
Supplementary Material
for
A New Nonparametric Estimate of the Risk-Neutral
Density with Applications to Variance Swaps

A. PROOF OF PROPOSITION 2.1
We rewrite the call and put option prices in Eqs 3, 4 in terms of a1, a2, . . . , aq, aq+1 as follows

eRtT P̂i =

∫ logKi

−∞
(Ki − ey)f∆(y)dy

=

q+1∑
l=1

∫ logKl

logKl−1

(Ki − ey)aldy · 1(Ki ≥ Kl)

=

q+1∑
l=1

al[(Ki log
Kl

Kl−1
)− (Kl −Kl−1)] · 1(Ki ≥ Kl), i ∈ P

(S1)

eRtT Ĉi =

∫ ∞
logKi

(ey −Ki)f∆(y)dy

=

q+1∑
l=1

∫ logKl

logKl−1

(ey −Ki)aldy · 1(Ki ≤ Kl−1)

=

q+1∑
l=1

al[(Kl −Kl−1)−Ki log
Kl

Kl−1
] · 1(Ki < Kl), i ∈ C

(S2)

Let X(p)
i,l = [Ki log(Kl/Kl−1)− (Kl −Kl−1)] · 1(Ki ≥ Kl), l = 1, 2, . . . , q + 1 be an entry of the design

matrix for put options; and X(c)
i,l = [(Kl −Kl−1)−Ki log(Kl/Kl−1)] · 1(Ki < Kl), l = 1, 2, . . . , q + 1

for call options. From Eq. 2, aq+1 can be represented by a1, a2, . . . , aq, as

aq+1 =

(
1−

q∑
l=1

al log
Kl

Kl−1

)
(log cK)−1 (S3)
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Plugging Eq. S3 into Eqs S1, S2, we obtain

eRtT P̂i =

q+1∑
l=1

alX
(p)
i,l

= a1X
(p)
i,1 + a2X

(p)
i,2 + · · ·+ aqX

(p)
i,q

+

(
1− a1 log

K1

K0
− · · · − aq log

Kq

Kq−1

)
(log cK)−1X

(p)
i,q+1

= a1[X
(p)
i,1 − (log

K1

K0
)(log cK)−1X

(p)
i,q+1] + · · ·

+ aq[X
(p)
i,q − (log

Kq

Kq−1
)(log cK)−1X

(p)
i,q+1] +

1

log cK
X

(p)
i,q+1

4
= a1X

(P )
i,1 + a2X

(P )
i,2 + · · ·+ aqX

(P )
i,q +X

(P )
i,q+1, i ∈ P

(S4)

where X(P )
i,l = X

(p)
i,l − (logKl/Kl−1)(log cK)−1X

(p)
i,q+1, l = 1, 2, . . . , q and X(P )

i,q+1 = X
(p)
i,q+1/ log cK .

Similarly for call options,

eRtT Ĉi =

q+1∑
l=1

alX
(c)
i,l

= a1X
(c)
i,1 + a2X

(c)
i,2 + · · ·+ aqX

(c)
i,q

+

(
1− a1 log

K1

K0
− · · · − aq log

Kq

Kq−1

)
(log cK)−1X

(c)
i,q+1

= a1[X
(c)
i,1 − (log

K1

K0
)(log cK)−1X

(c)
i,q+1] + · · ·

+ aq[X
(c)
i,q − (log

Kq

Kq−1
)(log cK)−1X

(c)
i,q+1] +

1

log cK
X

(c)
i,q+1

4
= a1X

(C)
i,1 + a2X

(C)
i,2 + · · ·+ aqX

(C)
i,q +X

(C)
i,q+1, i ∈ C

(S5)

where X(C)
i,l = X

(c)
i,l − (logKl/Kl−1)(log cK)−1X

(c)
i,q+1, l = 1, . . . , q and X(C)

i,q+1 = X
(c)
i,q+1/ log cK . �

B. PROOF OF THEOREM 3.1
Given ε > 0, let δ1 =

√
εeRtT /[3(1 + cK + e)] > 0. There exists −∞ < A < 0 < B <∞, such that,∫ A

−∞
fQ(x)dx < δ1,

∫ A

−∞
exfQ(x)dx < δ1,

∫ ∞
B

fQ(x)dx < δ1,

∫ ∞
B

exfQ(x)dx < δ1

Let δ2 =
√
εeRtT−B−1/[3(B − A + 2)] > 0. Since fQ is continuous, there exists a δ > 0, such that, for

any x1, x2 ∈ [A− 1, B + 1],
|fQ(x1)− fQ(x2)| < δ2

as long as |x1 − x2| < δ.
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For small enough K1, |∆| and large enough q,Kq, there exist integers u, v, such that, 1 < u < u+ 1 <
v < v + 1 < q, logKu ≤ A < logKu+1, logKv < B ≤ logKv+1, |∆| < δ.

We construct a f∆ by defining

a1 = (log cK)−1

∫ logK1

−∞
fQ(x)dx ≥ 0

ai = [log(Ki/Ki−1)]−1

∫ logKi

logKi−1

fQ(x)dx ≥ 0, i = 2, . . . , q

aq+1 = (log cK)−1

∫ ∞
logKq

fQ(x)dx ≥ 0

It can be verified that
∫∞
−∞ f∆(x)dx =

∑q+1
i=1 ai log(Ki/Ki−1) = 1. Let

∆f = max
u≤i≤v

(
max

logKi≤x≤logKi+1

fQ(x)− min
logKi≤x≤logKi+1

fQ(x)

)
Then |∆| < δ implies ∆f ≤ δ2. It can be verified that

|Ĉi − C̃i| <


√
ε/3, for i = v + 1, . . . , q

2
√
ε/3, for i = u, . . . , v√
ε, for i = 1, . . . , u− 1

|P̂i − P̃i| <


√
ε/3, for i = 1, . . . , u

2
√
ε/3, for i = u+ 1, . . . , v + 1√
ε, for i = v + 2, . . . , q

In other words, there exist a1, . . . , aq+1, such that, (Ĉi − C̃i)
2 < ε, (P̂i − P̃i)

2 < ε, for i = 1, . . . , q. It
implies the (a1, . . . , aq+1) that minimizes L(a1, . . . , aq+1) also satisfies

1

2q

[
q∑

i=1

(Ĉi − C̃i)
2 +

q∑
i=1

(P̂i − P̃i)
2

]
< ε

which leads to the conclusion. �
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C. PROOF OF PROPOSITION 4.1
Since EQ

t [
∑T

i=1R
2
i ] =

∑t
i=1R

2
i +

∑T
i=t+1 E

Q
t [R2

i ], the key part

T∑
i=t+1

EQ
t [R2

i ] =
T∑

i=t+1

EQ
t [log

Si
Si−1

]2

=
T∑

i=t+1

[EQ
t (logSi)

2 + EQ
t (logSi−1)2 − 2EQ

t (logSi)(logSi−1)]

=
T∑

i=t+1

EQ
t (logSi)

2 +
T∑

i=t+1

EQ
t (logSi−1)2 − 2

T∑
i=t+1

EQ
t [logSi−1 + log(

Si
Si−1

)][logSi−1]

=
T∑

i=t+1

EQ
t (logSi)

2 +
T∑

i=t+1

EQ
t (logSi−1)2 − 2

T∑
i=t+1

EQ
t (logSi−1)2

− 2
T∑

i=t+1

EQ
t [logSi−1][log(

Si
Si−1

)]

= EQ
t [logST ]2 − [logSt]

2 − 2
T∑

i=t+1

EQ
t [logSi−1][log(

Si
Si−1

)]

= EQ
t [logST ]2 − [logSt]

2 − 2
T∑

i=t+1

EQ
t [logSi−1]EQ

t [log(
Si
Si−1

)]

= EQ
t [logST ]2 − [logSt]

2 − 2
T∑

i=t+1

[EQ
t logSi−1EQ

t logSi − (EQ
t logSi−1)2]

Then Eq. 12 can be obtained by plugging EQ
t [
∑T

i=1R
2
i ] into Eq. 11. �

D. LINEAR INTERPOLATION FOR 1ST AND 2ND MOMENTS IN SECTION 4.1
Mean imputation Suppose the trading day is t and the expiration day is T . We denote all possible
expiration dates of traded contracts by t+ n1, t+ n2, . . . . Suppose the time point to be imputed is t+ n0.
Given all the information available at day t, logSt can be regarded as its expectation at day t, EQ

t logSt.
Therefore, we consider cases separately according to whether or not t+ n0 is in the interval [t, t+ n1] and
then apply linear interpolation to obtain the mean of logSt+n0 . More specifically, there are two cases:

Case 1: n0 ∈ [0, n1] and EQ
t (logSt+n1) has been calculated.

EQ
t (logSt+n0) = EQ

t (logSt+n1)− (n1 − n0)[EQ
t (logSt+n1)− logSt]

n1

=
n0EQ

t (logSt+n1) + (n1 − n0) log(St)

n1
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Case 2: n0 ∈ [ni, ni+1] for some i = 1, 2, . . .. The expectations EQ
t (logSt+ni) and EQ

t (logSt+ni+1)
have already been calculated.

EQ
t (logSt+n0) =

(n0 − ni)[EQ
t (logSt+ni+1)− EQ

t (logSt+ni)]

ni+1 − ni
+ EQ

t (logSt+ni)

=
(n0 − ni)EQ

t (logSt+ni+1) + (ni+1 − n0)EQ
t (logSt+ni)

ni+1 − ni

Variance Imputation In order to calculate the variance VQ
t (logSt+n0) at day t, we use a similar

interpolation based on the available variances of log returns at day t with expiration T . Based on the
scatterplot (not shown here) of all available variances that we have from the existing contracts, the trend of
variances has a curved pattern against the number of days to expiration. More specifically, it is roughly a
quadratic curve. Before we implement a linear interpolation, we first perform a square-root transformation
of variances.

Case 1: n0 ∈ [0, n1]. VQ
t (logSt+n1) has been calculated. Then

√
VQ
t (logSt+n0) =

n0

√
VQ
t (logSt+n1)

n1

Case 2: n0 ∈ [ni, ni+1] for some i = 1, 2, . . .. The values VQ
t (logSt+ni) and VQ

t (logSt+ni+1) have
been calculated. Then√

VQ
t (logSt+n0)

=

√
VQ
t (logSt+n0)−

√
VQ
t (logSt+ni) +

√
VQ
t (logSt+ni)

=

(n0 − ni)
[√

VQ
t (logSt+ni+1)−

√
VQ
t (logSt+ni)

]
ni+1 − ni

+

√
VQ
t (logSt+ni)

=
(n0 − ni)

√
VQ
t (logSt+ni+1) + (ni+1 − n0)

√
VQ
t (logSt+ni)

ni+1 − ni
.

Then the second moment is

EQ
t (logSt+n0)2 = [EQ

t (logSt+n0)]2 + VQ
t (logSt+n0)

A fair price of variance swap V St,T can be obtained by the pricing formula Eq. 11.
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