Supplementary Material

for

A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps

A. PROOF OF PROPOSITION 2.1

We rewrite the call and put option prices in Eqs 3, $\mathbf{4}$ in terms of $a_{1}, a_{2}, \ldots, a_{q}, a_{q+1}$ as follows

$$
\begin{align*}
e^{R_{t T}} \hat{P}_{i} & =\int_{-\infty}^{\log K_{i}}\left(K_{i}-e^{y}\right) f_{\Delta}(y) d y \\
& =\sum_{l=1}^{q+1} \int_{\log K_{l-1}}^{\log K_{l}}\left(K_{i}-e^{y}\right) a_{l} d y \cdot \mathbb{1}\left(K_{i} \geq K_{l}\right) \tag{S1}\\
& =\sum_{l=1}^{q+1} a_{l}\left[\left(K_{i} \log \frac{K_{l}}{K_{l-1}}\right)-\left(K_{l}-K_{l-1}\right)\right] \cdot \mathbb{1}\left(K_{i} \geq K_{l}\right), i \in \mathcal{P} \\
e^{R_{t T}} \hat{C}_{i} & =\int_{\log K_{i}}^{\infty}\left(e^{y}-K_{i}\right) f_{\Delta}(y) d y \\
& =\sum_{l=1}^{q+1} \int_{\log K_{l-1}}^{\log K_{l}}\left(e^{y}-K_{i}\right) a_{l} d y \cdot \mathbb{1}\left(K_{i} \leq K_{l-1}\right) \tag{S2}\\
& =\sum_{l=1}^{q+1} a_{l}\left[\left(K_{l}-K_{l-1}\right)-K_{i} \log \frac{K_{l}}{K_{l-1}}\right] \cdot \mathbb{1}\left(K_{i}<K_{l}\right), i \in \mathcal{C}
\end{align*}
$$

Let $X_{i, l}^{(p)}=\left[K_{i} \log \left(K_{l} / K_{l-1}\right)-\left(K_{l}-K_{l-1}\right)\right] \cdot \mathbb{1}\left(K_{i} \geq K_{l}\right), l=1,2, \ldots, q+1$ be an entry of the design matrix for put options; and $X_{i, l}^{(c)}=\left[\left(K_{l}-K_{l-1}\right)-K_{i} \log \left(K_{l} / K_{l-1}\right)\right] \cdot \mathbb{1}\left(K_{i}<K_{l}\right), l=1,2, \ldots, q+1$ for call options. From Eq. 2, a_{q+1} can be represented by $a_{1}, a_{2}, \ldots, a_{q}$, as

$$
\begin{equation*}
a_{q+1}=\left(1-\sum_{l=1}^{q} a_{l} \log \frac{K_{l}}{K_{l-1}}\right)\left(\log c_{K}\right)^{-1} \tag{S3}
\end{equation*}
$$

Plugging Eq. S3 into Eqs S1, S2, we obtain

$$
\begin{align*}
e^{R_{t T}} \hat{P}_{i}= & \sum_{l=1}^{q+1} a_{l} X_{i, l}^{(p)} \\
= & a_{1} X_{i, 1}^{(p)}+a_{2} X_{i, 2}^{(p)}+\cdots+a_{q} X_{i, q}^{(p)} \\
& +\left(1-a_{1} \log \frac{K_{1}}{K_{0}}-\cdots-a_{q} \log \frac{K_{q}}{K_{q-1}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(p)} \tag{S4}\\
= & a_{1}\left[X_{i, 1}^{(p)}-\left(\log \frac{K_{1}}{K_{0}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(p)}\right] \quad+\cdots \\
& +a_{q}\left[X_{i, q}^{(p)}-\left(\log \frac{K_{q}}{K_{q-1}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(p)}\right]+\frac{1}{\log c_{K}} X_{i, q+1}^{(p)} \\
\triangleq & a_{1} X_{i, 1}^{(P)}+a_{2} X_{i, 2}^{(P)}+\cdots+a_{q} X_{i, q}^{(P)}+X_{i, q+1}^{(P)}, i \in \mathcal{P}
\end{align*}
$$

where $X_{i, l}^{(P)}=X_{i, l}^{(p)}-\left(\log K_{l} / K_{l-1}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(p)}, l=1,2, \ldots, q$ and $X_{i, q+1}^{(P)}=X_{i, q+1}^{(p)} / \log c_{K}$. Similarly for call options,

$$
\begin{align*}
e^{R_{t T}} \hat{C}_{i}= & \sum_{l=1}^{q+1} a_{l} X_{i, l}^{(c)} \\
= & a_{1} X_{i, 1}^{(c)}+a_{2} X_{i, 2}^{(c)}+\cdots+a_{q} X_{i, q}^{(c)} \\
& +\left(1-a_{1} \log \frac{K_{1}}{K_{0}}-\cdots-a_{q} \log \frac{K_{q}}{K_{q-1}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(c)} \tag{S5}\\
= & a_{1}\left[X_{i, 1}^{(c)}-\left(\log \frac{K_{1}}{K_{0}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(c)}\right]+\cdots \\
& +a_{q}\left[X_{i, q}^{(c)}-\left(\log \frac{K_{q}}{K_{q-1}}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(c)}\right]+\frac{1}{\log c_{K}} X_{i, q+1}^{(c)} \\
\triangleq & a_{1} X_{i, 1}^{(C)}+a_{2} X_{i, 2}^{(C)}+\cdots+a_{q} X_{i, q}^{(C)}+X_{i, q+1}^{(C)}, i \in \mathcal{C}
\end{align*}
$$

where $X_{i, l}^{(C)}=X_{i, l}^{(c)}-\left(\log K_{l} / K_{l-1}\right)\left(\log c_{K}\right)^{-1} X_{i, q+1}^{(c)}, l=1, \ldots, q$ and $X_{i, q+1}^{(C)}=X_{i, q+1}^{(c)} / \log c_{K}$.

B. PROOF OF THEOREM 3.1

Given $\epsilon>0$, let $\delta_{1}=\sqrt{\epsilon} e^{R_{t T}} /\left[3\left(1+c_{K}+e\right)\right]>0$. There exists $-\infty<A<0<B<\infty$, such that,

$$
\int_{-\infty}^{A} f_{\mathbb{Q}}(x) d x<\delta_{1}, \int_{-\infty}^{A} e^{x} f_{\mathbb{Q}}(x) d x<\delta_{1}, \int_{B}^{\infty} f_{\mathbb{Q}}(x) d x<\delta_{1}, \int_{B}^{\infty} e^{x} f_{\mathbb{Q}}(x) d x<\delta_{1}
$$

Let $\delta_{2}=\sqrt{\epsilon} e^{R_{t T}-B-1} /[3(B-A+2)]>0$. Since $f_{\mathbb{Q}}$ is continuous, there exists a $\delta>0$, such that, for any $x_{1}, x_{2} \in[A-1, B+1]$,

$$
\left|f_{\mathbb{Q}}\left(x_{1}\right)-f_{\mathbb{Q}}\left(x_{2}\right)\right|<\delta_{2}
$$

as long as $\left|x_{1}-x_{2}\right|<\delta$.

For small enough $K_{1},|\Delta|$ and large enough q, K_{q}, there exist integers u, v, such that, $1<u<u+1<$ $v<v+1<q, \log K_{u} \leq A<\log K_{u+1}, \log K_{v}<B \leq \log K_{v+1},|\Delta|<\delta$.

We construct a f_{Δ} by defining

$$
\begin{aligned}
a_{1} & =\left(\log c_{K}\right)^{-1} \int_{-\infty}^{\log K_{1}} f_{\mathbb{Q}}(x) d x \geq 0 \\
a_{i} & =\left[\log \left(K_{i} / K_{i-1}\right)\right]^{-1} \int_{\log K_{i-1}}^{\log K_{i}} f_{\mathbb{Q}}(x) d x \geq 0, \quad i=2, \ldots, q \\
a_{q+1} & =\left(\log c_{K}\right)^{-1} \int_{\log K_{q}}^{\infty} f_{\mathbb{Q}}(x) d x \geq 0
\end{aligned}
$$

It can be verified that $\int_{-\infty}^{\infty} f_{\Delta}(x) d x=\sum_{i=1}^{q+1} a_{i} \log \left(K_{i} / K_{i-1}\right)=1$. Let

$$
\Delta_{f}=\max _{u \leq i \leq v}\left(\max _{\log K_{i} \leq x \leq \log K_{i+1}} f_{\mathbb{Q}}(x)-\min _{\log K_{i} \leq x \leq \log K_{i+1}} f_{\mathbb{Q}}(x)\right)
$$

Then $|\Delta|<\delta$ implies $\Delta_{f} \leq \delta_{2}$. It can be verified that

$$
\begin{aligned}
&\left|\hat{C}_{i}-\tilde{C}_{i}\right|<\left\{\begin{array}{cl}
\sqrt{\epsilon} / 3, & \text { for } i=v+1, \ldots, q \\
2 \sqrt{\epsilon} / 3, & \text { for } i=u, \ldots, v \\
\sqrt{\epsilon}, & \text { for } i=1, \ldots, u-1
\end{array}\right. \\
&\left|\hat{P}_{i}-\tilde{P}_{i}\right|<\left\{\begin{array}{cl}
\sqrt{\epsilon} / 3, & \text { for } i=1, \ldots, u \\
2 \sqrt{\epsilon} / 3, & \text { for } i=u+1, \ldots, v+1 \\
\sqrt{\epsilon}, & \text { for } i=v+2, \ldots, q
\end{array}\right.
\end{aligned}
$$

In other words, there exist a_{1}, \ldots, a_{q+1}, such that, $\left(\hat{C}_{i}-\tilde{C}_{i}\right)^{2}<\epsilon,\left(\hat{P}_{i}-\tilde{P}_{i}\right)^{2}<\epsilon$, for $i=1, \ldots, q$. It implies the $\left(a_{1}, \ldots, a_{q+1}\right)$ that minimizes $L\left(a_{1}, \ldots, a_{q+1}\right)$ also satisfies

$$
\frac{1}{2 q}\left[\sum_{i=1}^{q}\left(\hat{C}_{i}-\tilde{C}_{i}\right)^{2}+\sum_{i=1}^{q}\left(\hat{P}_{i}-\tilde{P}_{i}\right)^{2}\right]<\epsilon
$$

which leads to the conclusion.

C. PROOF OF PROPOSITION 4.1

Since $\mathbb{E}_{t}^{\mathbb{Q}}\left[\sum_{i=1}^{T} R_{i}^{2}\right]=\sum_{i=1}^{t} R_{i}^{2}+\sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[R_{i}^{2}\right]$, the key part

$$
\begin{aligned}
& \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[R_{i}^{2}\right]=\sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[\log \frac{S_{i}}{S_{i-1}}\right]^{2} \\
&= \sum_{i=t+1}^{T}\left[\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i}\right)^{2}+\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i-1}\right)^{2}-2 \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i}\right)\left(\log S_{i-1}\right)\right] \\
&= \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i}\right)^{2}+\sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i-1}\right)^{2}-2 \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{i-1}+\log \left(\frac{S_{i}}{S_{i-1}}\right)\right]\left[\log S_{i-1}\right] \\
&= \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i}\right)^{2}+\sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i-1}\right)^{2}-2 \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{i-1}\right)^{2} \\
&-2 \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{i-1}\right]\left[\log \left(\frac{S_{i}}{S_{i-1}}\right)\right] \\
&= \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{T}\right]^{2}-\left[\log S_{t}\right]^{2}-2 \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{i-1}\right]\left[\log \left(\frac{S_{i}}{S_{i-1}}\right)\right] \\
&= \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{T}\right]^{2}-\left[\log S_{t}\right]^{2}-2 \sum_{i=t+1}^{T} \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{i-1}\right] \mathbb{E}_{t}^{\mathbb{Q}}\left[\log \left(\frac{S_{i}}{S_{i-1}}\right)\right] \\
&= \mathbb{E}_{t}^{\mathbb{Q}}\left[\log S_{T}\right]^{2}-\left[\log S_{t}\right]^{2}-2 \sum_{i=t+1}^{T}\left[\mathbb{E}_{t}^{\mathbb{Q}} \log S_{i-1} \mathbb{E}_{t}^{\mathbb{Q}} \log S_{i}-\left(\mathbb{E}_{t}^{\mathbb{Q}} \log S_{i-1}\right)^{2}\right]
\end{aligned}
$$

Then Eq. 12 can be obtained by plugging $\mathbb{E}_{t}^{\mathbb{Q}}\left[\sum_{i=1}^{T} R_{i}^{2}\right]$ into Eq. 11.

D. LINEAR INTERPOLATION FOR 1ST AND 2ND MOMENTS IN SECTION 4.1

Mean imputation Suppose the trading day is t and the expiration day is T. We denote all possible expiration dates of traded contracts by $t+n_{1}, t+n_{2}, \ldots$. Suppose the time point to be imputed is $t+n_{0}$. Given all the information available at day $t, \log S_{t}$ can be regarded as its expectation at day $t, \mathbb{E}_{t}^{\mathbb{Q}} \log S_{t}$. Therefore, we consider cases separately according to whether or not $t+n_{0}$ is in the interval $\left[t, t+n_{1}\right]$ and then apply linear interpolation to obtain the mean of $\log S_{t+n_{0}}$. More specifically, there are two cases:

Case 1: $n_{0} \in\left[0, n_{1}\right]$ and $\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)$ has been calculated.

$$
\begin{aligned}
\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right) & =\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)-\frac{\left(n_{1}-n_{0}\right)\left[\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)-\log S_{t}\right]}{n_{1}} \\
& =\frac{n_{0} \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)+\left(n_{1}-n_{0}\right) \log \left(S_{t}\right)}{n_{1}}
\end{aligned}
$$

Case 2: $n_{0} \in\left[n_{i}, n_{i+1}\right]$ for some $i=1,2, \ldots$. The expectations $\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)$ and $\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)$ have already been calculated.

$$
\begin{aligned}
\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right) & =\frac{\left(n_{0}-n_{i}\right)\left[\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)-\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)\right]}{n_{i+1}-n_{i}}+\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right) \\
& =\frac{\left(n_{0}-n_{i}\right) \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)+\left(n_{i+1}-n_{0}\right) \mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)}{n_{i+1}-n_{i}}
\end{aligned}
$$

Variance Imputation In order to calculate the variance $\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)$ at day t, we use a similar interpolation based on the available variances of \log returns at day t with expiration T. Based on the scatterplot (not shown here) of all available variances that we have from the existing contracts, the trend of variances has a curved pattern against the number of days to expiration. More specifically, it is roughly a quadratic curve. Before we implement a linear interpolation, we first perform a square-root transformation of variances.

Case 1: $n_{0} \in\left[0, n_{1}\right] . \mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)$ has been calculated. Then

$$
\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)}=\frac{n_{0} \sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{1}}\right)}}{n_{1}}
$$

Case 2: $n_{0} \in\left[n_{i}, n_{i+1}\right]$ for some $i=1,2, \ldots$ The values $\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)$ and $\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)$ have been calculated. Then

$$
\begin{aligned}
& \sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)} \\
& =\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)}-\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)}+\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)} \\
& =\frac{\left(n_{0}-n_{i}\right)\left[\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)}-\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)}\right]}{n_{i+1}-n_{i}}+\sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)} \\
& =\frac{\left(n_{0}-n_{i}\right) \sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i+1}}\right)}+\left(n_{i+1}-n_{0}\right) \sqrt{\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{i}}\right)}}{n_{i+1}-n_{i}} .
\end{aligned}
$$

Then the second moment is

$$
\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)^{2}=\left[\mathbb{E}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)\right]^{2}+\mathbb{V}_{t}^{\mathbb{Q}}\left(\log S_{t+n_{0}}\right)
$$

A fair price of variance swap $V S_{t, T}$ can be obtained by the pricing formula Eq. 11.

