
Descriptive Statistics of the Genome:

Phylogenetic Classification of Viruses

TROY HERNANDEZ1 and JIE YANG

ABSTRACT

The typical process for classifying and submitting a newly sequenced virus to the NCBI
database involves two steps. First, a BLAST search is performed to determine likely family
candidates. That is followed by checking the candidate families with the pairwise sequence
alignment tool for similar species. The submitter’s judgment is then used to determine the
most likely species classification. The aim of this article is to show that this process can be
automated into a fast, accurate, one-step process using the proposed alignment-free method
and properly implemented machine learning techniques.

We present a new family of alignment-free vectorizations of the genome, the generalized
vector, that maintains the speed of existing alignment-free methods while outperforming all
available methods. This new alignment-free vectorization uses the frequency of genomic
words (k-mers), as is done in the composition vector, and incorporates descriptive statistics
of those k-mers’ positional information, as inspired by the natural vector.

We analyze five different characterizations of genome similarity using k-nearest neighbor
classification and evaluate these on two collections of viruses totaling over 10,000 viruses.
We show that our proposed method performs better than, or as well as, other methods at
every level of the phylogenetic hierarchy. The data and R code is available upon request.
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1. INTRODUCTION

At the end of the day, some machine learning projects succeed and some fail. What makes the

difference? Easily the most important factor is the features used.

—Paul Domingos (2012)

The proliferation of low-cost, high-speed genomic sequencing technology has and will con-

tinue to give the scientific community ever-increasing amounts of genomic data. Experts will no longer

have the ability to manually classify this torrent of biological data. Automated virus classification systems

have begun appearing in the past few years to assist experts and practitioners (Bao, 2012; Rosen et al., 2012;

Yu et al., 2012). These classification systems rely broadly on two different measures of similarity between the

genome: sequence alignment identity and alignment-free vectorizations.
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Virus classification by pairwise sequence comparison (Bao et al., 2008) relies on the sequence alignment

identity between every pair of viruses. For reasons of computational complexity, all pairs of viruses are aligned

instead of all viruses being aligned at once as in multiple sequence aligment (MSA). MSA (i.e., aligning entire

groups of genomic sequences at once) has a computational complexity of O(nm), where n is the length of a viral

sequence and m is the number of viruses being compared. For this reason, all of the pairwise identities of viruses

in a given family are precomputed. After the pairwise identities of a new virus are calculated a histogram of the

identity scores are displayed—color-coded according to their subfamily, genus, and species. From there,

experts use their best judgment to determine the proper subfamily, genus, and species classifications.

In the alignment-free/vectorization approach, statistics of each genome are compiled, stored, and new

viruses are then classified according to various learning algorithms. The bulk of the literature in alignment-

free methods relies on the bag-of-words model, also known as k-mers within the bioinformatics commu-

nity. k-Mers are genomic words from the alphabet {A,C,G,T} of length k; for example, for k = 3, ‘‘AGC,’’

‘‘CTA,’’ and ‘‘TAG.’’ For a given k, a vector of k-mer frequencies can be used in learning algorithms for

clustering or classification (Vinga and Almeida, 2003).

Another alignment-free approach is the natural vector (Deng et al., 2011). The natural vector charac-

terizes the distribution of a genome’s nucleotides. That characterization consists of the counts of A,C,G, and

T in addition to positional information. That is, the mean position of the nucleotides and their central

moments; that is, the 2nd, 3rd, 4th, etc., central moments.

In this article we extend the idea of incorporating information about the distribution of k-mer positions to

a genomic vectorization. The primary contributions are as follows:

� Characterizing k-mer positional distribution information in a vector via the proposed generalized

vector (GV).
� Analysis of five different characterizations of genome similarity: the composition vector (CV), the

complete composition vector (CCV), the natural vector (NV), pairwise sequence alignment (PASC),

and GV.
� Comparative evaluation of the two collections of viruses families/genera mentioned above totaling

over 10,000 unique viruses.

In section 3 we describe the source, curation, and details of the data in addition to the algorithm, the

implementation details, and the expectations for performance on each method. We evaluate the different

methods in section 4 and conclude in section 5.

2. METHODS

2.1. Related work

In this section we describe various methods used in the literature to quantify similarity in genomes. Three

of the methods are alignment-free; that is, they use statistics collected from a genome as components in a

vector. Those vectors are then used in learning algorithms for clustering or classification. Alternatively,

MSA and PASC aligns genomes and measures similarity directly from those alignments. In section 3, the

algorithms and preprocessing used to implement the classifications are described. This will affect the

measures of similarity differently for the different representations.

2.1.1. Sequence alignment. A review of sequence alignment is beyond the scope of this article, but

one can be found in Waterman (1995). What is important, with regard to this article, is the computational

complexity of MSA. Given a collection of m sequences of length n the complexity is O(nm). Newer

implementations have brought speed-ups beyond the naive implementation, but large-scale comparisons

can still be prohibitive. PASC gets around this by aligning every pair of sequences and uses those pairwise

scores for a similarity matrix.

2.1.2. K-mers. The bag-of-words model is ubiquitous in natural language processing (Lewis, 1998).

In this model a text document is converted into a vector in which each component represents a word. This

conversion results in the loss of grammar and word order information.

Within bioinformatics, the bag-of-words model has been adapted to work on genomes. The ‘‘words’’ in

this case are nucleotides in the genome. Substrings of length k, known as k-mers, can be of length 1 to n for
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a given sequence of length n. These k-mers are extracted from the sequence by sliding a window of length k

over the genome from the 1st position to the (n - k + 1)st position. For example, in the string S =
GATTACA there are six nonzero 2-mers:

nAC = 1‚ nAT = 1‚ nCA = 1‚ nGA = 1‚ nTA = 1‚ nTT = 1

This results in a vector of counts:

n2 = (nAA‚ nAC‚ nAG‚ nAT ‚ nCA‚ nCC‚ nCG‚ nCT ‚

nGA‚ nGC‚ nGG‚ nGT ‚ nTA‚ nTC‚ nTG‚ nTT ) (1)

= (0‚ 1‚ 0‚ 1‚ 1‚ 0‚ 0‚ 0‚ 1‚ 0‚ 0‚ 0‚ 1‚ 0‚ 0‚ 1) (2)

Typically, by dividing by l–k + 1, these k-mer counts are converted to frequency vectors, fk. Due to the

four letter nucleotide alphabet, for a given k, there are 4k components in the k-mer frequency vector. For

example:

f2 = (0‚ 1
6

‚ 0‚ 1
6

‚ 1
6

‚ 0‚ 0‚ 0‚ 1
6

‚ 0‚ 0‚ 0‚ 1
6

‚ 0‚ 0‚ 1
6

) (3)

2.1.3. Composition vector. It has been shown that classification using k-mers can be improved by

using some informed scale and location shifts of the frequency vector (Hao et al., 2003). This is known as

the composition vector (CV). There are many different proposed parameters for the scale and location

shifts. Here we focus on a Markov model as described in Chan et al. (2010).

For a k-mer u, we estimate its expected frequency using its two component k - 1 length words. As an

example, let u = LwR = GATTACA. Where L = G, w = ATTAC, and R = A. Following Chan et al. (2010), we

estimate its expected frequency:

P(LwR) =P(Lw)P(RjLw) (4)

� P(Lw)P(Rjw) (5)

=
P(Lw)P(wR)

P(w)
(6)

To get the composition vector component for k-mer u, cu, we use the frequency of u, fu, and its expected

frequency Pu:

cu =
fu -Puffiffiffiffiffiffi
Pu

p (7)

For a given k this results in the composition vector:

ck = (cu1
‚ . . . ‚ cu4k): (8)

2.1.4. Complete composition vector. The complete composition vector (CCV) takes the compo-

sition vector for various values of k, ck, and concatenates them (Wu et al., 2004). This produces the CCV:

vk = (c1‚ . . . ‚ ck) (9)

For the CV and a fixed k, using the values without additional transformations is sufficient. When using

the CCV with distance matrices another transformation is necessary for the following reason: Con-

catenating the CVs of a genome from k = 1.5, the vector will have four components from c1 and 45 = 1024

components from c5. This makes the contribution of c1 negligible to the distances computed. For this

reason, as shown in section 3.6, we use a transformation informed by the data.

2.1.5. Natural vector. k-Mers and the composition vector throw out all location information for the

nucleotides, the natural vector does not. The natural vector characterization of genomes (Deng et al., 2011;

Yu et al., 2013) consists of the counts, mean position, and central moments of the nucleotides A, C, G, and

T. For u = A, C, G, T,
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(1) Let S = (s1,s2,.,sn) be a nucleotide sequence of length n; that is, si ˛{A,C,G,T} for i = 1, 2, ., n.

(2) Let nu denote the number of letter u in S and n denote the length of S, such that
P

u nu = n

(3) Let su[i] denote the position of the i-th letter u, that is

su[1] < � � � < su[nu] (10)

and

S[su[i]] = u‚ for i = 1‚ . . . ‚ nu: (11)

(4) Let the mean position of letter u be

lu =
Xnu

i = 1

su[i]=nu (12)

(5) For j = 2,.,nu, let

d j
u =
Xnu

i = 1

(su[i] - lu) j

n
j - 1
u n j - 1

: (13)

In theory, any number of central moments can be used. In practice, only the second central moment (i.e.,

j = 2) is used, resulting in a 12-dimensional vector (Yu et al., 2013). This results in a vector:

(nA‚ lA‚ d2
A‚ nC‚ lC‚ d2

C‚ nG‚ lG‚ d2
G‚ nT ‚ lT ‚ d2

T ) (14)

2.2. Proposed vectorization

Given the k-mer, composition vector, complete composition vector, and natural vector representations of

the genome, we introduce the generalized vector (GV). Observing that the composition vector throws out

the positional information of the genome and the natural vector retains this information, but only for k-mers

of length 1, it becomes clear that a large space of descriptive statistics of the genome is being ignored. In

addition to extending the natural vector definition to k-mers with values of k greater than 1, we also make

some adjustments.

2.2.1. Coordinates of natural vector. Suppose n is large enough. Let su be a randomly chosen

position for the nucleotide u. Assume that si follows an iid discrete distribution with four outcomes

for i = {1,.,n} with proportions (pA,pC,pG,pT), where 0 < pu < 1,u = A,C,G,T, and
P

upu = 1. Then ap-

proximately,

(su - lu)=n ~� Unif( - 1=2‚ 1=2) (15)

lu ~�
n

2
(16)

and

d j
u ~�

n

2j(j + 1)nj - 2
u

if j = 2d

0 if j = 2d - 1

�
(17)

because

1

nu

Xnu

i = 1

(su[i] - lu)j

nj
~�
Z 1=2

- 1=2

xjdx (18)

=
1

2j(j + 1) if j = 2d

0 if j = 2d - 1

�
(19)
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Due to the term ‘‘nj - 2
u ’’ in (17), which is roughly (npu) j–2, dj

u will be much smaller than nu and lu for

large n and j > 2. Therefore, the coordinates after the first 12 of the natural vector will be negligible when

calculating the distances used to measure similarity.

2.2.2. Generalized vector. In extending the natural vector to values of k greater than 1, we first

replace counts of k-mers, nu, with their respective CVs, cu. The insight of the CV, which is especially

important for the CCV, is that the frequencies of k-mers and (k-1)-mers are generally highly correlated (Wu

et al., 2004). Additionally, we concatenate the collection of CVs, ck, resulting in vk as defined in section 2.1.4.

Secondly, we add in the length n. When trying to distinguish between different families of viruses, instead

of just distinguishing between different species, the length of a genome is one of the most important factors.

Third, we use the standardized moments, lj

rj, where lj represents the j-th moment about the mean and r
represents the standard deviation,

lj
u = 1

nu

Xnu

i = 1

(su[i] - lu) j (20)

ru =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nu

Xnu

i = 1

(su[i] - lu)2

s
(21)

This is used instead of the scaled central moments that are used in the natural vector. In particular, j = 3 is

skewness and j = 4 is kurtosis. The reason for this is that the scaling of the central moment by 1
nj - 1 makes it

so that the higher order moments converge very quickly to 0. Lastly, similarly to CCV, we concatenate the

vectors described above for various values of k; for example, k = 1.5. The generalized vector, g
j
k, of a

DNA sequence S is defined by

Generalized Vector

k−
m

er
 (

k)

Frequency Mean

1
5

4
3

2

NV

CCV

GV

* LengthOO

Variance Skewness Kurtosis

Descriptive statistic

FIG. 1. The descriptive space of genome vectorizations.
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(n‚ vk‚ l1‚ . . . ‚ lk‚ r2
1‚ . . . ‚ r2

k‚
l3

1

r3
1

‚ . . . ‚
l3

k

r3
k

‚ . . . ‚
lj

1

rj
1

‚ . . . ‚
lj

k

rj
k

) (22)

where

lj
k = (lj

u1
‚ . . . ‚ l j

u
4k

) (23)

rj
k = (rj

u1
‚ . . . ‚ r j

u
4k

) (24)

and

lj
k

rj
k

=

 
lj

u1

rj
u1

‚ . . . ‚
lj

u
4k

rj
u

4k

!
: (25)

Figure 1 shows the approximate descriptive space occupied by the various vectorizations. The complete

composition vector uses the frequencies but ignores all additional position information and throws out

length. The natural vector uses counts and so length is described, in addition to mean, variance, and higher-

order descriptive statistics that can be transformed to describe skewness and kurtosis. The generalized

vector uses the length in addition to the frequency, mean, variance, etc., of all k-mers.

2.2.3. One-to-one. In Deng et al. (2011) the authors show that there is a one-to-one correspondence

between a genome and its natural vector. The same is true for k-mers with k = n. That is, for a genome of

length n and a k-mer vector with k = n, there is exactly one k-mer in the 4k length vector that is nonzero. The

generalized vector maintains the one-to-one correspondence given that one may fix k ‡ 1 and let

j = maxfnj
u1

‚ . . . ‚ nu4k
jg, which guarantees one-to-one correspondence. In practice, we use k £ 5 and j £ 4.

3. ALGORITHM

3.1. Phylogenetic classes

Viruses are classified phylogenetically using two complementary systems. The first system is known as

Baltimore classification (Baltimore, 1971). Baltimore classifications are defined by the genomic material of

the virus (RNA/DNA), strandedness (single/double), the method of replication (reverse-transcribing), and

sense (positive/negative). This results in seven mutually exclusive viral classes.

The International Committee on Taxonomy of Viruses (ICTV) provides the second method of classification

(King et al., 2011). The classifications are made by a subcommittee of the ICTV based on features of the virus

(e.g., capsid shape, host, genome sequence, etc.) These classifications are hierarchical. The levels of the

hierarchy, ordered from the broadest to the most specific, are order, family, subfamily, genus, and species.

Additionally, each family belongs to only one Baltimore class. There are additional levels of the hierarchy, for

example, subgenus, but for the data used here only the Baltimore class, family, genus, and species are analyzed.

3.2. Training and testing

Each dataset is split up randomly into a training set of 75% of the data and a testing set of the remaining

25%. The same cross-validation folds (training) and testing sets are used for all of the vectorizations.

Since we perform cross-validation to determine optimal parameters, and because some of the labels are

small in number, it is required that a class label have at least three samples: one sample for testing and two

for training. Classes with fewer than three samples are removed. In practice, the viruses in these classes can

be added back into the training set for the final model. The procedure for determining if a virus belongs to a

new class is discussed below. We also require proportional distribution of the classes among the training

and testing sets in addition to proportional distribution among the cross-validation splits. We use 10-fold

cross validation where possible, and smaller where it is not.

3.3. Data

The two data sets used are the reference sequence data (RefSeq) published by the National Center for

Biotechnology Information (NCBI) and the PASC data. The RefSeq data consists of over 2000 viruses, but

after removing viruses with multiple segments or without Baltimore classes, only 1881 viruses remain.
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The PASC data consist of 51 families with 8862 viruses in total. These data are used to predict species

since that is the primary objective of the web tool.

3.4. PASC

The PASC web tool uses a BLAST-based alignment method. The precomputed similarity scores were

downloaded, and are accessible, from the PASC website (Bao, 2012). PASC matrices are not calculated for

the RefSeq data and the method is ignored for that evaluation.

3.5. k-Nearest neighbors

The restriction of PASC to similarity matrices resulted in the k-nearest neighbor algorithm being the

most straightforward to implement. The value of k within the k-nearest neighbor algorithm is chosen by

cross-validation.

3.6. Relevant component analysis

With regards to GV and CCV, the exponential growth of the vector size for larger values of k within k-

mers ensures that the smaller values of k will be overwhelmed by the larger values of k; for example,

there are only four 1-mers while there are 1024 5-mers. For this reason we perform a version of relevant

component analysis (RCA) to (1) improve classification accuracy and (2) because the transformations may

provide valuable information for practitioners.

Where the standard RCA (Shental et al., 2006) takes the average of the absolute value of a component’s

correlation among all labels, we instead use cross-validation to:

(1) take the absolute value of the correlation to some power between 0 and 10 before taking the average and

(2) we enforce some sparsity by reducing to 0 some percentage of the smallest coefficients.

3.7. Partitions

We perform the above analysis on each dataset five times using five randomly chosen testing and training

set partitions to ensure the reliability of the results. From the single-segment 2044 RefSeq viruses, 1881

viruses are used for training (1413) and testing (468) in total. For each partition of the PASC data there are

5559 training samples and 1758 testing samples.

3.8. Cross-validation

Cross-validation is used to tune the parameters of a model. Typically, this is done by performing a grid

search over a reasonable parameter space (Hastie et al., 2001). In Bergstra and Bengio (2012) a randomized

search is shown to be a more efficient method and is used here.

3.9. Predictions and errors

Within the PASC data evaluations, predicted class labels are recorded. Viruses where the predicted class

labels do not match the labels given in the NCBI or PaSC datasets are assumed to be errors. While this is

not always true due to the inherently messy nature of the data, the low error rates described below indicate

that the overwhelming majority of the species labels are reliable.

4. IMPLEMENTATION

4.1. Reference sequence results

For Baltimore classifications, with results shown in Table 1, GV performs the best and has an average

misclassification rate of 2.9% over the five partitions. CCV, NV, and CV have average misclassification

rates of 6.8%, 8.2%, and 11.8% respectively.

Results for family classifications given the Baltimore class are shown in Table 2. GV again performs the

best and has an average misclassification rate of 5.5% over the seven Baltimore classes and five partitions

compared to 8.9%, 13.3%, and 14.7% misclassification rates for CCV, CV, and NV respectively.
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Results for genus classifications given family labels are shown in Table 3. GV again performs the best,

but this time it ties with CCV with an average misclassification rate over the 72 families and 5 partitions of

5.7% compared to 8.4% and 12.3% misclassification rates for CV and NV respectively.

4.2. PASC results

The totals on the bottom of Table 4 show that CCV and GV are both very competitive with PASC on this

data hand-picked for PASC with error rates of 0.7% and 0.8%, respectively, compared to PASC’s 0.6%. CV

and NV, on the other hand, struggle in many cases. Additionally, the PASC web tool is not portable in the

sense that it relies on NCBI resources and cannot be implemented on a PC. The other four methods can be

utilized on a PC easily.

One case where GV noticeably underperforms compared to PASC and CV is in the family Picorna-

viridae, with nine errors total. While this bears more investigation the error rate within that family remains

below 1.2%. For CCV and GV, the error rates never exceed 4% on any virus family, reaching their

Table 2. Family Errors and Samples Given Baltimore Class Averaged

Over Five Partitions

I II III IV V VI VII Totals

No. train 558 238 28 400 48 0 33 1305

No. test 178 76 8 124 15 0 11 412

No. removed 40 14 9 39 4 58 0 164

No. total 776 328 45 563 67 58 44 1881

NV errors 42.8 3.0 1.0 13.0 0.6 0.0 0.0 60.4

CV errors 27.4 3.2 1.4 21.6 1.2 0.0 0.0 54.8

CCV errors 23.6 2.6 1.0 8.8 0.6 0.0 0.0 36.6

GV errors 17.0 0.6 0.4 4.4 0.2 0.0 0.0 22.6

Table 3. Genus Errors and Samples Given Family Class Averaged

Over Five Partitions

I II III IV V VI VII Totals

No. train 252 221 16 330 32 43 23 917

No. test 77 67 4 101 10 10 7 276

No. removed 447 40 25 132 25 5 14 688

No. total 776 328 45 563 67 58 44 1881

NV errors 10.6 2.4 1.4 10.4 2.4 2.4 1.2 30.8

CV errors 2.8 1.8 2.2 10.8 2.0 0.4 1.0 21.0

CCV errors 2.0 2.4 1.2 7.0 0.6 0.0 1.2 14.4

GV errors 3.0 1.6 1.6 6.0 1.2 0.2 0.8 14.4

Table 1. Baltimore Errors and Samples Averaged Over Five Partitions

I II III IV V VI VII Totals

No. train 582 246 34 423 51 44 33 1413

No. test 194 82 11 140 16 14 11 468

No. removed 0 0 0 0 0 0 0 0

No. total 776 328 45 563 67 58 44 1881

NV errors 4.8 7.0 4.4 10.4 3.2 6.6 1.8 38.2

CV errors 4.8 20.4 7.8 17.2 1.4 1.8 1.8 55.2

CCV errors 2.6 13.4 4.8 8.2 1.0 1.2 0.2 31.4

GV errors 1.6 5.8 2.4 1.8 0.6 0.8 0.4 13.4
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Table 4. Errors and Samples by Family Averaged Over Five Partitions

No.

train

No.

test

No.

removed

No.

total CV CCV NV PASC GV

Adenoviridae 70 22 31 123 0.0 0.0 0.2 0.0 0.0

Alloherpesviridae 0 0 5 5 0.0 0.0 0.0 0.0 0.0

Alphaflexiviridae 66 20 39 125 0.0 0.0 0.0 0.0 0.0

Anelloviridae 151 49 38 238 0.0 0.0 0.4 0.0 0.0

Arteriviridae 120 39 3 162 0.0 0.0 0.0 0.0 0.0

Astroviridae 26 8 15 49 0.0 0.2 0.2 0.0 0.2

Avsunviroidae 292 95 0 387 0.0 0.2 0.0 0.0 0.2

Baculoviridae 8 3 52 63 0.0 0.0 0.6 0.0 0.0

Betaflexiviridae 73 22 46 141 0.0 0.4 0.2 0.0 0.0

Caliciviridae 227 73 10 310 0.8 1.4 1.2 1.2 0.8

Caulimoviridae 33 10 52 95 0.0 0.0 0.2 0.0 0.0

Circoviridae 272 88 18 378 0.0 0.0 0.4 0.0 0.0

Coronaviridae 108 34 28 170 0.8 0.0 0.4 0.0 0.2

Dicistroviridae 21 7 13 41 0.0 0.0 0.0 0.0 0.0

Endornaviridae 0 0 11 11 0.0 0.0 0.0 0.0 0.0

Filoviridae 20 6 3 29 0.0 0.0 0.0 0.0 0.0

Flaviviridae 562 183 41 786 2.8 0.6 4.8 0.4 0.6

Geminiviridae 505 154 220 879 3.0 3.8 14.0 4.0 3.4

Hepadnaviridae 50 15 8 73 0.6 0.4 1.0 1.0 0.0

Herpesviridae 8 2 55 65 0.0 0.0 0.0 0.0 0.0

Hypoviridae 0 0 9 9 0.0 0.0 0.0 0.0 0.0

Iflavirus 13 3 7 23 0.0 0.0 0.0 0.0 0.0

Inoviridae 0 0 38 38 0.0 0.0 0.0 0.0 0.0

Iridoviridae 6 2 10 18 0.0 0.0 0.0 0.0 0.0

Lentivirus 699 230 10 939 4.4 1.2 6.0 0.8 1.6

Leviviridae 23 6 3 32 0.4 0.0 0.2 0.0 0.0

Lipothrixviridae 0 0 8 8 0.0 0.0 0.0 0.0 0.0

Luteoviridae 73 22 19 114 0.0 0.4 0.0 0.0 0.4

Microviridae 44 13 15 72 0.0 0.0 0.0 0.0 0.0

Nanoviridae_CP 25 8 6 39 0.0 0.0 0.0 0.0 0.0

Nanoviridae_Rep 0 0 48 48 0.0 0.0 0.0 0.0 0.0

Narnaviridae 0 0 13 13 0.0 0.0 0.0 0.0 0.0

Papillomaviridae 157 49 86 292 4.6 0.4 5.0 0.0 0.4

Paramyxoviridae 168 51 17 236 2.4 1.8 1.6 2.0 1.2

Parvoviridae 84 24 62 170 0.6 0.2 2.4 0.2 0.2

Picornaviridae 491 155 39 685 4.8 0.2 4.8 0.0 1.8

Podoviridae 7 2 113 122 0.0 0.0 0.0 0.0 0.2

Polyomaviridae 109 34 28 171 0.0 0.0 0.4 0.0 0.4

Pospiviroidae 491 155 8 654 1.4 1.2 3.0 0.6 1.2

Potyviridae 209 66 59 334 1.0 0.0 0.4 0.0 0.0

Poxviridae 8 3 30 41 0.0 0.0 0.0 0.0 0.0

Rhabdoviridae 87 28 27 142 0.2 0.0 0.0 0.0 0.0

SecoviridaeRNA1 21 7 34 62 0.8 0.0 0.0 0.0 0.0

Sobemovirus 28 9 13 50 0.0 0.0 0.0 0.0 0.0

Tectiviridae 0 0 8 8 0.0 0.0 0.0 0.0 0.0

Tobamovirus 78 23 22 123 0.0 0.4 0.2 0.0 0.4

Togaviridae 92 26 13 131 1.4 0.2 2.0 0.4 1.0

Tombusviridae 18 6 48 72 0.0 0.0 0.0 0.0 0.0

Totiviridae 4 2 32 38 0.0 0.0 0.0 0.0 0.0

Tymoviridae 5 2 29 36 0.0 0.0 0.0 0.0 0.0

Umbravirus 7 2 3 12 0.0 0.0 0.0 0.0 0.0

Totals 5559 1758 1545 8862 30.0 13.0 49.6 10.6 14.2
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maximum in the Paramyxoviridae and Togaviridae families respectively. PASC’s error rate within families

reaches its maximum in the Hepadnaviridae family with 6.67%.

5. DISCUSSION

We have generalized the class of genome statistics for sequences that comprise the vectorizations used

for phylogenetic classification, thereby avoiding the troubles that accompany sequence alignment. The

performance of the GV is superior to the other vectorizations on Baltimore and family classifications. On

genus-level and species-level classifications GV performs as well as, or almost as well as, CCV and PASC.

The coefficients generated by the RCA methodology are simple and intuitive, but other methodologies

may be more effective; for example, principle component analysis ( Jolliffe, 2005), neighborhood com-

ponent analysis (Goldberger et al., 2004), or large-margin nearest neighbors (Blitzer et al., 2005). PASC

includes a two-step process that requires first identifying the appropriate virus family. Additionally, PASC

requires the use of high-performance computing that may not be available in low-resource environments.

The GV method described here requires less than a second to classify new viruses using existing models

and less than a minute to generate entirely new models on a consumer laptop.

Future work could include the GV being extended to maximal length using the suffix-tree methods that

have already been shown to be effective with CCA methods in phylogenetic classification (Apostolico

et al., 2010). Additionally, the method described above should be considered a proof-of-concept. The

determination of new virus classes (and incorrect labels) can be handled in practice using techniques

developed in the deep k-nearest neighbor literature (Denceux, 1995), one-class SVMs (Chen et al., 2001),

and cluster analysis (Tibshirani et al., 2001).

Taking classification performance and computational performance features into account, the GV method

provides a useful alternative to PASC for phylogenetic classification. Given the many and varied appli-

cations of k-mers, this new class of genome statistics may prove to be additionally useful outside the field

of phylogenetics.
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