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Abstract:
In this paper, we propose a statistical classification method based on discriminant analysis using the first and
second moments of positions of each nucleotide of the genome sequences as features, and compare its per-
formances with other classification methods as well as natural vector for comparative genomic analysis. We
examine the normality of the proposed features. The statistical classification models used including linear dis-
criminant analysis, quadratic discriminant analysis, diagonal linear discriminant analysis, k-nearest-neighbor
classifier, logistic regression, support vector machines, and classification trees. All these classifiers are tested
on a viral genome dataset and a protein dataset for predicting viral Baltimore labels, viral family labels, and
protein family labels.
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1 Introduction

Virus classification is one of the prevailing approaches in which virologists study the various diversity of
viruses. Typically, viruses are grouped by their nucleic acid genome characteristics. There are two main classi-
fication systems, Baltimore classification and International Committee on Taxonomy of Viruses (ICTV) system.
Baltimore classification was first proposed by David Baltimore, a Nobel laureate, (Baltimore, 1971). Viruses are
assigned to seven Baltimore groups (I, II, III, IV, V, VI, VII) according to their type of genome and mechanism
of mRNA reproduction. ICTV classification is a hierarchical system. It consists of five levels of classes: order,
family, subfamily, genus, species. The names of viral taxa in a specific level share a unique suffix. For instance,
all names of order end with suffix “-virales.”

In order to classify a new virus, one needs quantify the similarity between the given virus and known viruses
via comparing their genome sequences. The subsequent classification result is based on the sequence compar-
isons. Two categories of sequence comparisons are widely accepted and well developed, Sequence alignment
and alignment-free vectorization.

The widely used sequence alignment assumes the conservation of contiguity of homologous segments. Pair-
wise sequence alignment (PSA) returns a score of similarity between two sequences according to a proposed
“score system.” In the case where there are multiple sequences, one can generalize PSA to Multiple Pairwise
Alignment (MSA) which optimize the alignment scores of all pairwise comparisons. Each time a new virus is
given, one needs to repeat the optimization procedure to obtain the alignment score. Therefore the computa-
tional workload escalates as a power function of the length of a sequence (Vinga & Almeida, 2003).

Conversely, alignment-free methods typically does not require intensive computation (Sims et al. 2009).
There are two classes of alignment-free methods. The first type is to convert sequences to an summarized rep-
resentation upon which subsequent analysis, are made (Vinga, 2007). The other type is to transform sequences
to numerical vectors based on word frequency, such as k-mers (Ghor et al. 2009), composition vectors (Chan,
Wang & Yeung , 2010), and natural vectors (Deng et al., 2011; Yu et al., 2013; Huang et al., 2014b). The similarity
between sequences is assessed by measuring well-defined distance in vector space. One of its merits is linear
algebra and statistical theory are available. However, there is an obvious bias that alignment-free vectorization
ignores spacial structure of genome sequences by simply treating them as strings (Weitschek, Cunial & Fe-
lici, 2015). Recently, researchers proposed new approaches include integrating various types of alignment-free

Hsin-Hsiung Huang is the corresponding author.
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methods (Huang et al., 2011; Huang, 2016), combining alignment and alignment-free methods in a sequential
manner (Huang et al., 2016), and using Fourier or wavelets to transform genome sequences (Hoang et al., 2015;
Huang & Girimurugan, 2018), so that subjects could be well classified.

While a genomics dataset is enormously huge, statistical learning methods can be applied to alignment-
free vector representation of the genome sequences. However, it is noteworthy that performances of classifiers
are hardly the same upon various situations. Dudoit, Fridlyand, and Speed (2002) compared the performances
of discriminant methods, such as linear discriminant analysis, k-nearest-neighbor and classification trees, and
other machine learning techniques including bagging and boosting, on three gene expression datasets in classi-
fying tumor subtypes. Huang, Xu, and Yang (2014a) implemented logistic regression, support vector machine,
and permanental classification methods on genome-wide association study data in predicting hypertension.

In the field of protein classification, cases are very similar to those of viruses. Alignment-free methods are
applicable to amino acids sequences as well. It falls in the framework of virus classification with minor mod-
ification (Huang, Xu & Yang , 2014a; Huang, 2014). Note that the classifiers considered in literature are more
complicated and time consuming. For example, the bagging and boosting are more powerful than a single clas-
sifiers. Neural Networks have remarkable applications and turns out work well on various problems. However,
they requires more training time and some of them lack statistical or rational interpretations.

In statistics, linear discriminant analysis and quadratic discriminant analysis are both simple and popu-
lar classification methods when features are normally distributed. In this paper, we proposed an approach of
vectorization that derived from the Natural Vector, in which the features approximately follow Normal dis-
tributions, and seven classification methods are used for testing on the proposed features obtained from the
virus and protein dataset. Meanwhile, performances of proposed vectors are compared with those of natural
vectors. It is shown that combination of the proposed vector and simple classifiers, like LDA or QDA, offers
a faster alternative to predicting family labels for both virus and proteins with minor trade-off on accuracy.
The significance lies in the case where even a researcher equipped with normal computers can handle large
classification tasks within a reasonable period of time considering the fact that high performance computing
resources are usually scarce.

The rest of the paper is organized as follows. Section 2 introduces proposed alignment-free vectorization
classification methods and other classifiers, and implementation details are in Section 3. Section 4 provides a
summary and discussion.

2 Methods

2.1 Alignment-free vectorization methods

Viral genome sequence usually refers to DNA/RNA sequence. A DNA/RNA sequence which consists of four
kinds of nucleotides, (A)denine, (C)ytosine, (G)uanine and (T)hymine (or (U)racil in RNA) is represented as
a string of letters A, C, G, T(U). There are several alignment-free methods for genome comparisons that have
been considered in literature, including k-mer, Natural Vector (NV), Composite Vector (CV) and Q-Vector (QV)
(Hernandez & Yang, 2013). Additionally, all these alignment-free methods are applicable to protein sequences.
A protein sequence which is a chain composed of 20 possible amino acids is expressed as a string of 20 letters.

2.1.1 Natural vector

The recently developed Natural Vector representation has be successfully applied for clustering and classifying
genome datasets (Deng et al., 2011; Yu et al., 2013; Huang et al., 2014b). Given a genome sequence, this method
converts a genome sequence into a 12-dimensional vector by calculating the total counts, mean positions, and
variance of positions for each type of nucleotide. To be more specific, for a sequence of n letters, u = (u1, u2, …,
un), where ui is from {A, C, G, T}, we define an indicator function

𝐼𝑘(𝑥) =
⎧{
⎨{⎩
0 𝑥 ≠ 𝑘
1 𝑥 = 𝑘

� , (1)

where k ∈ {A, C, T, G}. Then

𝑛𝑘 =
𝑛

∑
𝑖=1

𝐼𝑘(𝑢𝑖), the total count of letter 𝑘 (2)
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𝜇𝑘 =
𝑛

∑
𝑖=1

𝑖 ⋅ 𝐼𝑘(𝑢𝑖)
𝑛𝑘

, the mean position of letter 𝑘 (3)

𝐷𝑘 =
𝑛

∑
𝑖=1

(𝑖 − 𝜇𝑘)2𝐼𝑘(𝑢𝑖)
𝑛𝑘𝑛 , the normalized variance of position of letter 𝑘. (4)

The 12-dimensional natural vector is

(𝑛𝐴, 𝜇𝐴, 𝐷𝐴, 𝑛𝐶, 𝜇𝐶, 𝐷𝐶, 𝑛𝐺, 𝜇𝐺, 𝐷𝐺, 𝑛𝑇 , 𝜇𝑇 , 𝐷𝑇) (5)

2.2 Proposed method

Suppose there are K classes and each with ni members. if ni is large enough, multivariate central limit theorem
(Darling, 1975) yields the following result,

Theorem 2.1: (Multivariate Central Limit Theorem)
Given a class k, suppose that X = (x1, …, xp) is a random vector in ℝp with mean 𝔼𝑘[𝑋𝑖] and covariance Σk. We

assumed that 𝔼𝑘[𝑥2𝑖 ] < ∞. If X1, X2, … are identical and independent sequences of X then

𝑆𝑛 = 1
√𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝔼𝑘[𝑋𝑖])
𝐷⟶ 𝑁(0,Σ), (6)

where 𝐷⟶ means convergence in distribution.

The multivariate central limit theorem leads to a novel genome representation method using the first and
second moments of each nucleotide position. Afterwards, Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA), which require normal-distributed features, are applicable to the vectorized
genomes. Therefore, we propose the following modified natural vector

𝑥 = (𝜇′
𝐴, 𝐷′

𝐴, 𝜇′
𝐶, 𝐷′

𝐶, 𝜇′
𝐺, 𝐷′

𝐺, 𝜇′
𝑇 , 𝐷′

𝑇), (7)

where

𝜇′
𝑘 =

𝑛
∑
𝑖=1

𝑖 ⋅ 𝐼𝑘(𝑢𝑖)
√𝑛 , mean position of letter 𝑘 (8)

𝐷′
𝑘 =

𝑛
∑
𝑖=1

(𝑖 − 𝜇𝑘)2𝐼𝑘(𝑢𝑖)
√𝑛 , variance of position of letter 𝑘. (9)

In the following section, we use quantile-quantile (Q-Q) plots to verify that the modified natural vectors are
approximately normal distributed for the investigated datasets.

2.3 Classification methods

Suppose y = (y1, …, yn)′ is a vector of group labels, and observation corresponding to i-th observation is xi ∈
ℝp, i = 1, 2, … , n. Goal is to classify y0 given a new observation point x0. Classification methods have been
widely used for genome sequences classification (Maddouri & Elloumi, 2002; Polychronopoulos et al., 2014).
The classification methods (Hastie, Tibshirani & Friedman , 2009) are summarized as follows.
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2.3.1 Discriminant analysis

Quadratic Discriminant Analysis (QDA) assumes features in each class k following a multivariate Normal dis-
tribution, with mean vector μk and common covariance matrix Σk, k = 1, …, K. The discriminant score is

𝛿𝑘 = −
1
2

log det(Σ𝑘) − (𝑥 − 𝜇𝑘)𝑇Σ−1
𝑘 (𝑥 − 𝜇𝑘) + log 𝜋𝑘, (10)

where πk is prior probability of class k. The classification result is

𝑦0 = arg max
𝑘

𝛿𝑘. (11)

If the within class covariance matrix for all classes are identical and diagonal, the discriminant classifier becomes
Diagonal Linear Discriminant Analysis (DLDA). i.e. observations in the same class are independent. When the
within class covariance matrix for all classes are identical, the discriminant classifier is Linear Discriminant
Analysis (LDA).

2.3.2 k-nearest-neighbor (KNN)

The k-nearest-neighbor (knn) is the simplest and most intuitive classifier. Suppose there is a new point x0 and
known points {(𝑥𝑖, 𝑦𝑖)}𝑛

𝑖=1, knn calculates the mutual distances between x0 and all points, and assigns x0 to a
class via majority vote of its k-nearest neighbors. Different distances are developed for various purposes, and in
this paper, Euclidean distance is chosen. k, the number of adjacent neighbors under consideration, is the only
tuning parameter which could be tuned by cross-validation.

2.3.3 Logistic regression

Logistic regression classifier models the transformation of probability or the log-odds of an single observation
belonging to a certain class. Suppose there are K classes. The following logistic models are fitted to a dataset
{(𝑥𝑖, 𝑦𝑖)}𝑛

𝑖=1.

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑦 = 𝑘|𝑋 = 𝑥)] = 𝛼0𝑘 + 𝑥𝛽𝑘, (12)

where k = 1, 2, … , K. The probability that a new point x0 belongs to jth class is

𝑃(𝑦0 = 𝑗|𝑋 = 𝑥0) =
exp(𝛼𝑗 + 𝑥0𝛽𝑗)

∑𝐾
𝑗=1 exp(𝛼𝑗 + 𝑥0𝛽𝑗)

. (13)

The predicted class is the one with the largest probability.

2.3.4 Support vector machines (SVM)

Once the observation points are mapped into points in space, support vector machines (SVM) (Cortes & Vap-
nik, 1995) seeks to find a hyperplane that has largest margin to separate points from two different classes. Its
theoretical foundation is designated for two-class case, and it is a non-linear classifier.

Suppose the class labels are represented by yi ∈ {1, −1}, and x ∈ 𝖱p. The computational target of SVM is to
optimize

min
𝛽,𝛽0

1
2

||𝛽||2 + 𝐶
𝑛

∑
𝑖=1

𝜉𝑖 (14)

subject to 𝜉𝑖 ≥ 0, 𝑦𝑖(𝑥𝑇
𝑖 𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖, ∀𝑖, (15)
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where β and β0 are parameters of decision boundary, ξi’s are slack variables, and C is the cost tuning parameter.
In solving the nonlinear boundary classification problem, a kernel is introduced (Huang, Xu & Yang , 2014a
2014a). Here we choose the radial basis function (RBF) kernel,

𝐾(𝑥, 𝑥′) exp(−𝛾‖𝑥 − 𝑥′‖2), (16)

where γ is the tuning parameter for the RBF kernel. The tuning parameters are tuned by cross validation before
prediction is performed.

It is noteworthy that SVM is born to tackling two-class problems, and one needs to generalize it to multiple-
class situations. In this paper, we use a one-against-one approach, in which there are K(K – 1)/2 classifiers will
be trained and tested if there are K classes. The classification result is delivered by a voting scheme.

2.3.5 Classification Trees

Classification Trees recursively partitions the space of input features into subspaces until some stopping rule
has been reached. The resulting partition is the corresponding classifier. To ‘grow’ a tree, we use Classification
and Regression Trees (CART) method, and Gini Index is chosen to be the measure of impurity measure of each
partition. Now we are ready to present the results of examples upon which the proposed methods are tested.

3 Results

The aforementioned classifiers are tested on proposed modified natural vectors. Vectors are generated from
two datasets, virus reference sequences, and homo-protein sequences. On the viruses dataset, it includes both
Baltimore labels and family labels. Therefore are three examples tested, virus Baltimore labels, virus family
labels, and protein family labels.

3.1 Accessing normality

First of all, the multivariate normality assumption is carefully checked prior to the training and testing proce-
dure. The multivariate normality assumption is the key to proposed vectors. However, tools for its justification
are limited because it is a multi-dimensional problem. Several statistical tests are available in literature, see Sel-
cuk, Dincer, and Gokmen (2016) for a short review. One of the drawbacks is those tests tend to reject the null
hypothesis (multivariate normality assumption). A more straightforward yet easily recognizable approach is
via Chi-squared (χ2) Q-Q plot.

Suppose x1, x2, …, xn are i.i.d random vectors of length p from multivariate normal distribution with mean
vector μ and variance-covariance matrix Σ, i.e. Np(μ, Σ). The plot of squared mahalanobis distances against
quantiles of Chi-Square distribution with p degree of freedom, is the Q-Q plot we used to access to the normality.
Note that the squared Mahalanobis distance is calculated by

𝑑2𝑖 = (𝑥𝑖 − 𝜇)Σ−1(𝑥𝑖 − 𝜇)𝑇 𝑖.𝑖.𝑑∼ 𝜒2
𝑝. (17)

In practice, because μ and Σ are usually unknown, the 𝑑2𝑖 ’s are obtained by plugging in observed mean and
variance-covariance matrix.

3.2 Viral genome with Baltimore labels

The virus reference sequence dataset was downloaded from the National Center of Biotechnology Information
NCBI (2016). It contains 6009 reference viruses including 4271 single-segmented viruses. The rest are regarding
multi-segmented viruses. We excluded those with more than one segments of reference sequences due to its
complexity in computation. Table 1 displays the distribution of viruses in seven Baltimore groups. It is note-
worthy that three groups, Groups I, II, and IV, are dominating in numbers. Sequences of of DNA/RNA virus
are extracted along with other biological information. Although DNA and RNA contains different kinds of
nucleotides, in this dataset, sequences of RNA viruses are in terms of A, C, G, and T.
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Figure 1 is Chi-squared Q-Q plots of the seven Baltimore classes. It is shown most of the classes are approxi-
mately normal, except class ‘I’. However, we believe it is not a severe problem and we proceed to the next phase
of training and testing.

Figure 1: Chi-square Q-Q plots of the Baltimore classes.

3.3 Viral genome with ICTV labels

The virus dataset from NCBI also contains family labels. But some of them do not have assigned family labels.
In the next example, we exclude those without family labels. Note that the cardinality of each family are un-
balanced and some of them are very small. We chose 12 bigger families with number of members greater than
50. Table 2 displays the distribution of 12 families along with their member counts. In summary, there are 2492
viruses in this example.

Table 1: Distribution of the Baltimore classes.

Group I II III IV V VI VII

Number of viruses 2099 884 94 893 160 38 103

Table 2: Distribution of viral families.

Family Circoviridae Flaviviridae Geminiviridae Myoviridae
# of members 132 85 251 400
Family Picornaviridae Podoviridae Polyomaviridae Potyviridae
# of members 94 257 86 123
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Family Papillomaviridae Parvoviridae Rhabdoviridae Siphoviridae
# of members 133 90 80 761

The normality assumption is tested prior to the model fitting. Figure 2 shows the Chi-square Q-Q plots of
the modified natural vectors from the 12 virus families. Except for two families, all others are considered to be
normal because there Q-Q plots are approximately diagonal lines.

Figure 2: Chi-square Q-Q plots of viral families.

3.4 Protein sequences with family labels

It includes 20199 sequences, 6053 of them have missing family labels NCBI (2016). We choose the biggest 9
families (contains more than 50 members), 1690 samples in total. The distribution of the families are displayed in
Table 3. The normality is shown in the Q-Q plot in Figure 3. Six of nine families are nearly normally distributed.
Families with Q-Q plots that are not straight diagonal lines are somehow not too far away. Therefore, we are
able to proceed to next step, and assume the multivariate normality.

Table 3: Distribution of protein families.

Family Cytochrome P450 G-protein coupled receptor TRIM/RBCC
# of members 60 670 64
Family Mitochondrial carrier Intermediate filament Peptidase S1
# of members 52 74 76
Family MHC class I Krueppel C2H2-type

zinc-finger
Small GTPase

# of members 83 538 73
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Table 4: Results of viral Baltimore labels classification. The unit of time is a second (s).

Classifier AUC Micro-F Time (s)

(a) Results of the proposed vector
LDA 0.5 0.4865 0.06 (0.01)
QDA 0.8316 0.8073 0.07 (0.003)
KNN 0.8257 0.8864 0.18 (0.01)
SVM 0.7893 0.8539 275.0 (1.8)
Logit 0.5004 0.4882 15.0 (0.4)
DLDA 0.6946 0.7398 0.06 (0.01)
Tree 0.7725 0.8373 0.71 (0.02)
(b) Results of Natural Vector
LDA 0.5157 0.4834 0.09 (0.02)
QDA 0.8577 0.8202 0.10 (0.02)
KNN 0.8851 0.9305 0.23 (0.01)
SVM 0.8406 0.8936 339.8 (3.8)
Logit 0.5050 0.4828 22.0 (0.3)
DLDA 0.6989 0.7232 0.07 (0.01)
Tree 0.7676 0.8441 1.00 (0.03)

Table 5: Results of viral families classification. The unit of time is a second (s).

Classifier AUC Micro-F Time (s)

(a) Results of the proposed vector
LDA 0.7114 0.4912 0.04 (0.01)
QDA 0.8876 0.7661 0.06 (0.01)
KNN 0.9063 0.8555 0.07 (0.01)
SVM 0.9074 0.8591 226.4 (2.5)
Logit 0.8961 0.7769 44.9 (0.3)
DLDA 0.707 0.4908 0.04 (0.01)
Tree 0.876 0.7608 0.75 (0.02)
(b) Results of Natural Vector
LDA 0.6952 0.4975 0.06 (0.01)
QDA 0.9106 0.7945 0.07 (0.02)
KNN 0.9379 0.8937 0.09 (0.01)
SVM 0.9376 0.8921 203.4 (1.5)
Logit 0.9076 0.7905 80.0 (0.4)
DLDA 0.7123 0.4498 0.06 (0.01)
Tree 0.8743 0.7869 0.97 (0.02)
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Figure 3: Chi-square Q-Q plots of protein families.

3.5 Data analysis

Classifiers are trained via 5-fold cross validation. Since the data is unbalanced, we randomly partitioned the
entire dataset into 5 disjoint subsets while controlling the proportion of viruses in each group unchanged. For
a comprehensive review on cross-validation, please read Hastie, Tibshirani & Friedman , 2009.

3.5.1 Performance metrics

Performance metrics are provided for the purpose of comparison of classifiers. Because all examples are un-
balanced multi-class classification problems, metrics of classifiers are carefully chosen. They are AUC, micro-F,
and computing time. Because of the magnitude of computing time for some classifiers are very small (around
0.1s), we repeat the programs for 100 times for LDA, QDA, KNN, DLDA, and Classification tree and 10 times for
logistic regression and support vector machine. Finally average computing time as well as interquartile ranges
are reported.

AUC is the area under receiver operating characteristic curve. Original AUC is defined for two classes case,
in this paper we used the extension by Hand and Till (2001). It averages all pairwise class AUCs. The micro-F
measure is a harmonic mean of precision and recall and it equals to accuracy. Note that F-measure is the one
that combines both precision and recall and its value will close to whichever is smaller. The algorithms are
programmed in R and run on an Laptop with 1.4 GHz CPU and 4GB RAM.

3.5.2 Virus Baltimore labels

The performance metrics of both proposed vector and natural vector are summarized in Table 4. In general,
performances of classifiers on proposed vector are better than those on natural vector with respect to AUC and

9
Brought to you by | University of Central Florida - UCF

Authenticated
Download Date | 7/2/18 3:59 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Huang et al. DE GRUYTER

Micro-F, but the differences are very small. For proposed vector (in panel (a)), KNN, SVM, QDA, and classi-
fication tree have prediction accuracy greater than 0.8, with the highest 0.8865 from KNN. The QDA depends
on the normality assumption, and it turns out QDA also works well in this case with prediction accuracy be-
ing 0.8073 which is close to those of other top classifiers. In terms of AUC, which can be interpreted as “the
probability that a randomly chosen positive example is ranked higher than a randomly chosen negative exam-
ple.” (Fawcett, 2006), QDA and nearest neighbor has virtually identical values, while SVM has slightly less AUC
value. For natural vector, We have similar observations in panel (b), with highest accuracy being 0.9305 from
KNN and 0.8202 for QDA. In terms of AUC, those for QDA and KNN are increased by 0.02 and 0.06 respectively
compared to parallel metrics for proposed vector, which is not regarded as significant improvement.

The computation time is also a very important metric. It turns out classifiers on proposed vectors generally
cost less time than that on natural vector. For example, QDA on proposed vector needs 0.07 seconds while it
costs 0.1 seconds on natural vector. This is not a big difference in magnitude, however with a dataset which is
much larger than ours, the classifiers on proposed vector would needs much less time. In addition, SVM is slow
because of the long training period, reducing vectors from 12 dimension to 8 dimension in this case saves 65 s.

3.5.3 Virus family labels

The results are presented in Table 5. For proposed vectors on panel (a), prediction accuracy of KNN and SVM
are greater than 0.85, and those of QDA, Logistic regression and Classification Tree are above 0.75. Meanwhile,
all of those classifiers with accuracy greater than 0.75 have AUC close to 0.90, which means they are capable of
correctly classifying the viruses at a very satisfactory probability level.

Based on Table 5 (b), we still observe slightly better performance metrics from classifiers on natural vector.
Classifiers with highest accuracy are the same as in panel (a) only with the value of it being 0.89. Meanwhile,
AUC values are 0.03 greater for KNN and QDA, and increased 0.01 for Logistic regression.

We have the similar observations on computing time that classifiers are generally work faster on proposed
vectors than on natural vector except for Support Vector Machine. It takes 226.4 s for SVM on proposed vector
whereas 203.4 s for SVM on natural vector. Although the difference is huge, costing more than 200 s is still way
slower than those of other classifiers.

3.5.4 Protein family labels

Results are shown in Table 6. Classifiers on panel (a) except DLDA and Classification Tree have prediction
accuracy above 0.80. Among them KNN is of best performance with highest AUC and Micro-F values. Those of
LDA are very close to metrics of KNN. Logistic regression has satisfactory AUC and other metrics while SVM
does not have relatively high AUC compared to others. Clearly, in this example, LDA works better than QDA.
While surprisingly on panel (b), logistic regression has novel performance on natural vector given the AUC and
micro-F metrics being 0.9663 and 0.9733 respectively. KNN and LDA also has relatively high performance.

Table 6: Results of protein families classification. The unit of time is a second (s).

Classifier AUC Micro-F Time (s)

(a) Results of the proposed
vector
LDA 0.8541 0.8731 0.16 (0.02)
QDA 0.7287 0.8204 0.55 (0.04)
KNN 0.8986 0.8928 0.15 (0.01)
SVM 0.7895 0.8360 317.2 (0.6)
Logit 0.8465 0.8615 120.2 (1.2)
DLDA 0.8223 0.7317 0.09 (0.02)
Tree 0.7603 0.7827 2.02 (0.03)
(b) Results of Natural
Vector
LDA 0.9546 0.9687 0.27 (0.02)
QDA* 0.7144 0.7758 0.96 (0.23)
KNN 0.9144 0.9096 0.23 (0.01)
SVM 0.7650 0.7457 437.6 (0.7)
Logit 0.9663 0.9733 225.0 (1.0)
DLDA 0.8539 0.7995 0.13 (0.02)
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Tree 0.7604 0.8407 1.91 (0.05)

On one hand, the computation time of logistic regression using the original natural vectors is 130 seconds
worth of computation while LDA and KNN spend fewer than 0.30 seconds. On the other hand, KNN and
LDA using the proposed vector run even faster, for their computation times are 0.23 seconds and 0.27 seconds,
respectively. Even though the performances of LDA, QDA, and KNN using the proposed vector are a little
worse than those using the original natural vectors, their accuracy rates and AUC are close to 0.9. Hence, the
proposed vector is still considered satisfactory.

It is noteworthy that there is an p > n problem (number of predictor is greater than number of observations)
when implementing QDA on natural vector. The length of natural vector is 60 whereas the smallest protein
family in our dataset only contains 52 members. It is obvious that covariance matrix for some families are
singular, which makes it impossible for QDA to work. One of the remedy is to use regularized discriminant
analysis (RDA). There are rich literature on this topic, for example, see (Friedman, 1989). Another choice is to
use generalized inverse of covariance matrices in discriminant functions. Details on generalized inverse and its
feasibility in discriminant analysis are discussed in (Rao & Mitra, 1972). The result for QDA in Table 6 (b), is
obtained by using generalized inverse.

4 Discussion

Although the existing classification methods for predicting class labels of viruses or proteins have been suc-
cessfully applied to various data, they may cost high computation time and in some cases they require high-
performance computing platforms. Therefore, a simple solution with fast computing speed and satisfactory
performance is always called for a dataset which consists of long genome sequences such as nucleotides or
amino acids and an enormous number of resultant alignment-free vectors. Note that the central limit theorem
can be applied to the modified natural vectors. Therefore, linear or quadratic discriminant analysis methods are
applicable to the modified natural vectors, and those classifiers could be simply implemented and interpretable.

The real data analysis shows the proposed method’s time consumption is very small and performance are
satisfactory. Although the prediction accuracy of the proposed vector are slightly worse than the original nat-
ural vector in some cases, but the difference is not too much in terms of AUC and micro-F in general. Addition-
ally, the modified natural vectors with LDA and QDA are faster than the original natural vectors. Therefore, the
proposed method is convincing in terms of the minor performance and computing time trade-off. This phe-
nomenon is due to the dimension reduction from natural vector to proposed vectors. For example, dimension
is reduced by 4 for viral genome sequences and 20 for amino acids sequences.

Among the classifiers, LDA and QDA show top performances whereas KNN is also an satisfactory choice.
However, there are still space for improvement, because the group size in our examples are not large, and
then the asymptotic normality may not hold. Consequently, the Q-Q plots show some deviation from normal
distribution for some families (Figure 1 and Figure 2). In addition, QDA has the singular covariance matrix
problem if some of the class in training set is small. However, one can expect there is no such issue when
dataset contains large number of sequences. Other classification methods such as logistic regression and SVM
are not preferred since they are very time consuming. Moreover, DLDA and Tree classification methods have
less classification accuracy and higher computing time than LDA and QDA, so that they are not recommended
either (Table 4, Table 5, and Table 6).

The future work can be summarized into three directions. First, the proposed method could be applied to
other sequences data, and also the normal approximation may be improved by enlarging sample sizes. Second,
potential improvements in assessing the normality. Q-Q plots of the proposed vector indicates their distri-
bution has heavy tails. One may consider do transformations on proposed vectors so that the distribution of
resultant vectors are more close to normal distribution. Third, it exists the imbalanced classification problem in
the protein families. Regularized discriminant analysis which balances between LDA and QDA may improve
classification performance because it generally works for the situations of small sample sizes or when LDA and
QDA are ill- or poorly-posed (Friedman, 1989).

References

Baltimore, D. (1971): “Expression of animal virus genomes,” Bacteriol. Rev. 35 (3), 235–241.
Chan, R. H., R. W. Wang and H. M. Yeung (2010): “Composition vector method for phylogenetics-a review,” Proc. 9th International Sympo-

sium on Operations Research and its Applications, 13–20.

11
Brought to you by | University of Central Florida - UCF

Authenticated
Download Date | 7/2/18 3:59 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Huang et al. DE GRUYTER

Cortes, C. and V. Vapnik (1995): “Support-vector networks,” Machine Learning, 20, 273–297.
Darling, D. A. (1975): “Note on a limit theorem,” Ann. Probab. 3, 876–878.
Deng, M., C. Yu, Q. Liang, R. L. He, and S. S.-T. Yau (2011): “A Novel Method of Characterizing Genetic Sequences: Genome Space with Biologi-

cal Distance and Applications,” PLoS One, 6 (3), e17293.
Dudoit, S., J. Fridlyand, and T. P. Speed (2002): “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expres-

sion Data,” J. Am. Stat. Assoc., 97, 77–87.
Fawcett, T. (2006): “An introduction to ROC analysis,” Pattern Recognit. Lett., 27, 861–874.
Friedman, J. H. (1989): “Regularized discriminant analysis,” J. Am. Stat. Assoc., 84, 165–175.
Ghor, B., D. Horn, N. Goldman, Y. Levy, and T. Massingham (2009): “Genomic DNA k-mer spectra: models and modalities,” Genome Biol., 10,

R108.
Hand, D. J. and R. J. Till (2001): “A simple generalisation of the area under the ROC curve for multiple class classification problems,” Mach.

Learn., 45: 171.
Hastie, T., R. Tibshirani, and J. Friedman (2009): The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition,

Springer, New York.
Hernandez, T. and J. Yang (2013): “Descriptive statistics of the genome: phylogenetic classification of viruses,” J. Comput. Biol., 23, 810–820.
Hoang, T., C. Yin, H. Zheng, C. Yu, L. R. He, and S. S.-T. Yau (2015): “A new method to cluster DNA sequences using Fourier power spectrum,” J.

Theor. Biol., 372, 135–145.
Huang, G. H., H. Q. Zhou, Y. F. Li, and L. X. Xu (2011): “Alignment-free comparison of genome sequences by a new numerical characteriza-

tion,” J. Theor. Biol., 281, 107–112.
Huang, G. H. (2014): “A novel neighborhood model to predict protein function from protein-protein interaction data,” Current Bioinformat-

ics,” 11, 237–244.
Huang, H.-H., T. Xu, and J. Yang (2014a): “Comparing logistic regression, support vector machines, and permanental classification methods

in predicting hypertension,” BMC Proceedings, 8 (Suppl 1), S96.
Huang, H.-H., C. Yu, H. Zheng, T. Hernandez, S.-C. Yau, R. L. He, J. Yang, S. S.-T. Yau (2014b): “Global comparison of multiple-segmented

viruses in 12-dimensional genome space,” Mol. Phylogenet. Evol., 81, 29–36.
Huang, H.-H. (2016): “An ensemble distance measure of k-mer and Natural Vector for the phylogenetic analysis of multiple-segmented

viruses,” J. Theor. Biol., 398, 136–144.
Huang, G. H., C. Chu, T. Huang, X. Kong, Y. Zhang, N. Zhang, and Y.-D. Cai (2016): “Exploring mouse protein function via multiple ap-

proaches,” PLoS One, 11, e0166580.
Huang, H.-H. and S.-B. Girimurugan (2018): “A novel real-time genome comparison method using discrete wavelet transform,” J. Comput.

Biol., 25, 405–416.
Maddouri, M. and M. Elloumi (2002): “A data mining approach based on machine learning techniques to classify biological sequences,”

Knowl. Based Syst., 15, 2002.
National Center for Biotechnology Information (NCBI)[Internet]. (2016): Bethesda (MD): National Library of Medicine (US), National Center

for Biotechnology Information; Available from: https://www.ncbi.nlm.nih.gov/.
Polychronopoulos, D., E. Weitschek, S. Dimitrieva, P. Bucher, G. Felici, and Y. Almirantis (2014): “Classification of selectively constrained DNA

elements using feature vectors and rule-based classifiers,” Genomics 104, 79–86.
Rao, C. R. and S. K. Mitra (1972): “Generalized inverse of a matrix and its applications,” Proc. Sixth Berkeley Symp. on Math. Statist. and Prob.,

Vol. 1, Univ. of Calif. Press, 601–620.
Selcuk, K., G. Dincer, and Z. Gokmen (2016): MVN: an R package for assessing multivariate normality. R package vignettes.
Sims, G. E., S. R. Jun, G. A. Wu, and S. H. Kim (2009): “Alignment-free genome comparison with feature frequency profiles (FFP) and optimal

resolutions,” Proc. Natl. Acad. Sci. U.S.A. 106, 2677–2682.
Vinga, S. and J. Almeida (2003): “Alignment-free sequence comparison review.” Bioinformatics, 19, 513–523.
Vinga, S. (2007): Biological sequence analysis by vector-valued functions: revisiting alignment-free methodologies for DNA and protein

classification. In: Pham, T. D., Yan, H., Crane, D. I. (Eds.), Advanced Computational Methods for Biocomputing and Bioimaging. Nova
Science Publishers, New York.

Weitschek, E., F. Cunial and G. Felici (2015): “LAF: logic alignment free and its application to bacterial genomes classification,” BioData Min.,
8, 39.

Yu, C., T. Hernandez, H. Zheng, S.-C. Yau, H.-H. Huang, R. L. He, J. Yang, and S. S.-T. Yau (2013): “Real time classification of viruses in 12 di-
mensions,” PLoS One, 8, e64328.

12
Brought to you by | University of Central Florida - UCF

Authenticated
Download Date | 7/2/18 3:59 PM

http://rivervalleytechnologies.com/products/

	Introduction
	Methods
	Alignment-free vectorization methods
	Natural vector

	Proposed method
	Classification methods
	Discriminant analysis
	k-nearest-neighbor (KNN)
	Logistic regression
	Support vector machines (SVM)
	Classification Trees


	Results
	Accessing normality
	Viral genome with Baltimore labels
	Viral genome with ICTV labels
	Protein sequences with family labels
	Data analysis
	Performance metrics
	Virus Baltimore labels
	Virus family labels
	Protein family labels


	Discussion

