0, ---, 0), and A; is the ith row of (H;",--- ,H;"). Suppose there ex-
ist agj) eR,i=1,2,--- ,r;,j=1,2,---,J—landa; e R,i=rc—1r0+1, -+ ,rc s.t.

J—-1 75 Te

7j=1 =1 i=r.—ro+1
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then for j=1,...,J — 1,

Te—T0 Tj Te
0= Z aia)ai + Z E]) @) + Z @i
1=1 i=re—ro+1 i=re—ro+1
which implies for j =1,...,J — 1,
Tc Te—T0 ) 75 ) )
Z a;x; = — Z az(-”ai — Z ay)ag]) < M(Hz) ﬂM(H?)
i=re—ro+1 =1 i=re—ro+1

Thus, 3372, . 1 @ic € MMHHN (OJJ;EM(H]T)) Then we must have 3 7° ) a;ey

= 0 since {arc_7‘0+17 .o.yor }and {aq,...,Qr,—r, } are linearly independent. Therefore,
a; :Ofori:7"6—7“0—i—17...7rC and thus
Te—T0

0= Z oD e + Z MONG
i=re—ro+1
It implies a(j) =0,71=1,. —7ro,7e — 7o+ 1,...,7; since {a1,..., 0 —r, a£i>_ro+1,
. ol )} are linear 1ndependent
Therefore, the conclusion on ppo models is justified.
Since po models are special cases of ppo models, the corresponding result is a direct

conclusion. O

Proof of Theorem A.1:
Recall that dim(M(H?)) = rank(HY) = r; and dzm(M(Hzl) 4+ e M(HZ;)) =

dim(M((H],, -+ H))) = rank((H] -+, H])) = ri; i, for iy < -+ < i and k =
2,...,n, where “+” stands for the sum of two linear subspaces.

First of all, dim(M(HT) N M(H?)) = dim(M(HT)) + dim(M(HY)) — dim(M(HT) +
M(H3)) = r1 + 72 — r12. That is, (11) is true for n = 2.
Suppose (11) is true for n = k. Then for n =k + 1,

dim(NEZ M(H])) = dim(NfZ, M(HT ) N M(HJ )
dim(Nf_, M(HT)) + dim(M(HL,.)) — dim(N*_, M(HT) + M(HL,,))

k
Zn - Z Tiyig + -+ (= 1) rioeg e — A
i=1

1<i1 <ia<k
where
A = dim(NiZ MHY) + M(Hi)) = dim(Nio M Higp))
= > rank(H{,Hi 1)) — > rank((H{,Hi;, Hi Hi,,))

i=1 1<i1 <ig<k

+o (=D rank (AT HE - HE HE L))

k-1
= E Tik4+1 — E Tirsigt1 + o+ (=1 12, k41

1<iy <ig<k
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Therefore,
dim(NE2 M(HT))

k
= Zh‘ - Z Tiyig + o+ (=1 ok + resa
i=1

1<i <io<k

k
k
- g Tik+1 + E Tiyvigkt1 + o+ (=1) 12, k1
i=1 1<y <ia<k

k1

k41)—1

= E Ty — E Piyig + o+ (1) e 5 e

im1

1<iq <ip<k+1

That is, (11) is true for n = k + 1 as well. By mathematical induction, (11) is true for
general n. g

Proof of Corollary S.2:

Suppose pg > 0. Then there exist m x 1 vectors o, -+, 0y, which form a basis
of ﬁj;fM(HJT) Write He = (4, ,7,,)". According to Theorem S.5, if |[F| > 0,
then 70 = rank(H.) = p., or equivalently, M(HI) N (ﬂj;llM(H]T)) = {0}. Then
Qi Qpy, Y1, Yy, are linearly independent. Thus m > p. + pu. O

Proof of Theorem 4.1:

Actually, according to Theorem 3.1, F = HUH”. From the proof of Theorem S.3, U =
CVVCT, where W is a diagonal matrix. Therefore, F = HCWCTH”. Let W = W/n
and G = CTH”. Then F = nGTWG, which leads to the final result. a

Proof of Lemma S.3: Actually, maxi<i<m o; < J. Suppose maxi<i<m @; > J, which
means maxi<i;<m 0; = J. Without any loss of generality, we assume oy = J. Then ¢; = j
forj=1,...,J.

According to the proof of Lemma S.5, we have 17c;; = 0 for i = 1,...,m and j =
1,...,J —1. Then 1%7(ci1 + --- + c1,y-1) = 0 and thus 17G[i1,...,i;] = 0. That is,
rank(Gli1,...,4s]) < J — 1. Therefore, rank(Glii, ..., 4p]) < p—1 and |Gli1,...,ip]| = 0.
O

Proof of Theorem S.6: Suppose ca,,....a,, 7 0 for some (a1, ..., am). Therefore, there
exist (i1,...,4p) € (a1,...,am) such that G[iy, ..., ] is of full rank p. Without any loss
of generality, we assume a1 > -+ > ar > 0 = Qpy1 = -+ = am, that is, {i | oy >
0} = {1,...k}. Consider the submatrix G := GJ[1,...,kJ] which is kJ x p and contains
Gli1,...,ip] as a submatrix. Then G is of rank p or GT is of full row rank p. Write
W = k™ 'diag{diag(m1) "}, ..., diag(ms)"'}. Then the restricted matrix F := n GTWG
is positive definite. On the other hand, F is the Fisher information matrix nGT WG as

defined in Theorem 4.1 with wy = - -+ = wy = 1/k and wr41 = -+ = wp, = 0. According to
Theorem 4.1 and Theorem 2.1, F = nk™! Zle F;. Therefore, Fcs := Zle F; is positive
definite. O

Proof of Theorem 5.1:
Case 1: Baseline-category logit model
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The baseline-category logit model for nominal response (Agresti, 2013; Zocchi and
Atkinson, 1999) can be extended in general as follows

(S.18) log (:—J) =h!(x,)B;, +hl(x)¢, j=1,...,0 -1
iJ
LEMMA S.10.  Fizingx;, B, =1,---,J — 1 and ¢ in Model (S.18), let a; = hf(xi)ﬁj+
hl'(x)¢, j=1,...,J—1. Then 0 < my; < 1,j = 1,...,J exist uniquely if and only if
—oo<aj<oo,j=1,...,J —1. In this case,

e .
(S.19) mj—{ s
e i 1=

Proof of Lemma S.10: Write y; = logm;j, j=1,...,J. Then0 < mj; < 1,57 =1,...,J
if and only if y; € (—00,0), j =1,...,J. In this case, Model (S.18) implies a; = y; —ys €
(—00,0),7=1,...,J — 1.

On the other hand, for any given a1,...,a5-1 € (—00,0), y; =a; +ys,j=1,...,J — 1.
Note that

1 = mau+me+-+mg-1+my

= Yl Y2 QY1 g Y

ea1+yJ + ea2+yJ ot eflJ—1+yJ + ¥

— e?/] (eal +6a2+"'+eaJ_1+1)

Since m;; = ¥, we get solutions of m;; given in (S.19), and thus m;; € (0, 1) exists and is
unique, j =1,...,J. #
Case 2: Cumulative logit model

The cumulative logit model for ordinal responses (McCullagh, 1980; Christensen, 2015)
can be described in general as follows:

i1+ -+ Ty
Tig+1+ s+ Ty

(S.20) log ( ) =h] (x;)B; +h; (xi)¢, j=1,...,J—1

LEMMA S.11.  Fizingx;, B;,5 =1, ,J — 1 and { in Model (S.20), leta; = h?(xi)ﬂj
+hl(x)¢, i=1,....,J—1. Then 0 < mi; < 1,5 =1,...,J exist and are unique if and
only if —oo < a1 < az <--- <aj—1 <oo. In this case,

exp(ay)

b (a;-1) 7=t

exp(a; exp(aj_1 .

(821) Tij = 1+exp§aj) - 1+exp(]aj,1) 1< J < J
TFexp(ay 1) i=J

Proof of Lemma S.11: Taking j = 1 in Model (S.20), then log (m1/(1 — mi1)) = a1
and m;1 = exp(a1)/[1 + exp(a1)]. Then 0 < m;;1 < 1 if and only if —oco < a1 < oo. For
j=2,,J—1,

exp(a;) exp(a;—1)

" T+exp(a;)  L+exp(a; 1)
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which implies that m;; > 0 if and only if a; > a;—1 . Therefore, iy = 1 — (i1 + -+ +
mi,g—1) = 1 —exp(aj—1)/[1+exp(as-1)] = 1/[1 +exp(as—1)], which indicates 0 < m;; < 1
if and only if —oo < aj_1 < co. Given 71 + -+ + miy = 1, we have

—o<a<a< - <aji<ooem; €(0,1), j=1,...,J

COROLLARY S.8. For the cumulative logit model with proportional odds

Ti1 + -+ Ty T .
S.22 log (LT TG ) gy n ()¢, j=1,...,0—1
(522) e () e nl e

The design space has no restriction since —oo < 1 < B2 < -+ < Byj_1 < 00 s part of the
model assumptions, which implies m;; € (0,1), j=1,...,J.

Case 8: Adjacent-categories logit model
The adjacent-categories logit model for ordinal responses (Liu and Agresti, 2005; Agresti,
2013) can be extended as follows:

(S.23) log (L) =hj (x:)3; +h; (x:)¢, j=1,....,0—1
Ti,j+1
LEMMA S.12.  Fizingx;, B, =1, ,J — 1 and { in Model (S.23), leta; = th(xi),Bj
+hl(x)¢, 5=1,...,J —1. Then 0 < my; < 1,5 = 1,...,J exist uniquely if and only if
—oco<a; <00, j=1,...,J —1. In this case,

exp(ay_1+---+a;) .
(S.24) Tij = { exp(a,171+~-+a1)+exr>(a.1711+~--+a]2)+-~+eXD(aJ—1)+1 j=1..J-1

xp(ayTFFanFexplay T TanF Fem@,DF J =

Proof of Lemma S.12: Let y; = logm;;. Then 0 < m; < 1,5 = 1,...,J if and only if
y; € (—00,0). In this case, Model (S.23) implies a; = y;—y;+1 € (—00,00),5 =1,...,J—1.
On the other hand, for any given ai,...,a5-1 € (—00,0), y; = (aj—1 + -+ a;) +yJ,
j=1,...,J — 1. Note that

1 = mao+me+-+ms-1+mg
= Yl Y2 .. Y1 g Y
= ¥ (eaJ—1+‘-<+a1 _,’_eaJ—1+"'+a2+...+eaJ—1 +1)

Since m;; = €%, we get solutions of m;; given in (S.24), and thus m;; € (0, 1) exists and is
unique, 3 =1,...,J. #
Case 4: Continuation-ratio logit model

The continuation-ratio logit model for hierarchical responses (Agresti, 2013; Zocchi and
Atkinson, 1999) can be rewritten in general as follows:

_
2 1 —"w ) =nT i3 h’ i j=1,... -1
(5.25) "g(m,ﬁﬁ...ﬂu) Tx)B; +hT()C, =1,
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LEMMA S.13.  Fizingx;, B;,5 = 1,--- ,J — 1 and { in Model (S.25), let a; = th(xi),Bj
+hl(x)¢, 5=1,...,J —1. Then 0 < my; < 1,5 = 1,...,J exist uniquely if and only if
—oo<aj;<oo,j=1,...,J —1. In this case,

s=1

M e+~ =

s=1

aj 7 as —1 . _
(S.26) WU:{GJ (e +1)' j=1,...,0-1

Proof of Lemma S.13: Let y; = logm;;. Then 0 < m; < 1,5 = 1,...,J if and only if
y;j € (—00,0). In this case, Model (S.25) implies a; = y; —log(e¥i+t +-.-e¥7) € (—o0, 0),
j=1,...,J—1.

On the other hand, for any given ai,...,a5-1 € (—00,0), it can be verified by induction
that
eYI-1 = VI elu-1
ey,]—Z — eyJeaJ—Q (eaJ—l + 1)
e = eWel (et 4 1) (e 1), 5=T—-3,J—4,---,1

Therefore, it can be verified that

1 = ma+me+- + T -1+
eVl V2 p Y1 Y

e¥ (e +1)(e"+1)--- ("7t 4+1)

Since m;; = e¥7, we get solutions of m;; given in (S.26), and thus m;; € (0, 1) exists and is
unique, j =1,...,J. 7#
Theorem 5.1 is obtained as a summary of Lemmas S.10, S.11, S.12; and S.13. O

Proof of Corollary 5.1: We only need to verity the “only if” part. According to The-
orem 3.2, if f(w) > 0 for some w = (w1,...,wm)" = (n1,..., nm)’ /n, then the corre-
sponding H* is of full row rank. Note that H* can be obtained from H after removing the
columns of H corresponding to n; = 0. Thus H is of full row rank too, which corresponds
to the uniform allocation. That is, f(w,) > 0.

In this case, any w = (w1, ..., wm)" such that 0 < w; < 1,i =1,...,m leads to f(w) > 0
since it corresponds to the same H matrix. O

Proof of Theorem S.10: According to Theorem 4.2,

fij(2) = Z coefficient - 2% (n; + nj; — 2)*

;20,05 >0,a;+0; <p

is a polynomial with nonnegative coefficients, whose order depends on the largest possi-
ble o; + ;. Lemma S.3 implies that max{a;,a;} < J — 1 for positive coefficients and
Corollary S.4 further implies that a; + @j < p — (kmin — 2) = P — kmin + 2 for positive
coefficients. Therefore, f;;(z) is at most an order-g polynomial of z. a

Proof of Theorem S.11: In this case, the model is essentially a generalized linear model
for binomial response with logit link. Theorem 4.2 says that the objective function f(w) =
|GTWG]| is an order-p polynomial consisting of terms ca;,... amwi? - - wS™. According
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to Lemma S.3, ca;,...,a,, 7 0 only if a; € {0,1},i = 1,..., m. Therefore, in order to keep
f(w) > 0, we must have m > p. In other words, a minimally supported design may contain
exactly m = p distinct design points or experimental settings. In this case, the objective
function f(w) o wy - - - Wy, and the D-optimal allocation is w = (1/m,...,1/m)%. O

Proof of Corollary S.7: According to Theorem 3.1, F = HUHTY. In this case, there
exist m = p; experimental settings such that rank(H) = pi1(J — 1) = p. On the other
hand, the minimum number of experimental settings is at least max{p1,...,psj-1} = p1
based on Corollary S.4. Therefore, the minimal number is m = p;. In this case, H is a
square matrix and

m J-1
[F| = [H* - [U] (Hwi)
i=1

according to Theorem S.4. Thus, the uniform allocation w, = (1/m,..., 1/m)T is D-
optimal in this case. Note that m = p; < p1(J — 1) = p. O

Proof of Lemma S.4: We actually claim more detailed conclusions as follows:

(i) If ¢1 = c2 = c3, then the solution is w1 = w2 = w3 = 1/3.

(ii) If ¢1 = 2 < 3, then w1 = w2 > w3 > 0. Actually, w1 = w2 = (—2¢1 +c¢3+ A1)/ Ds
and ws = c3/D1, where A1 = \/4c2 — cic3 + ¢2 and D1 = —4cy + 3c3 + 24

(iii) If e1 < c2 = c3, then w1 > we = ws > 0. Actually, w1 = (—c1 + 2¢3 + A2)/ D2 and
wa = w3 = 3c3/ D2, where Ay = \/c? — cic3 + 4c¢2 and D2 = —c1 + 8cs + As.

(iv) If ¢1 < ¢2 < c3, then w1 > wa > ws > 0. The procedure of obtaining analytic
solutions of wi, w2, ws is as follows: (1) obtain y; from (S.33); (2) obtain y from
(S31); B wr=wy1/(y1 +y2+ 1), wa=y2/(y1 +y2 + 1), ws = 1/(y1 + y2 + 1).

First of all, we only need to consider the cases of 0 < w; < 1, i = 1,2,3 (otherwise,
(w1, we,ws) = 0). It can also be verified that 0 < ¢1 < ¢2 < c¢3 implies that w1 > we >
ws > 0 (otherwise, for example, if w1 < w2, one may replace w1, w2 both with (w1 +w2)/2
and strictly increase f). The same argument implies that if ¢; = ¢j, then w; = w; in the
solution.

According to Theorem 5.10 in Yang et al. (2017), (w1, w2, ws)” maximizes f(w1, ws, ws)
if and only if

of _ of _ of

(9101 - 8w2 o aw;g
which is equivalent to df/0w1 = df/Ows and 8f/Ows = Jf /Ows and thus equivalent to

(827) 03w1w2(w1 — 211)3) + 20211)111)3(’[01 — w3) = clwgwg(—Zwl + ’wg)

(828) C3’LUlw2(U]2 — 211}3) -I— 20111)2’11)3(11)2 — UJ3) = (2211}111}3(—2’11]2 =+ wg)

Following Yang et al. (2016b, Section 5.2), we denote y1 = w1 /w3 > 0 and y2 = wa/ws > 0.
Actually, w1 > we > ws > 0 implies y1 > y2 > 1. Since w1 + ws + ws = 1, it implies
ws =1/(y1 +y2+ 1), w1 =y1/(y1 +y2+ 1), and wa = y2/(y1 + y2 + 1). Then (S.27) and
(S.28) are equivalent to

(5.29) catiy2(y1 — 2) +2cop1(yn — 1) = ciya(—2y1 + 1)
(5.30) cayiy2(y2 — 2) +2c1y2(y2 — 1) = cayi(—2y2 + 1)
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From (S.29) we get y2 [c;;yf —2(cs—c1)y1—c1] = 2c2y1(1—y1). If y1 = 1, then we must have
y2 =1 and ¢3 — 2(cs — ¢1) — c1 = 0, which implies w1 = w2 = w3 = 1/3 and ¢1 = ¢z = ¢3.
Actually, we can also verify that ¢; = cs implies y1 = 1.

Now we assume y; > 1, which implies ¢; < c¢3. Then

2e2(1 — 1)y
syt —2(cs — )y — a1

(S‘Sl) Y2 =

After plugging (S.31) into (S.30), we get
(S.32) ao + a1y1 + a2yt + asyi +yi =0

where ag = c%/cg >0, a1 =4c1(—2c1 +c2 + 263)/(36%) >0, a2 = 2(20% — 2c1c0 — Te1c3 —
2cocs +2¢3)/(3c3), and az = 4(2¢1 + c2 — 2¢3)/(3c3).

Denote h(y1) = ao+a1y1+azy?+asyi+yt. Note that h(o0) = o0, h(—c1/c3) = —c%(c%—&—
8cica — 2c1c3 + 8cacs + ¢3)/(3¢3) < 0, h(0) = c3/c3 > 0, h(1) = —(c1 — ¢3)?/(3¢3) < 0,
and h(oco) = co. Then h(y:) = 0 yields four real roots in (oo, —c1/c3), (—c1/cs,0), (0,1),
and (1, 00), respectively. That is, there is one and only one y1 € (1, 00).

According to Tong et al. (2014, equation (12)),

VA Vv
—aj-l- Ly 1

(S.33) Y1 =

4 2 2
where
A — _@ + Cﬁ Gl
b 3 "4 "3x2/3
c = —@—Fﬁ— G1 + —8a1—|—4a2a3—a§ ’
3 2 3 x 21/3 4/ A,
1/3 1/3
Gy = (Fl—\/Ff—llEf) +(F1+\/F12—4E§> ,
Fi = 12a0+ a% — 3ajas ,
Fi = 27a} — T2a0as + 2a3 — Ya1aza3 + 27aoaj .

The calculation of G1, A1, C1, and y; are operations among complex numbers, while y;
at the end would be a real number.

The procedure of obtaining analytic solutions of w1, w2, ws would be, (1) obtain y1
from (S.33); (2) obtain y2 from (S.31); (3) w1 =y1/(y1 +y2 + 1), w2 = y2/(y1 +y2 + 1),
w3 =1/(y1 +y2 +1).

Now we discuss some special cases.

(i) If 1 = ¢c2 < c3, then w1 = we and thus y1 = y2. Both (S.29) and (S.30) yield

y1 = c3 (—2c1 + c3 + /43 — cics + ¢2), which implies

_ Patethn c3
“der +3c3 +2A77 T ey + 3cs + 24,

w1 = w2

where A1 = \/4Cf —ci1c3 + cg. Note that w1 > ws since Ay > 2c¢;.
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(ii) If e1 < c2 = c3, then w2 = ws and thus y2 = 1. From (S.29) we get y1 = 3c§1(—cl +

2c3 + /2 — cics + 4¢2), which implies

—c1 + 2¢3 + Ao 3cs

= —c1 + 8¢z + Ao’ W2 =ws = —c1 + 8¢z + Az

where Ay = /c? — cics + 4c2. Note that wi > ws since As > ¢1 + c3.
(iii) If e1 < c2 < c3, then y1,y2 and thus w1, w2, ws can be obtained analytically. We

have proven y; > y» > 1. Using (S.29) and (S.30), it can be verified that y1 # y2
unless ¢1 = c2; and y2 # 1 unless ca = c¢3. That is, y1 > y2 > 1 and w1 > w2 > ws.

O

Proof of Theorem A.2: (i) is straightforward. (ii) follows from the facts in the proof of

Lemma S.5, ¢iy = mi; 17¢i; = 0,5 = 1,...,J — 1; and 17¢;; = 1. (iii) and (iv) can be
verified using the formulae of c;; in Section S.3. O
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