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Count data with a large portion of zeros arise naturally in many
scientific disciplines. When conducting one-sample Kolmogorov-
Smirnov (KS) test for count data, the estimated p-value is biased
due to plugging in sample estimates of unknown parameters. As
a consequence, the result of a KS test could be too conservative.
In the newly developed R package “iZID” for zero-inflated count
data, we use bootstrapped Monte Carlo estimates to overcome the
bias issue in estimating p-values, as well as bootstrapped likelihood
ratio tests for zero-inflated model selection. Our new package also
provides miscellaneous functions to simulate zero-inflated count
data and calculate maximum likelihood estimates of unknown pa-
rameters. Compared with other R packages available so far, our
package covers more types of zero-inflated distributions and pro-
vides adjusted p-value estimates after incorporating the influence
of unknown model parameters. To facilitate the potential users, in
this paper we provide detailed descriptions of functions in “iZID”
and illustrate the use of them with executable R code.

AMS 2000 subject classifications: Primary 62G10, 62F10; secondary
62F40.
Keywords and phrases: Count data, hurdle model, Kolmogorov-
Smirnov test, model selection, zero-inflated distribution.

1. Introduction

Sparse or zero-inflated count data arise naturally from a rich variety of
scientific disciplines including microbiome [1], insurance claim [2, 3], secu-
rity [4], health care [5], and more. Researchers often need to explore for
the most appropriate probabilistic model which fits the zero-inflated data
the best. In the statistical literature, one-sample Kolmogorov-Smirnov (KS)
test provides a universal tool for testing if the random sample follows a
specific continuous distribution with known parameters. More specifically,
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the one-sample KS test calculates the statistic DN = supx |FN (x)− F0(x)|,
where FN (x) = N−1

∑N
i=1 I(−∞,x](xi) is the empirical distribution function,

F0(x) is the cumulative distribution function under the null hypothesis, and
{x1, x2, · · · , xN} is a given random sample of size N . Dimitrova et al. [6] de-
veloped an R package “KSgeneral” to compute the p-value of a KS test given
a specified distribution function F0(x), which can be continuous, discrete,
or mixed, but with known parameters. In practice, however, the distribu-
tion parameters are typically unknown. It is known that plugging in sample
estimates of unknown parameters tends to overestimate the p-value of a KS
test and consequently leads to a more conservative decision [7, 8].

To overcome the bias issue induced by plugging in estimated parame-
ters, Aldirawi et al. [9] proposed a bootstrapped Monte Carlo procedure to
estimate the p-value of a KS test for discrete probabilistic models. In the cir-
cumstance that more than one models pass the KS tests, Aldirawi et al. [9]
proposed a bootstrapped procedure for estimating the p-values of the like-
lihood ratio tests for pairwise comparisons of candidate models. Based on
[9], we develop a new R package named “iZID” for identifying Zero-Inflated
and Hurdle Distributions, available from the Comprehensive R Archive Net-
work (CRAN, https://CRAN.R-project.org/package=iZID). For user’s con-
venience, we cover regular Poisson, negative binomial, beta binomial, and
beta negative binomial distributions as well. Using “iZID”, the p-value is
estimated by counting the number of random samples whose KS test statis-
tics are greater than the KS statistic derived from the original data. Since
the random samples are generated using the maximum likelihood estimates
obtained from the bootstrapped or original data, the resulting p-value is
automatically adjusted for the influence of plugging in sample estimates.

The rest of this paper is structured as follows. In Section 2, we review
commonly used probabilistic distributions for modeling count data, includ-
ing four regular distributions and their zero-inflated and hurdle versions. We
also briefly review existing R packages for analyzing zero-inflated data in the
last subsection of Section 2. In Section 3, we dissect the package “iZID” and
present the syntax of major functions. In Section 4, we illustrate the use of
“iZID” with executable R code and examples. We summarize in Section 5.

2. Commonly used probabilistic distributions for modeling
count data

In the statistics literature, Poisson, negative binomial, and their zero-inflated
and hurdle versions have been commonly used in modeling count data [1].
Nevertheless, Aldirawi et al. [9] suggested that zero-inflated or hurdle models

https://CRAN.R-project.org/package=iZID
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of beta binomial and beta negative binomial distributions might be more ap-
propriate for modeling sparse omics data. In this section, besides commonly
used zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB)
distributions, we also review beta binomial (BB), beta negative binomial
(BNB), zero-inflated beta binomial (ZIBB), zero-inflated beta negative bi-
nomial (ZIBNB), beta binomial hurdle (BBH), and beta negative binomial
hurdle (BNBH) distributions, which are more flexible by attaching a beta
prior distribution.

2.1. Standard probabilistic distributions for modeling counts

(I) Poisson model If X follows a Poisson distribution with mean λ > 0,
then P (X = k) = λk

k! exp (−λ), where k = 0, 1, 2, · · · . The log-likelihood
function of λ given a random sample {x1, . . . , xN} of size N can be written
as

l(λ) =

N∑

i=1

xi · log λ−Nλ−
N∑

i=1

log Γ(xi + 1)

where the gamma function Γ(x+ 1) = x!.

(II) Negative binomial model Let p ∈ (0, 1) be the probability of suc-
cess in a sequence of independent Bernoulli trials and X be the number
of failures observed before the rth success (r ≥ 1). Then P (X = k) =(
k+r−1

k

)
pr(1− p)k, k = 0, 1, 2, · · · . The log-likelihood function of (r, p) given

{x1, . . . , xN} can be written as

l(r, p) =

N∑

i=1

log Γ(xi + r)−N log Γ(r) + rN log p+

N∑

i=1

xi · log(1− p)

−
N∑

i=1

log Γ(xi + 1)

(III) Beta binomial model First let X be a binomial random vari-
able with parameters n ≥ 1 and p ∈ (0, 1). Further let p have a beta
prior distribution with parameters α1 > 0 and α2 > 0. Then X follows
a beta binomial distribution with probability mass function P (X = k) =(
n
k

)Beta(k+α1,n−k+α2)
Beta(α1,α2)

, where Beta(a, b) = Γ(a)Γ(b)
Γ(a+b) . The log-likelihood func-

tion of parameters (n, α1, α2) given {x1, . . . , xN} can be written as

l(n, α1, α2) = N log Γ(n+ 1) +

N∑

i=1

log Γ(xi + α1) +

N∑

i=1

log Γ(n− xi + α2)
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+ N log Γ(α1 + α2)−
N∑

i=1

log Γ(xi + 1)−
N∑

i=1

log Γ(n− xi + 1)

− log Γ(n+ α1 + α2)−N log Γ(α1)−N log Γ(α2)

(IV) Beta negative binomial model First let X be a negative binomial

random variable with parameters r ≥ 1 and p ∈ (0, 1). Further let p have

a beta prior distribution with parameters α1 > 0 and α2 > 0. Then X

follows a beta negative binomial distribution with probability mass function

P (X = k) = Γ(r+k)Beta(α1+r,α2+k)
k!Γ(r)Beta(α1,α2)

. The log-likelihood function of parameters

(r, α1, α2) given {x1, . . . , xN} can be written as

l(r, α1, α2) =

N∑

i=1

log Γ(xi + r) +N log Γ(α1 + r) +

N∑

i=1

log Γ(xi + α2)

+ N log Γ(α1 + α2)−
N∑

i=1

log Γ(xi + 1)−N log Γ(r)

−
N∑

i=1

log Γ(xi + r + α1 + α2)−N log Γ(α1)−N log Γ(α2)

The parameter estimates for these models are obtained by maximizing

the corresponding log-likelihood function, known as the maximum likelihood

estimates (mle). The optimization procedures in “iZID” are implemented

using the R function optim.

2.2. Zero-inflated probabilistic distributions for modeling counts

Zero-inflated distributions provide a flexible way to model data with an

excess of zeros. Let Pθ stand for the probability mass function (pmf) of a

standard probabilistic model with parameters θ and let φ ∈ [0, 1] be the

weight parameter of excess zeros, then the pmf of the corresponding zero-

inflated distribution is

(1) PZI(k;φ,θ) = φ1{k=0} + (1− φ)Pθ(k)

Given a random sample {X1, . . . , XN} from model (1), we aim to find

the maximum likelihood estimate φ̂ for φ and θ̂ for θ. Without any loss of

generality, we rearrange X1, . . . , XN such that Xi �= 0 for i = 1, . . . ,m and
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Xm+1 = · · · = XN = 0. In other words, m = #{i : Xi �= 0} is the number
of nonzero observations. Then the likelihood function of (φ,θ) is

(2) L(φ,θ) = [φ+ Pθ(0)(1− φ)]N−m (1− φ)m[1− Pθ(0)]
m

m∏

i=1

Ptr(Xi;θ)

where Ptr(k;θ) = Pθ(k)/[1− Pθ(0)], k �= 0 is the zero-truncated pmf.

Since L(φ,θ) in (2) is not separable for φ and θ, in “iZID” package we
adopt the reparametrization method proposed in Aldirawi and Yang [10] for
estimating φ and θ.

2.3. Hurdle probabilistic distributions for modeling counts

Hurdle or zero-altered models provide another way to deal with data contain-
ing many zeros. While zero-inflated models add extra probability φ[1−Pθ(0)]
to the occurrence of zeros, hurdle models set φ as the probability of zeros,
which can be more or less than Pθ(0) determined by the standard models.
The pmf of the corresponding hurdle model is

(3) PZA(k;φ,θ) = φ1{k=0} + (1− φ)Ptr(k;θ)

with the zero-truncated pmf Ptr(k;θ). Note that the only difference between
the hurdle model (3) and the corresponding zero-inflated model (1) is that,
the hurdle model PZA is built from the zero-truncated pmf Ptr instead of
the original baseline pmf Pθ in PZI.

The likelihood function of model (3) is

(4) L(φ,θ) = φN−m(1− φ)m
m∏

i=1

Ptr(Xi;θ)

Since L(φ,θ) in (4) is separable for φ and θ, it is straightforward to obtain
φ̂ = 1−m/N . We follow Aldirawi and Yang [10] to estimate θ over nonzero
observations.

2.4. Existing R packages for analyzing zero-inflated data

Several packages are currently available from the Comprehensive R Archive
Network (CRAN) for analyzing zero-inflated data, including “bzinb” (Cho
et al. [11]), “hurdlr” (Balderama et al. [12]), “mazeinda” (Albasi [13]),
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“mhurdle” (Croissant et al. [14]), “rbtt” (Waudby-Smith et al. [15]), “ZIBB-
SeqDiscovery” (Hu et al. [16]), “ZIBseq” (Peng et al. [17]), “zic” (Jochmann
[18]), “ZIM” (Yang et al. [19]) and “ziphsmm” (Xu et al. [20]), etc.

Package “bzinb” provides tools for random sample generation, maxi-
mum likelihood estimation and log likelihood computation for bivariate zero-
inflated negative binomial and Poisson distributions. With “hurdlr”, users
are able to fit hurdle or zero-inflated negative binomial and Poisson regres-
sion models using Bayesian strategy. Package “mazeinda” is tailored to com-
pute and test the significance of pairwise monotonic association for count
data with any degree of zero-inflation. The creation of “mhurdle” is inspired
by the households’ expenditure survey data where many zeros exist in pre-
dictors recording the cost of some goods or activities. The function mhurdle

in package “mhurdle” enables the estimation of a large class of regression
models with up to three hurdles, which allows that zero observations in pre-
dictors occur by up to three structural reasons. Package “rbtt” tries to tackle
the inflation of type I error in two-sample t-tests comparing two groups of
zero-inflated data via robust bootstrapped test. Package “ZIBBSeqDiscov-
ery” models the relationship between the count data and some covariates of
interest by zero-inflated beta-binomial models. Package “ZIBseq” regresses
the counts on categorical clinical conditions in zero-inflated beta models.
Package “zic” outputs the Bayesian estimate of zero-inflated count models
while assuming that the parameters follow certain prior distributions. Pack-
age “ZIM” enables both observation-driven and parameter-driven modeling
for time series with excess zeros. Package “ziphsmm” analyses longitudinal
continuous-time data via zero-inflated Poisson hidden (semi-)Markov mod-
els.

Except for packages “mazeinda” and “rbtt”, the rest fit count data to
specific models. To the best of our knowledge, our package “iZID” is the first
one to conduct KS test for count data with p-values adjusted for the influence
of sample estimate of unknown parameters. Example 2.1 below shows that
our function dis.kstest is more reliable than the basic R function ks.test

in estimating p-values. For more comparisons, please see Section 4.2.

Example 2.1. In this experiment, we simulate N = 100 random num-
bers from a zero-inflated negative binomial (ZINB) distribution with pa-
rameters φ = 0.6, r = 2, p = 0.01. The maximum likelihood estimates
φ̂ = 0.590, r̂ = 2.06, p̂ = 0.011 are fairly accurate. Nevertheless, if one wants
to test if the original sample from a ZINB distribution by simulating another
random sample using the estimated parameter values, the classical R func-
tion ks.test rejects ZINB model with p-value 0.01 and a warning message.
If we use our function dis.kstest in package “iZID”, the adjusted p-value
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is 0.12 which passes the ZINB model. For readers’ reference, we provide the
R code and output below:

> set.seed(343)

> nsimu=100

> x=sample.zi(N=nsimu, phi=0.6, distri = "nb", r=2, p=0.01)

> mle=nb.zihmle(x, r=5, p=0.5, type="zi")

> mle

r p phi loglik

[1,] 2.058397 0.0112907 0.5899598 -316.7666

> y=sample.zi(N=nsimu, phi=mle[3], distri = "nb", r=mle[1],

p=mle[2])

> ks.test(x,y)

Two-sample Kolmogorov-Smirnov test

data: x and y

D = 0.23, p-value = 0.01008

alternative hypothesis: two-sided

Warning message:

In ks.test(x, y): p-value will be approximate in the presence

of ties

> dis.kstest(x, nsim=200, bootstrap = TRUE,

distri = "zinb")$pvalue

[1] 0.12

3. Architecture of the package “iZID”

The package “iZID” contains four main functions: dis.kstest, model.lrt,
sample.zi and sample.h. Function dis.kstest computes bootstrapped or
Monte Carlo p-value of one-sample KS test under a specific discrete distri-
bution. Function model.lrt implements a likelihood ratio test to select be-
tween two candidate models, in the case that more than one models have p-
values greater than the pre-specified significance level. Functions sample.zi
and sample.h are random sample generators, where the former outputs ran-
dom deviates of zero-inflated models and the latter generates random counts
from hurdle models. This package also provides some miscellaneous functions
to calculate maximum likelihood estimates and the corresponding log likeli-
hood value for a large set of models modeling count data. To accelerate the
calculation process, we parallelize the computation of bootstrapped Monte
Carlo estimates using R package “doParallel” [21] and “foreach” [22].
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3.1. Estimate p-value of one-sample KS test

To estimate the p-value of a KS test given a pre-specified distribution as
null hypothesis, the user may call the function dis.kstest with the syntax:

dis.kstest(x,nsim=100,bootstrap=TRUE,distri=’Poisson’,

r=NULL,p=NULL,alpha1=NULL,alpha2=NULL,n=NULL,

lowerbound=0.01,upperbound=10000,parallel=FALSE)

x Independent non-negative integers which stands for counts.
Can be a vector or a matrix.

nsim Number of bootstrapped samples generated for computing
maximum likelihood estimate of unknown parameters.

distri The distribution under null hypothesis. Currently,
standard Poisson, negative binomial, beta binomial, beta
negative binomial distributions as well as their
zero-inflated and hurdle versions are available in the
package. Accordingly, distri can be set to be one of
{Poisson, nb, bb, bnb, zip, zinb, zibb, zibnb, ph, nbh, bbh,
bnbh}. Note that users do not need to provide an estimate
for unknown parameters. Instead, dis.kstest
automatically carries out the task.

r, p Optional arguments for assigning initial values of unknown
parameters of standard, zero-inflated and hurdle negative
binomial distributions.

alpha(1,2) Optional arguments for assigning initial values of unknown
and n parameters of standard, zero-inflated and hurdle beta

binomial distributions.
alpha(1,2) Optional arguments for assigning initial values of unknown

and r parameters of standard, zero-inflated and hurdle beta
negative binomial distributions.

lowerbound The lower searching bound.
upperbound The upper searching bound.

Details:

• dis.kstest will be initialized with naive sample estimates if initial
values are not given. The negative log likelihood function is minimized
via basic R function optim with the searching interval decided by
lowerbound and upperbound, except that the optimization of p takes
1-lowerbound as the upper searching bound.
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• The way to calculate p-value of KS test is taken from [9] and illustrated

in Algorithm 1. Given a random sample x = {x1, x2, · · · , xN}, nsim
bootstrapped samples are obtained by resampling x with replacement

if setting bootstrap=TRUE (by default). If setting bootstrap=FALSE,

nsim new samples will be simulated with the mle of the original data

x, and KS statistics of the new samples will be computed.

Value:

An object of class “dis.kstest” including all the input values, as well as

• mle new: A matrix of the maximum likelihood estimates of unknown

parameters under the null distribution, using nsim bootstrapped or

simulated samples.

• mle ori: A row vector of the maximum likelihood estimates of un-

known parameters under the null distribution, using the original data

x.

• pvalue: Monte Carlo p-value of the one-sample KS test.

3.2. Likelihood ratio test for model selection

If the p-values returned by dis.kstest are not significant for more than one

distributions, a likelihood ratio test can be performed to select a relatively

“better” model for the data on hand. The way to call model.lrt is as

follows:

model.lrt(d1,d2,parallel = FALSE)

where d1 and d2 are two objects of class “dis.kstest” under different dis-

tributions. The likelihood ratio test statistic is the difference between log

likelihood of the alternative and the null distribution decided by d2 and d1,

respectively. The algorithm under the hood follows [9] with the pseudocode

given in Algorithm 2. One may simulate nsim new samples under the null

distribution using nsim mles inherited from d1$mle new, and then calculate

the differences between log likelihood of new samples under the alternative

and the null hypotheses as statistics of the likelihood ratio tests. Function

dis.kstest returns the proportion of test statistics of new samples that

are greater than the statistic of original data x. A small p-value indicates

that the data on hand is more likely to come from the alternative distribu-

tion. Otherwise, the null distribution shows no significant difference to the

alternative one.
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Algorithm 1: Pseudocode of dis.kstest for discrete KS test

Input : x, nsim, bootstrap, distri, lowerbound, upperbound,
parallel.

Output: p-value of the KS test.
1 Assigning initial values of unknown parameters using naive sample

estimates or input values;
2 mle ori ← maximum likelihod estimates of unknown parameters using x;
3 Dn ori ← KS test statistic of x under distri whose parameters equal

mle ori;
4 Let mle new be a matrix with nsim columns;
5 for j ← 1 to nsim do
6 if bootstrap then
7 x new ← sampling N observations from x with replacement // N

is the length of vectorized x;
8 mle new[, j] ←

maximum likelihod estimates of unknown parameters
using x new;

9 else
10 mle new[, j] ← mle ori;
11 end if

12 end for
13 Let D2 be a vector with nsim elements;
14 for j ← 1 to nsim do
15 x new ← a vector of N random deviates generated from distri with

unknown parameters equal to mle new[, j];
16 D2[j] ← KS test statistic of x new

under distri whose parameters equal mle new[, j];

17 end for

18 pvalue ← #{D2>Dn ori}
nsim ;

19 return pvalue;

3.3. Generate random samples from zero-inflated and hurdle

distributions

Random deviates from standard Poisson and negative binomial distribu-

tions can be generated by basic R functions rpois and rnbinom, respec-

tively. With R package “ExtraDistr” (Wolodzko [23]), functions rbbinom

and rbnbinom are available for standard beta binomial and beta negative

binomial distributions, respectively. In addition, there are a few other R

packages for generating a dataset from some hurdle distributions. For ex-
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Algorithm 2: Pseudocode of model.lrt for likelihoood ratio test

Input : d1, d2.
Output: p-value of the likelihood ratio test.

1 Initialization:
2 mle new ← d1$mle new; N ← d1$N ; distri1 ← d1$distri;

nsim ← d1$nsim; distri2 ← d2$distri; t1 ← log likelihood under
distri1, given original data; t2 ← log likelihood under distri2, given
original data; also adopts other values in d1 and d2.

3 end
4 t ori ← (t2− t1);
5 Let t new be a vector with nsim elements;
6 for j ← 1 to nsim do
7 x new ← a vector of N random deviates generated from distri1

with unknown parameter(s) equal to mle new[, j];
8 t1 ← log likelihood under distri1 with maximum likelihood estimates

plugged-in, given x new;
9 t2 ← log likelihood under distri2 with maximum likelihood estimates

plugged-in, given x new;
10 t new[j] ← (t2− t1);

11 end for

12 pvalue ← #{t new>t ori}
nsim ;

13 return pvalue;

ample, package “countreg” provides function hpois for generating dataset
from Poisson hurdle distribution.

In our package “iZID”, we allow the use of new distributions includ-
ing beta binomial and beta negative binomial distributions, and more im-
portantly, their corresponding zero-inflated and hurdle models. Aldirawi et
al. [9] introduced a procedure grounded upon the central limit theorem to
produce random values from zero-inflated and hurdle models. In package
“iZID”, we implement the procedure to the following two functions:

sample.zi(N,phi,distri=’poisson’,lambda=NA,r=NA,p=NA,

alpha1=NA,alpha2=NA, n=NA)

sample.h(N,phi,distri=’poisson’,lambda=NA,r=NA,p=NA,

alpha1=NA,alpha2=NA, n=NA)

These two functions have exactly the same arguments. Here N represents
the size of random sample to return. Argument phi stands for the value of
structural parameter φ in zero-inflated and hurdle models, e.g., formulae (1)
and (3). The input distri currently belongs to the set of four standard
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distributions {Poisson, nb, bb, bnb}. For example, by setting distri=nb,

sample.zi and sample.h return zero-inflated and hurdle negative binomial

distributed random deviates, respectively. Arguments lambda, r, p, alpha1,

alpha2 and n are parameter values for different distributions, which must

be specified. For instance, with distri=nb, users need to provide values for

r and p.

3.4. Calculate maximum likelihood estimate and log likelihood

In order to calculate the maximum likelihood estimate as well as the value

of log likelihood of the aforementioned four standard distributions and their

zero-inflated and hurdle versions, one may simply use the following lines of

code with package “iZID”:

poisson.mle(x)

bb.mle(x,n,alpha1,alpha2,lowerbound = 0.01,

upperbound = 10000)

nb.mle(x,r,p,lowerbound = 0.01, upperbound = 10000)

bnb.mle(x,r,alpha1,alpha2,lowerbound = 0.01,

upperbound = 10000)

poisson.zihmle(x,type=c(’zi’,’h’),lowerbound = 0.01,

upperbound = 10000)

bb.zihmle(x,n,alpha1,alpha2,type=c(’zi’,’h’),

lowerbound = 0.01, upperbound = 10000)

nb.zihmle(x,r,p,type=c(’zi’,’h’),lowerbound = 0.01,

upperbound = 10000)

bnb.zihmle(x,r,alpha1,alpha2,type=c(’zi’,’h’),

lowerbound = 0.01, upperbound = 10000)

The first four functions are designed for standard distributions. The rest

are for zero-inflated models with setting type=’zi’ and hurdle models with

setting type=’h’. Note that the value of arguments will not be checked

within the functions. Thus, results could be misleading with improper in-

puts. When calling nb.zihmle and bnb.zihmle, the users may receive warn-

ing messages such as “...cannot obtain mle with the current model

type...” if the optimization procedure by R function optim does not con-

verge. In this case, the output will be identical to the maximum likelihood

estimates for standard negative binomial or beta negative binomial distri-

bution.
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4. Illustration

4.1. Quick start

In order to utilize the “iZID” package, one may use the functions described
in Section 3.3 to generate two random samples of size 28 from a zero-inflated
negative binomial distribution with parameters (φ, r, p) = (0.3, 6, 0.4) and a
hurdle beta negative binomial distribution with parameters (φ, r, α1, α2) =
(0.6, 6, 3, 7), respectively.

library(iZID) ##load the package

sample.zi(N=28,phi=0.3,distri=’nb’,r=6,p=0.4)

[1] 8 11 10 12 13 0 6 0 10 7 0 5 8 11 11 5 7 7 6 15 0 5 9

14 10 5 10 12

sample.h(N=28,phi=0.6,distri=’bnb’,r=6,alpha1=3,alpha2=7)

[1] 0 14 0 20 0 0 17 0 0 0 18 0 0 0 0 0 36 19 14 20 0 24 0

7 2 10 0 0

One may test if the maximum likelihood estimates of parameters are close
to the truth.

temp1=sample.zi(N=300,phi=0.3,distri=’poisson’,lambda=5)

poisson.zihmle(temp1,type=’zi’)

lambda phi loglik

[1,] 5.058126 0.2955213 -640.1416

From the above output, the estimates of λ and φ approximate the true
values. In the circumstances when the underlying distribution of data temp1
is unknown, one may fit other models as follows:

nb.zihmle(temp1,type=’zi’,r=3,p=0.5)

r p phi loglik

[1,] 340.5231 0.9853779 0.295327 -640.1886

bb.zihmle(temp1,type=’zi’,n=3,alpha1=3,alpha2=5)

n alpha1 alpha2 phi loglik

[1,] 637.37 28.23 178.30 0.3 7120.57

bnb.zihmle(temp1,type=’zi’,r=3,alpha1=3,alpha2=5)

r alpha1 alpha2 phi loglik

[1,] 10000 1614.465 541.4786 0 30367934

Warning message:

In bnb.zihmle(temp1, type = ‘‘zi’’, r = 3, alpha1 = 3, alpha2

= 5, : cannot obtain mle with the current model type, the

output estimate is derived from general beta negative

binomial distribution.
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Note that the log likelihood of beta binomial distribution for data temp1 ex-
ceeds that of zero-inflated Poisson distribution, though the latter is the true
underlying model. It suggests the need of conducting KS tests to identify
an “appropriate” model before estimating model parameters. Without spec-
ifying any initial guess on parameters, the procedure of obtaining p-values
works as follows:

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’Poisson’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’nb’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’bb’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’bnb’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’zip’)$pvalue

[1] 0.97

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’zinb’)$pvalue

[1] 0.97

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’zibb’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’zibnb’)$pvalue

[1] 0

Warning message:

In bnb.zihmle(x, r, alpha1, alpha2, type = ‘‘zi’’) :

cannot obtain mle with the current model type, the output

estimate is derived from general beta negative binomial

distribution.

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’ph’)$pvalue

[1] 0.98

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’nbh’)$pvalue
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[1] 0.94

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’bbh’)$pvalue

[1] 0

dis.kstest(temp1,nsim=100,bootstrap=TRUE,

distri=’bnbh’)$pvalue

[1] 0

Warning message:

In bnb.zihmle(x, r, alpha1, alpha2, type = ‘‘h’’) :

cannot obtain mle with the current model type, the output

estimate is derived from general beta negative binomial

distribution.

The divergence of empirical distribution of temp1 from zero-inflated Pois-
son and negative binomial distributions and their hurdle versions is not
significant with p-values close to 1. Since a zero-inflated model and its hur-
dle version are closely related, we are more interested in distinguishing two
types of distributions, say, zero-inflated Poisson or negative binomial, which
can be done by using the function model.lrt. Define the two “dis.kstest”
objects returned from zero-inflated Poisson and negative binomial as “d1”
and “d2”, respectively.

model.lrt(d1,d2)

[1] 0.5

With the current sample size of data temp1, the likelihood ratio test, which
is the most powerful test, does not tell the difference between zero-inflated
Poisson and negative binomial distribution. In this case, a larger sample size
would be needed.

4.2. Comparison with R package “KSgeneral”

Package “KSgeneral” [6] supports the computation of p-value for discrete
KS test, assuming that parameter values in the null distribution are already
known. To conduct a KS test via “KSgeneral”, we need to substitute the un-
known parameters with their maximum likelihood estimates. Suppose that
a random sample {X1, . . . , X1000} is generated from a zero-inflated nega-
tive binomial distribution with parameters (φ, r, p) = (0.7, 5, 0.6) using the
function sample.zi as below:

library(iZID)

library(extraDistr)

library(KSgeneral)
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set.seed(10086)

x=sample.zi(N=1000,phi=0.7,distri=’nb’,p=0.6,r=5)

table(x)

x

0 1 2 3 4 5 6 7 8 10 11 12

726 52 58 59 40 24 22 10 4 1 2 2

## some naive initial estimates of unknown parameters

r=max(x)

p=sum(x>0)/length(x)

n=max(x)+1

alpha1=abs(mean(x)*(mean(x)*(1-mean(x))/var(x)-1))

alpha2=abs((1-mean(x))*(mean(x)*(1-mean(x))/var(x)-1))

To test if the simulated data follows from zero-inflated negative binomial
distribution:

## maximum likelihood estimates of unknown parameters

temp1=nb.zihmle(x,type=’zi’,r=r,p=p)

temp1

r p phi loglik

[1,] 5.477278 0.6428991 0.6992482 -1127.7

y1=stepfun(0:max(x), c(0, temp1[3]+(1-temp1[3])*pnbinom(

0:max(x),size=ceiling(temp1[1]),p=temp1[2])))

## conduct discrete KS test with function disc ks test

## in ‘‘KSgeneral’’

disc ks test(x=x, y=y1, exact=T, tol=1e-08)$p

[1] 0.6051321

## conduct discrete KS test with function dis.kstest

## in ‘‘iZID’’

dis.kstest(x,nsim=100,bootstrap=TRUE,distri=’zinb’,r=r,

p=p)$pvalue

[1] 0.27

From the results above, there is no significant evidence showing that the
simulated data comes from distributions other than ZINB. However, a more
realistic scenario is that we may also testify other null distributions such as
ZIBB, ZIP or ZIBNB.

## when the null distribution is ZIBB

temp1=bb.zihmle(x,type=’zi’,n=n,alpha1=alpha1,

alpha2=alpha2)
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y1=stepfun(0:max(x), c(0, temp1[4]+(1-temp1[4])*pbbinom(

0:max(x),size=round(temp1[1]), alpha=temp1[2],

beta=temp1[3])))

disc ks test(x=x, y=y1, exact=T, tol=1e-08)$p

[1] 1

dis.kstest(x,bootstrap=TRUE,distri=’zibb’,n=n,

alpha1=alpha1,alpha2=alpha2)$pvalue

[1] 0

## when the null distribution is ZIP

temp1=poisson.zihmle(x,type=’zi’)

y1=stepfun(0:max(x), c(0, temp1[2]+(1-temp1[2])*ppois(

0:max(x),lambda=temp1[1])))

disc ks test(x=x, y=y1, exact=T, tol=1e-08)$p

[1] 0.4722135

dis.kstest(x,nsim=100,bootstrap=TRUE,distri=’zip’)$pvalue

[1] 0.47

## when the null distribution is ZIBNB

temp1=bnb.zihmle(x,type=’zi’,r=r,alpha1=alpha1,

alpha2=alpha2)

y1=stepfun(0:max(x), c(0, temp1[4]+(1-temp1[4])*pbnbinom(

0:max(x),size=round(temp1[1]),alpha=temp1[2],

beta=temp1[3])))

disc ks test(x=x, y=y1, exact=T, tol=1e-08)$p

[1] 1

dis.kstest(x,bootstrap=TRUE,distri=’zibnb’,r=r,

alpha1=alpha1,alpha2=alpha2)$pvalue

[1] 0

Neither function disc ks test in package “KSgeneral” nor our function
dis.kstest could distinguish between ZINB and ZIP distributions with
the current sample size. As for ZIBB and ZIBNB distributions, the p-value
1 obtained by disc ks test is apparently misleading, while our dis.kstest
correctly rejects the two null hypothese with p-values equal to 0.

4.3. A real data example

In this subsection, we use the real dataset “dataCar” from R package “in-
suranceData” for illustration. The data consists of 67,856 one-year vehicle
insurance policies issued in 2014–2015. The variable number of claims is a
sparse count variable. The goal is to identify the distribution of the variable.
Table 1 shows the numbers of claims as well as percentages.
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Table 1: Number of claims in dataset “dataCar”

Occurrence Frequency Percentage
0 63,232 93.18%
1 4,333 6.39%
2 271 0.40%
3 18 0.03%
4 2 0.00%

Total 67,856 100.00%

To check if the data follows any specific discrete distribution, we use

dis.kstest in our package. A large p-value implies that the data may follow

the pre-specified discrete distribution. The following R codes show how to
test if the variable number of claims follows Poisson, negative binomial,

ZIP, or ZINB distribution.

library(insuranceData)

library(car)

data(dataCar)

attach(dataCar)

X=dataCar[,4] #Number of claims variable

dis.kstest(X,nsim=200,bootstrap=TRUE,

distri=’Poisson’)$pvalue

[1] 0.035

dis.kstest(X,nsim=200,bootstrap=TRUE,distri=’nb’)$pvalue

[1] 0

dis.kstest(X,nsim=200,bootstrap=TRUE,distri=’zip’)$pvalue

[1] 0.955

dis.kstest(X,nsim=200,bootstrap=TRUE,distri=’zinb’)$pvalue

[1] 0

dis.kstest(X,nsim=200,bootstrap=TRUE,distri=’zip’)$mle ori

lambda phi loglik

[1,] 0.1324475 0.4506756 -18052.2

The above output implies that the data follows ZIP distribution with esti-
mated parameters φ̂ = 0.451, and λ̂ = 0.132. To confirm this conclusion, we

simulate a random sample from the ZIP distribution with φ = 0.451, and
λ = 0.132 as follows:

Y=sample.zi(N=length(X),phi=0.4506756,distri=’Poisson’,

lambda=0.1324475)
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Figure 1: Chart plot to compare the real dataset “dataCar” and the sim-
ulated data using the function sample.zi with parameters estimated from
the real data.

Using R function table, we can see that the distributions of the original data
X and the simulated data Y match each other very well (see also Figure 1).

table(X)

0 1 2 3 4

63232 4333 271 18 2
table(Y)

0 1 2 3 4

63172 4371 298 14 1

5. Conclusion

In this paper, we introduce a new R package “iZID” which provides the
bootstrapped Monte Carlo estimates of p-values of discrete KS tests, as well
as a function model.lrt to perform a likelihood ratio test when two or
more distributions pass the KS test. Besides, “iZID” supports the gener-
ation of random deviates from zero-inflated distributions as well as hur-
dle models, and the computation of maximum likelihood estimates of a
large class of models. The implementation of functions dis.kstest and
model.lrt are speeded up by parallel computing via packages “foreach”
and “doParallel”.

Due to the nature of gamma functions, the optimization of the likeli-
hood function of zero-inflated and hurdle beta binomial and beta negative
binomial distributions may not converge. In this circumstance, the results
of corresponding standard distributions are returned. We plan to further
improve and update the functions in the package for obtaining more robust
and reliable sample estimates of parameters.
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