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The card game 24 is a mathematical game that traditionally engages elementary stu-
dents to practice their mental computational skills. In this paper, we use probability to
formulate and explore the game. We create score of difficulty level for solvable card
combination set under various setup of game rules. Based on our findings, we create
new playing rules and provide suggestions for different levels of players. Our results
may serve as guidelines on introducing the game 24 into the practice of math education.

Keywords: card game; solvable card combination set; probability of success; difficulty
score; math education

1. Introduction

The history of the card game 24 can be traced back to Shanghai, China, in 1960s. By
the end of the twentieth century it became known to North America. A standard deck of
54 poker cards may be used for the game 24. Typically, all the picture cards (King, Queen,
Jack and Joker) are removed leaving only the 40 cards with values ranging from Ace
(considered as 1) to 10. In each round of the game, four cards are randomly chosen. The
goal is to develop a mathematical expression equal to 24 using all the four cards and four
arithmetic operations (addition, subtraction, multiplication, and division). Each card has to
be taken into account once and only once. Each arithmetic operation could be used more
than once. Whoever finds an answer first wins this round of the game.

Depending on the four cards chosen a mathematical expression resulting in 24 may
not exist. For example, there is no way to get 24 out of the four cards 1, 2, 9, and 10.
When a solution does exist, it may or may not be unique. For example, for the cards 3,
5, 7, and 10, there are multiple answers leading to 24, including (5 − 3) × 7 + 10 = 24,
(10 − 7 + 5) × 3 = 24 and (3 + 5) × (10 − 7) = 24. If the four cards are 1, 5, 5, and 5, the
only distinct answer is (5 − 1 ÷ 5) × 5 = 24. Here, we regard 5 × (5 − 1 ÷ 5) = 24 as the
same.

The traditional card game 24 has been used to engage young kids in practicing com-
putation skills with whole numbers and mental calculation. The examples aforementioned
ask students to draw on different math knowledge to come up with the result of 24. To
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2 Classroom Note

successfully find the solutions from any chosen four cards, students need to be proficient
with basic computation facts, the order of operations, and the basic number properties such
as associative property, commutative property, distributive property, and identity property
(multiplicative property). In addition, the example used above, (5 − 1 ÷ 5) × 5 = 24, cre-
ates a fraction to find the answer 24, which expands and enhances student number sense
development. For solving this problem, students may convert the fraction 1

5 into decimal
0.2, calculate the subtraction result in mixed number, or apply distributive property to get
5 × 5 − 1

5 × 5. The multiple ways to solve those similar problems can contribute to devel-
oping student number sense of whole numbers, fractions and decimals. A good number
sense is the foundation for K-8 mathematics.[1] This is also an example that shows the
connections among mathematics knowledge, which is one of the learning process stan-
dards that math educators need to foster in and demonstrate for students.[2] Mathematics
teachers can also use the game to develop in their students two of the mathematics prac-
tices proposed by the Common Core State Standards for Mathematics [3] – Attending
to Precision and Look for and Make Use of Structure. In this paper, we attempt to vary
the rules of card game 24 that will take on more educational purposes of the traditional
game. Teachers may choose appropriate difficulty levels of the game for different students
by numbers of cards and arithmetic operations and use the game to explore the topics of
probability.

It is natural to ask why the number 24 was of interest? Instead, can we require the target
number to be some other number, such as 20? Do we have to use four cards? Can we use
three or five cards? Can we restrict the arithmetic operations to addition and subtraction
only to fit for younger kids? Can we use face cards (for example, Jack for 11, Queen for
12, and King for 13) as well for elder kids? The answer is Yes. We can make new rules and
create new types of card games. To make the new game feasible and interesting, we need
to make sure that our new rules can fit different levels of players and yield a high enough
probability that has an answer for each round. In this paper, we aim to answer the above
questions and give suggestions on choices of cards and arithmetic operations to different
levels of players.

Assume that cards are well shuffled. Four cards are randomly selected, which might
be (3,5,7,10), or (1,5,5,5), or (1,2,9,10), or some other card combinations. A solution
leading to the target number, such as 24, may or may not exist. A card combination
is called solvable if a solution exists. Otherwise, it is called impossible. We regard the
card combination (7,3,5,10) the same as (3,5,7,10) since they do not make difference in
answering our questions. In the section of METHODS, we show different ways to explore
the set of distinct card combinations. We classify card combinations into two sets: solvable
or impossible. We call it a success if a randomly selected card combination is solvable. In
addition, some card combinations, such as (3,5,7,10), appear more often than others, such
as (1,5,5,5). We use the frequency of each card combination as the weight in calculating
the probability of success.

2. Methods

There are three steps in our calculation. First, we collect all distinct card combinations
and let n denote the total number of them. In the second step, we check each distinct
card combination whether it is solvable or impossible. Define si = 1 if the ith distinct card
combination is solvable and si = 0 otherwise, where i ranges from 1 to n. In addition, for
each distinct card combination, we calculate the frequency fi and the difficulty score di that
will be defined later, where i = 1, . . . , n. Finally in the third step, the probability of success
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International Journal of Mathematical Education in Science and Technology 3

for a randomly chosen card combination is calculated by

P (success) =
∑n

i=1 sifi∑n
i=1 fi

(1)

and for the solvable card set the average difficulty score is

E (difficulty|solvable) =
∑n

i=1 sifidi∑n
i=1 sifi

. (2)

Based on these values, we can then make suggestions on rules of play and levels of players.

2.1. Total number and list of distinct card combinations

For illustration purpose, we use the combination of four cards ranged from A to 10 and four
arithmetic operations (+,−,×,÷) as an example to show the procedure of our method. To
find out the number of distinct card combinations, there are a couple of different ways. In [4]
and [5], this problem is considered as being equivalent to choosing 4 x’s from 13 positions
(9 separators from 10 numbers plus 4 x’s), though [5] gave solution to a more generalized
problem. For example, the following diagram corresponds to the card combination (2,3,3,5).

1 2 3 4 5 6 7 8 9 10
x x x x

Therefore, the total number of distinct card combinations is n = ( 13
4

) = 715.
We may also calculate it as following. There are 5 different types of card combinations:

(1) 4 distinct numbers, (2) 1 pair plus 2 distinct numbers, (3) 2 distinct pairs, (4) 1 triplet
plus 1 distinct number, and (5) 1 quartet. The counts for these situations are

( 10
4

) = 210,
( 10

1

)( 9
2

) = 360,
( 10

2

) = 45,
( 10

1

)( 9
1

) = 90, and
( 10

1

) = 10, respectively. Therefore, the total
number of distinct card combinations is 210 + 360 + 45 + 90 + 10 = 715. The way of
classifying the distinct card combinations into five categories is useful when we calculate
the frequencies of card combinations. Both this way and Triplett’s approach (2011) find
the correct answer. However, neither of them is ideal for programming and quick reference
purposes.

In favour of convenient programming and quick reference, we come up with the third
way to handle this problem. Start from the card combination (1,1,1,1) and increase by one
at each time while keeping each number in the combination no less than any number to its
left. That is, we construct a sequence of card combinations as follows: (1,1,1,1), (1,1,1,2),
. . . , (1,1,1,10), (1,1,2,2), (1,1,2,3), . . . , (1,1,2,10), (1,1,3,3), (1,1,3,4), . . . , (1,1,10,10),
(1,2,2,2), (1,2,2,3), . . . , (1,10,10,10), (2,2,2,2), (2,2,2,3), . . . , (10,10,10,10). Let i1, i2,
i3, and i4 represent the first, second, third and fourth number, respectively. We define a loop
letting i1 vary from 1 to 10, i2 vary from i1 to 10, i3 vary from i2 to 10 and i4 vary from
i3 to 10. This loop ends up with 715 distinct card combinations with indices from 1 to
715. For example, the index is 1 for (1,1,1,1), 2 for (1,1,1,2), and 715 for (10,10,10,10).
In addition, since these combinations are arranged alphabetically, given an arbitrary card
combination, we can easily find its unique index. By this way, we construct a reference
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4 Classroom Note

table with all distinct card combinations listed and ordered. For each card combination in
the reference table, we only need to find out its solvability (si) and difficulty score (di)
once. An extended reference table could also be constructed for A to King with a given set
of arithmetic operations. The reference table will be especially useful for math educators
or players seeking for help.

2.2. Frequency of card combination

A card combination, such as (3,5,7,10), may come from one or more suits. For example, it
may contain a heart 3, a diamond 5, a club 7 and a spade 10, or hearts of all four numbers,
or something else. For the ith card combination, we use frequency fi to denote the total
number of cases leading to the same card combination. For the 5 different situations: 4
distinct numbers, 1 pair plus 2 distinct numbers, 2 distinct pairs, 1 triplet plus 1 distinct
number, and 1 quartet, the frequencies (fi) are 4 × 4 × 4 × 4 = 256,

( 4
2

) × 4 × 4 = 96,
( 4

2

) × ( 4
2

) = 36,
( 4

3

) × 4 = 16 and 1, respectively. These frequencies are used in calculating
the probability of success and the average difficulty score defined in formulas (1) and (2).

2.3. Difficulty score

We assign a score of 1 to the arithmetic operation addition (+), 2 to subtraction (−), 3
to multiplication (×), and 4 to division (÷). For a mathematical expression, we define
the difficulty score to be the sum of scores for all arithmetic operations. For example, the
score for (3 + 5) × 2 + 8 is 1 + 3 + 1 = 5; for 10 × 10 ÷ 4 − 4 is 3 + 4 + 2 = 9. If a card
combination is solvable with multiple solutions, we define its difficulty score to be the
lowest score among all solutions. For example, the combination (4,5,6,7) has solutions
4 × (5 + 7 − 6) = 24, 4 × (5 − (6 − 7)) = 24, or (6 − 4) × (5 + 7) = 24. The difficulty
scores are 6, 7 and 6, respectively. Note that the first and second solutions are algebraically
equivalent though the difficulty scores are different. There are many other algebraically
equivalent solutions which we didn’t list here since none of them has a score lower than 6.
Therefore, the difficulty score for (4,5,6,7) is 6.

Note that the definition of difficulty score can be refined under more sophisticated
considerations on the mathematical expressions. For example, since 1 × 8 is obviously
easier than 9 × 8, different weights can be assigned according to different values of the two
numbers involved in. In addition, it is easier to get an answer for a card combination with
multiple solutions such as (3,5,6,8) than for a card combination with a unique solution such
as (4,4,10,10). Nevertheless, the difficulty score is not our major concern in this paper. We
prefer a simple definition for easy understanding.

3. Results

In this paper, we consider only the situations of three-card or four-card combination with
two (+ ,−), three (+ ,−, × ) or four (+ ,−, × ,÷) arithmetic operations. The situation of
five or more cards is much more complicated and not so useful in practice. As for target
number, we consider not just 24 but all integers from 0 to 50 for comparison purpose.

3.1. Three cards

In this subsection, we explore the probability of success and score of difficulty when
three cards are randomly selected from 40 (A to 10) or 52 (A to K) cards. For each
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International Journal of Mathematical Education in Science and Technology 5

Figure 1. Probability of success and average difficulty score using three cards randomly selected
from A to 10 or from A to K.

card combination, we allow two, three or four arithmetic operations. The results across
different target numbers ranging from 0 to 50 are displayed in Figure 1. The patterns in
Figure 1(a) and 1(c), or in Figure 1(b) and 1(d) are similar. From these figures, we see that
the more operations allowed, the higher probabilities and more difficult on average to find
a solution (black dashed curve at the bottom and green dash-dotted line on the top), which
is reasonable. The two probability curves, red dotted and green dash-dotted in Figure 1(a)
and 1(c), are almost the same for target numbers higher than 18. This is because when only
three cards get involved in the calculation, the operation division (÷) is barely used to result
in a target number of 18 or more. This is also verified by the two overlapped curves (red
dotted and green dash-dotted) in Figure 1(b) and 1(d). When only two operations (+ ,−)
are allowed, the probability of success and average difficulty score both decrease as the
target number increases. However, when multiplication (×) and division (÷) are involved,
along with the increase of the target number, the probability of success decreases while the
average difficulty score increases. It is interesting to see that for the red dotted and blue
dash-dotted curves in Figure 1(a) and 1(c), the multiples of 6, that is, 6, 12, 18, etc., usually
have the local maximum probabilities of success. The number 6 is the product of the two
smallest prime numbers 2 and 3. Therefore, when multiplication (×) is used, multiples of
6 are more likely to be solved.

When only two operations (+ ,−) and cards A to 10 are considered, for any single target
number between 0 to 50 the probability of success is very low (less than 0.26, see the black
dashed curve in Figure 1(a)). If we allow multiple target numbers and define the target
number set as {1, 2, 3}, the total probability of success is 0.65 and the average difficulty
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6 Classroom Note

score is 3. If we further extend the target number set to {1, 2, 3, 4, 5}, the total probability
of success becomes 0.87 and the average difficulty score is still 3. When two operations
(+ ,−) and cards A to K are considered, the situation is similar: the probability of success
is very low for any single target number (less than 0.21, see the black dashed curve in
Figure 1(c)). Again define the target number set as {1, 2, 3}, then the total probability of
success is 0.54 and average difficulty is 3. Extend the set of target numbers to {1, 2, 3, 4,
5}, then the total probability of success becomes 0.76 and the average difficulty is still 3.
Apparently adding J, Q, and K into the game does not increase the probability of success
or make it more challenging. Therefore, for the two-operation (+ ,−) and three-card setup
we suggest to use cards from A to 10 and allow multiple target numbers such as {1, 2, 3, 4,
5}. These results are also summarized in Table 2 in Section ‘Discussion’.

Consider three operations (+ ,−, ×). For cards from A to 10, the best target number is
6 since it has the highest probability of success (0.41) and relatively low average difficulty
score (3.84). For cards from A to K the best choice is also 6, which has the highest
probability of success (0.31) and low average difficulty score (3.75). Again, using cards
A to K does not contribute to the probability of success or increase difficulty score. Our
suggestion is to use cards from A to 10 and set the target number to 6 (Table 2).

When four operations (+ ,−, × ,÷) are considered, if using cards from A to 10, the target
number 2 has the highest probability of success (0.64) and relatively high average difficulty
score (4.46); if using cards from A to K the number 2 also has the highest probability of
success (0.53) and relatively high average difficulty score (4.52). Our suggestion is to use
cards from A to 10 and set the target number to 2 (Table 2).

3.2. Four cards

When four cards are randomly selected from 40 (A to 10) or 52 (A to K) cards, we
also analyze the results with two (+ ,−), three (+ ,−, ×), or four (+ ,−, × ,÷) arithmetic
operations. In addition, since decimals/fractions may appear in the four-operation situation,
we separate the results into two categories: allowing and not-allowing decimals/fractions.
Note that even in the previous three-card four-operation situation, decimals/fractions may
also appear in some solutions. Actually, for any two integers a and b, a fraction can only
occur as the result of division a ÷ b or b ÷ a. Without loss of generality, assume it
comes from a ÷ b. When there are only three cards, once a fraction a ÷ b is generated
the next operation must be multiplication with the third number c to get a final integer
target number. Since a ÷ b × c = a × c ÷ b, a fraction/decimal can always be avoided by
taking the solution a × c ÷ b instead. However, in some four-card situation, for example,
6 ÷ (5 ÷ 4 − 1) = 24, a fraction cannot be avoided. Therefore, it is necessary to calculate
the results separately for allowing and not-allowing decimals/fractions, which are referred
as results in real number world and integer world, respectively.

For the case of four-card and two-operation situation, the results are similar to the
three-card two-operation situation: there is no a single target number that has a reasonably
high probability of success. The best choice would be allowing the target number to be any
of 1, 2, 3, 4 and 5. In this situation, if using cards from A to 10 the probability of success
is 0.97 and the average difficulty score is 4; if using cards from A to K, these two numbers
are 0.91 and 4. By this way, both could be a fun game with high probability of success.

For the case of four-card and three-operation situation, if using cards from A to 10 the
number 12 has the highest probability of success 0.8341 and moderate average difficulty
score 5.43, the number 6 can also be a good choice with the second highest probability
of success 0.8325 and slightly lower average difficulty score 5.33. Using cards from A to
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Table 1. List of card combinations solvable only in real number
world for four-card four-operation and target number 24.

No. Card combination Frequency Solution

1 (1,3,4,6) 256 6 ÷ (1 − 3 ÷ 4) = 24
2 (1,4,5,6) 256 6 ÷ (5 ÷ 4 − 1) = 24
3 (1,5,5,5) 16 (5 − 1 ÷ 5) × 5 = 24
4 (1,6,6,8) 96 6 ÷ (1 − 6 ÷ 8) = 24
5 (2,4,10,10) 96 (4 ÷ 10 + 2) × 10 = 24
6 (2,5,5,10) 96 (5 − 2 ÷ 10) × 5 = 24
7 (2,7,7,10) 96 (10 ÷ 7 + 2) × 7 = 24
8 (3,3,7,7) 36 (3 ÷ 7 + 3) × 7 = 24
9 (4,4,7,7) 36 (4 − 4 ÷ 7) × 7 = 24

10 (1,8,Q,Q) 96 12 ÷ (12 ÷ 8 − 1) = 24
11 (2,2,J,J) 36 (2 ÷ 11 + 2) × 11 = 24
12 (2,2,K,K) 36 (2 − 2 ÷ 13) × 13 = 24
13 (2,3,5,Q) 256 12 ÷ (3 − 5 ÷ 2) = 24
14 (5,5,7,J) 96 (7 − 11 ÷ 5) × 5 = 24
15 (5,7,7,J) 96 (5 − 11 ÷ 7) × 7 = 24

Table 2. Suggestions on target numbers and player levels.

Arithmetic operations
Number Range of
of cards cards (+ , −) (+ , −, × ) (+ , −, × , ÷)

3 A to 10 (1, 2, 3, 4, 5) (1st
graders)

6 (3rd to 4th graders) 2 (3rd to 5th graders)

A to king Not recommend Not recommend Not recommend

4 A to 10 (1, 2, 3, 4, 5) (1st to 6, 12 (3rd to 4th graders) 12 (4th graders and up)
2nd graders) 24 (4th graders and up)

36 (advanced players)

A to king (1, 2, 3, 4, 5) (1st 12 (3rd to 4th graders) 12 (4th graders and up)
and 2nd graders) 24 (4th graders and up)

36 (advanced players)

K the number 12 has the highest probability of success 0.76 and relatively high average
difficulty score 5.57. In this situation, the number 6 is no longer a good choice since it has
a much lower probability of success 0.69.

For the case of four-card and four-operation situation, the traditional 24-card game uses
cards from A to 10 and sets the target number to 24. In this situation, the probability of
success is 0.86 with average difficulty score 5.88 in the integer world and it is 0.87 with
difficulty score 5.92 in the real number world. Note that when four cards are randomly
selected from 40 cards (A to 10) a fraction/decimal occurs in 984 out of 91,390 (C4

40 =
91390) card combinations. Among these 984 cases, there are 9 distinct card combinations.
The results are listed in Table 1 (No. 1 to 9).

From the probability of success and difficulty score plots in Figure 2, it seems that the
target number 24 is the largest number that has a local maximum probability of success and
an average difficulty score less than 6. A score larger than 6 means more of subtraction,
multiplication and division involved, which is much harder comparing with a calculation
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8 Classroom Note

Figure 2. Probability and average difficulty score of solvable combinations using four cards ran-
domly selected from A to 10 or from A to K.

involving more additions which tends to have a score less than 6. Therefore, considering
both of solvability and difficulty, we conclude that the number 24 is a reasonable choice. Of
course, if we want the game to be easier, we can choose 12, which has a higher probability
of success and lower difficulty score (0.93 and 5.60 in the integer world; 0.94 and 5.61
in the real number world); if we want the game to be more challenging, the number 36
could be a good choice, which has a little lower probability of success and higher difficulty
score (0.81 and 6.16 in the integer world; 0.83 and 6.24 in the real number world). From
Figure 2(a) and 2(b), we conclude that it is unnecessary to try numbers larger than 40 since
the probability of success drops quickly while the difficulty score stays around 6.2.

If instead 52 cards from A to K are used, for the target numbers 12, 24, and 36, the
probabilities of success and average difficulty scores are (0.87, 5.76), (0.80, 5.94) and (0.75,
6.13), respectively, in the integer world and they are (0.87, 5.77), (0.80, 5.97) and (0.76,
6.17), respectively, in the real number world. For the target number 24, there are additional
6 distinct card combinations that involve decimals or fractions, which are listed in Table 1
(from No. 1 to 15).

4. Discussion

In this paper, we fully explored the probability of solvable and average difficulty score for
different choices of cards and arithmetic operations. Our conclusions include the following:
(1) If using three cards, we’d better choose from A to 10 to have a higher probability of
success; (2) If using two arithmetic operations (+ , −) in the game, we suggest using
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multiple target numbers {1, 2, 3, 4, 5} to have a reasonably high probability (more than
0.8) of success; (3) If three arithmetic operations (+ , −, ×) are allowed, the number 6 is
recommended as the target number if using three or four cards from A to 10; the number 12
is recommended if using four cards from A to K; (4) If all four arithmetic operations (+ , −,
× , ÷) are allowed, the number 2 is recommended as the target number if using three cards;
(5) The most complicated situation is when four cards and four arithmetic operations are
used. In this situation, the numbers 12, 24 and 36 can all be the target numbers. The number
12 is the easiest and 36 the hardest. The recommendations are summarized in Table 2.

The literature on games and mathematics learning revealed that mathematical games
have produced positive results regarding students’ motivation, attitudes and persistence
toward mathematics learning and improved student mathematics learning.[6,7–10] Further,
it was suggested in [10] that when selecting mathematical games, teachers need to consider
establishing clear goals and rules, have flexible learner control and choose suitable tasks at
an appropriate level of challenge for students. Our current study will help teachers set up
clear goals and rules, and choose appropriate levels of challenge for their students when
students are engaged in playing 24-card games.

According to the Common Core State Standards for Mathematics,[3] by the end of
Grade 2 students should be able to proficiently add and subtract within 20 and use the
commutative and associative properties to add and subtract. Thus, it is recommended that
teachers of Grades 1 and 2 can design the three- or four-card games by using addition and
subtraction operations to identify the target numbers from 1 to 5. Students by the end of
Grade 3 are expected to fluently multiply and divide within 100 by using strategies such as
the relationship between multiplication and division, and the distributive and commutative
properties. Therefore, it is appropriate that teachers can have students play the card games
by adding multiplication and division operations from Grade 3 and up. This paper expands
the traditional 24-card game for the purpose of mathematics education. Elementary and
middle school students will develop their number sense, and enhance their knowledge in
number and operation.
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X, López V, Rodriguez P, Salinas M. Beyond Nintendo: design and assessment of educational
video games for first and second grade students. Comput Educ. 2002;40:71–94.

[10] Shin N, Sutherland LM, Norris CA, Soloway E. Effects of game technology on elementary
student learning in mathematics. Brit J Educ Technol. 2012;43(4):540–560.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
C

hi
ca

go
] 

at
 0

8:
15

 2
4 

Ja
nu

ar
y 

20
14

 


	Abstract
	1.Introduction
	2.Methods
	2.1.Total number and list of distinct card combinations
	2.2.Frequency of card combination
	2.3.Difficulty score

	3.Results
	3.1.Three cards
	3.2.Four cards

	4.Discussion
	References



