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Abstract—Recent advent of the second and third generation of 

sequencing has uncovered many novel transcripts. These novel 

transcripts could have crucial functions in different biological 

processes and might be related to challenging diseases and 

pathogenesis. However, whether these genes should be classified 

as protein coding RNAs (pcRNAs) or long non-coding RNAs 

(lncRNAs) is still debated and unclear. In this study we propose a 

coding potential classification framework based on deep neural 

networks and novel features from RNA-seq and Ribo-seq data to 

classify RNAs transcripts into protein coding and long non coding. 

As far as we know, this is the first method that uses RNA-seq and 

Ribo-seq as predictors to classify RNAs using a deep neural 

network model. Compared to other methods, the prediction of our 

method reached 97.4% accuracy. 

Keywords—deep neural networks, protein coding RNAs, long 

non-coding RNAs, RNA-seq, Ribo-seq, Machine learning Models 

I. INTRODUCTION 

In the last decade, the increasing number of transcripts from 
the second and third generations of sequencing technologies has 
detected many novel transcripts [1], [2], [3]. A lot of the 
produced transcripts are either from protein coding or non-
coding genes. A protein coding gene has RNAs that could be 
translated into a functional protein while the non-coding genes 
do not encode a protein but their RNAs still can be functional 
and have important roles in the regulation of gene expression 
and many diseases progression [4]. Differentiating coding 
RNAs from non-coding RNAs (ncRNAs), especially the 
lncRNAs, is crucial for downstream analysis and determination 
of biological processes. 

Machine learning (ML) is a section of artificial intelligence 
that represents a set of intelligent algorithms by imitating 
human behavior to resolve complex problems. ML algorithms 
have many applications in bioinformatics [5], [6], [7], [8], [9]. 
Many ML models have been widely used to predict the coding 
state of RNA transcripts [10-12], and a diversity of features and 
classifiers are used to construct ML frameworks for the 
prediction.  

The commonly used ML classifiers to predict protein 
coding RNAs are support vector machines (SVM) such as in 
CPC, CNCI, and PLEK [13-18], then random forest (RF) was 
used in COME and FEElnc [19-20], logistic regression (LR) 
was used for CPAT [21]  and finally deep neural networks 
(DNN) [22-27]. In recent years, DNNs have been 
outperforming other classifiers and were used to develop 
coding prediction models, such as in mRNN [22], RNAsamba 
[23], and LncADeep [27]. These DNN models have shown 
superior results to other machine learning methods [28-29].  

Different features used to predict protein coding RNAs 

could include Open Reading Frame (ORF) characteristics such 

as ORF integrity, ORF coverage, ORF length, or sequence 

internal composition features such as Fickett score, Hexamer 

score and, physical and chemical characteristics [13-15], [21] 

etc. The currently used features appear to be groupable into 

different categories such as sequence features, homology 

features, and physicochemical features. However, as far as we 

know, no work so far has used Omics features such as gene 

expression quantification using RNA-seq (RNA-sequencing) or 

ribosome-bound transcripts signals known as Ribo-seq. RNA-

seq method from second generation of sequencing is used to 
*Authors contributed equally. 
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quantify the RNA abundance in a sample. It analyzes the 

transcriptome to reveal whether genes are active and quantify 

their expression. Ribosome profiling (Ribo-seq) is a cellular 

snapshot of protein. Compared with conventional RNA-Seq 

studies, ribosome profiling was generated to evaluate the 

mRNA present during an active translation.  

In this work, we investigate the coding potential of RNAs 

from genes of the GENCODE [30] database. We explore novel 

features, called here Omics features representing the 

transcription and translation signals of genes to enhance the 

discrimination of RNA sequences. We also propose a 

classification method (OmicsRNADNN) using deep learning as 

a meta learner (Figure 1), which constructs a predictive model 

by combining scores from various feature categories.  

 

Fig. 1. Proposed OmicsRNADNN Model 

II. MATERIALS AND METHODS 

A. Dataset of Transcripts 

We mainly gathered two classes of transcripts from 

GENCODE [30] to run the experiment: protein-coding RNAs 

(pcRNA) and long non coding RNAs (lncRNAs). GENCODE 

is the most comprehensive database describing the human 

genome annotation that uses computational and manual 

annotation in addition to experimental validation. We 

downloaded the raw data of lncRNAs and pcRNAs from 

Release 41 of GENCODE. For each gene, we use the longest 

transcript which ensures non-redundant sequence. The human 

pcRNAs are considered as positive samples, while lncRNAs are 

the negative samples. Approximately two-thirds of the 

transcripts are used for the training set while the rest was 

assigned for the validation set. Moreover, only the RNA 

sequences with the best ORF starting with ATG codon and 

ending with conventional stop codons are selected. We 

obtained 10,010 pcRNAs and 14,275 lncRNAs transcripts. 

B. RNAseq and Riboseq Data 

Data were obtained from the PsychENCODE repository 

[31]. FastQC [32] was used to perform quality control analysis. 

Samples adapters were trimmed using Cutadapt [33] and 

selected samples were aligned using the STAR tool [34] to the 

same reference mentioned above. We had 288 samples from 

RNA-seq and 133 from Ribo-seq. The samples were from 

normal, bipolar disorder, and schizophrenia human brains. 

Quantifying the reads was performed using the feature counts 

[35] then normalized counts were obtained using the DESeq2 

package [36]. Next the RNA-seq and Ribo-seq values were 

rescaled to the interval [0,1] to obtain final scores. 

III. RNAS CLASSIFICATION 

The pipeline of the classification method (section B) is 

explained in the following. First, the training set transcripts are 

represented by 8 scores as described in section A. Then, we use 

the randomly selected pcRNAs samples with the lncRNAs to 

construct the deep learning classification model. 

A. Feature Preparation  

Different features have been used to classify RNAs into 
coding or lncRNAs. We derive two scores from the RNA-seq 
and Ribo-seq data. We derive from CPPRED [37] five scores, 
T2 and C0 as CTD (Composition, Transition, and Distribution 
of nucleotides) features, and instability, PI and Gravy as 
physicochemical features. Finally, we derive from LncADeep 
[27] a sequence score (SeqScore) based on sequence and 
homology features including Fickett, hexamer, ORF length etc.  

The RNA-seq score is used to ensure the transcription of the 
genes, while Ribo-seq score helps discriminate between what is 
being translated and what is not. The physico-chemical features 
encompass the instability score which is an assessment of the 
stability of a predicted peptide while the PI score represents its 
isoelectric point (PI). The Gravy feature of a predicted peptide 
is defined as the grand average of its hydropathicity. Finally, 
the global descriptor (CTD) features: T2, C0 describe the 
transition and composition calculations between nucleotides as 
described in [37]. 

The Fickett feature and calculation are well described in 
[38-39] and mainly helps discriminate the coding state of RNAs 
based on the nucleotide composition and codon usage bias. The 
most discriminating feature is the Hexamer score because it is 
based on the relationship between consecutive amino acids in 
peptide sequence [21] [38] [39]. ORF length is also commonly 
used in addition to ORF coverage, which is calculated as the 
longest ORF divided by the gene transcript length. ORF 
coverage feature is considered complementary to the ORF 
length and has shown high classification power [17-21]. 

B. Model Design 

To classify the genes, the model was designed as a fully 
connected feedforward DNN. A DNN has multiple hidden 
layers, an input layer and an output layer. Due to their excellent 
classification performance, DNNs have been widely used in 
different bioinformatics applications [40], such as protein 
prediction and long non-coding RNAs identification. The 
model proposed here is built to have one input node per 
predictor, totaling eight input nodes and one output node for 
each gene. The input data is fed to two hidden layers. The 
hidden layer functions and parameters include the Rectifier 
linear unit (RELU) activation function on all nodes and across 
all layers. The Adam algorithm [41] is also used to minimize 
the mean squared error with a learning rate of 0.0005. The 
output layer has one node and uses the sigmoid activation 
function for binary classification and outputs either protein 
coding or long noncoding. For implementation, we use Keras 
and scikit.learn packages from Python 3.10. 
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IV. RESULTS AND DISCUSSION 

A. Feature Evaluation  

● Removing Redundant Features 
Data can include redundancies represented by features that 

are highly correlated with each other. Therefore, eliminating 
highly correlated attributes could improve the performance. 
Generally, attributes with an absolute correlation of 0.75 or 
higher are highly recommended to be removed. Our data 
features do not have any correlation beyond the 0.75 cutoff 
(Figure 2-a), all features were used.  

● Ranking Features by Importance 
The importance estimation of features is performed to 

understand the contribution magnitude of each feature. In our 
case, we estimated the importance of data by building a model 
constructed based on a Learning Vector Quantization (LVQ). 
Figure 2-b shows that the SeqScore, Riboseq and RNAseq are 
the most important attributes in the dataset, while Gravy and T2 
attributes are the least important. 

 

Fig. 2. Feature Evaluation a) Correlation matrix, b) Importance ranking.  

B. Model Evaluation 

The assessment of models used for the prediction is ensured 
with the 5-fold cross-validation (5-CV) process. The choice of 
5-CV was based on our training size and to avoid longer 
training time. In each fold of 5-CV, the dataset is divided into 
5 roughly equal sets. The 20% of the dataset is used for the 
testing, while 80% is used for the training/validation of the 
DNN. The models used for prediction are first trained on the 
training set and optimized using a validation set then later the 
accuracy is assessed using the testing set. The performance 
evaluation of the prediction models uses different metrics such 
as Recall, also called Sensitivity. Precision, Accuracy and the 
AUC (the area under the ROC curve) are also used to assess the 
model in addition to the Harmonic Mean (HM) and Mathew 
Correlation Coefficient (MCC). The metrics formulas are as 
follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑀𝐶𝐶 =
𝑇𝑃𝑇𝑁 − 𝐹𝑃𝐹𝑁

  (𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

𝐻𝑀 =
2𝑆𝑁𝑆𝑃

𝑆𝑁 + 𝑆𝑃
 

 

where TP is the true positive, FP is false positive; TN is true 
negative and FN is false negative; SN is sensitivity and SP is 
specificity.  

C. Hyperparameters Discussion 

We used Keras Tuner [42] for hyperparameter tuning. The 
process of selecting the right set of parameters for our 
OmicsRNADNN model is called hyperparameter tuning or 
hypertuning. Hyperparameter variables affect the training 
process and can directly impact the performance of the model. 
Our hyperparameter tuning runs determine that the best 
performance is accomplished using two hidden layers with 64 
and 32 nodes, no dropout and a learning rate equal to 0.0005. 
The produced model shows acceptable fitting based on the 
training accuracy/loss and validation accuracy/loss curves 
(Figure 3). 

 

Fig. 3. Assessing the accuracy and loss of the training/validation of the 

OmicRNADNN model. 

D. Classifier Discussion 

We considered different classifiers including SVM, RF, LR, 
DNN, which are among the most popular algorithms that have 
been adopted by most of the RNAs classification. We also 
include other algorithms such as the gradient boosting (GB) 
from ensemble learning, decision trees (DT), naïve Bayes (NB), 
and the k-nearest neighbor (KNN). The performances of the 
classification model using different classifiers are shown in 
Figure 4. Among all classifiers, the 5-fold cross-validation 
shows that OmicRNADNN performs the best on the dataset 
(Table I). 

9
Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on September 20,2023 at 04:25:51 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I.  PERFORMANCE OF DIFFERENT CLASSIFIER 

 Accuracy Precision Recall AUC HM MCC 

GB 0.973 0.974 0.979 0.991 0.972 0.924 

LR 0.967 0.969 0.975 0.988 0.967 0.910 

SVM 0.966 0.966 0.966 0.988 0.966 0.966 

DT 0.954 0.962 0.960 0.959 0.953 0.871 

RF 0.973 0.976 0.978 0.991 0.973 0.924 

NB 0.964 0.959 0.979 0.980 0.965 0.907 

KNN 0.965 0.964 0.976 0.979 0.965 0.907 

OmicRNADNN 0.974 0.976 0.980 0.994 0.974 0.929 

 

 

Fig. 4. Metric evaluation of different classifiers. Gradient Boosting (GB), 
Linear Regression (LR), Support Vector Machine (SVM), Decision Trees (DT), 

Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN). 

E. Comparison with State-of-the-Art Methods 

Since the best performers in pcRNAs and lncRNAs 
classification are deep learning tools [28-29] we run the data 
using the top three deep learning tools as mentioned by the 
literature [34]: mRNN [22], RNAsamba [23], and LncAdeep 
[27]. mRNN uses a Recurrent Neural Network (RNN) which is 
based on a gated recurrent unit architecture and a one-hot 
encoding scheme for the input sequences. RNAsamba is built 
on a convolutional neural network model based on an IGLOO 
architecture that receives sequences as input divided into two 
branches, one for the complete sequence and the other for the 
longest ORF. LncADeep uses a deep belief neural network 
(DBN) and three restricted Boltzmann machines stacked 
between the input and output layers. LncADeep integrates 
sequence features and homology features. We run the three 
tools on our testing set and produce the different metrics to 
compare them to our model which shows better performance 
(Table II). 

TABLE II.  COMPARISON WITH STATE-OF-THE-ART METHODS 

 mRNN RNAsamba LncADeep OmicRNADNN 

Recall 0.911 0.963 0.966 0.982 

Precision 0.960 0.951 0.978 0.982 

Accuracy 0.920 0.949 0.967 0.979 

AUC 0.971 0.986 0.987 0.994 

 

The false positive rate (1-SP) compared against the true 
positive rate (SN) for various cutoff levels allows us to 
additionally plot the ROC curve and calculate the AUC 
measure. The AUC metric, which is frequently employed as a 
key statistic, assesses the effectiveness of prediction models 
regardless of any threshold. 

V. CONCLUSIONS 

Classification of genes into protein coding and long non-
coding is a very crucial issue. This work outlines a novel 
classification method based on deep neural networks. One of 
the highlights of this new method is that it adopts omics-derived 
features based on RNAseq and Riboseq scores, in addition to 
the commonly used sequence-specified, homology, physico-
chemical and CTD features. Another highlight of this work is 
that it utilizes and compares different machine learning and 
deep learning schemes as meta learners to combine the different 
characteristics defining the features. Experiments indicate that 
deep learning methods can differentiate positive and negative 
instances better than other classification algorithms.  

Compared to other three state-of-art deep learning models, 
the framework proposed here produces better metrics. We had 
come to this result thanks to our proposal of a newer coding 
potential classification framework based on using deep neural 
networks and novel features from RNAseq and Riboseq data. 
Based on our literature review, it is tempting to note that this is 
the first method that uses RNAseq and Riboseq as predictors to 
classify RNAs in addition to other features. 

In conclusion, this work is providing a useful method and 
features to improve RNAs prediction, complementary to 
experiments and traditional techniques. 
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