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S.1. Technical details for Algorithm 1

In this section, we provide more technical details on obtaining λ in Step 3 of Algorithm 1:

3: Obtain λ that minimizes the generalized approximate cross-validation score function (see equa-

tion (5.42) in [15]):

V (λ) = − 1

n

n∑
j=1

{(νmle + yj) log(1− pλ(xj)) + νmleηλ(xj)}

+ α
tr(AwW

−1)

n− trAw

1

n
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j=1

yjpλ(xj) {(νmle + yj)pλ(xj)− νmle} (S.1)

where ηλ minimizes the penalized likelihood functional (3)
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{
(yj + νmle) log
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)
− νmleη(xi)

}
+

λ
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(see expression (5.1) in [15]), and pλ(xj) are produced via the equation:

pλ(xj) =
exp{ηλ(xj)}

1 + exp{ηλ(xj)}

Here more notations in (S.1) need to be clarified. The α is known as the fudge factor. The value

of α can be 1 or 1.4, and α = 1.4 is generally preferred to α = 1 [15]. In this study, α = 1.4 is

used to overcome the undersmoothing issue of GCV (generalized cross-validation) while maintaining

its good performance [15]. The W is a diagonal matrix with elements w̃j , j = 1, . . . , n, that is W =

diag{w̃1, . . . , w̃n}, where

w̃j =
νmle exp{ηλ(xj)}
[1− exp{ηλ(xj)}]2

The Aw is an n× n matrix defined as

Aw = I − nλF2(F
T
2 QwF2 + nλI)−1FT

2

where F2 is an orthogonal matrix with FT
2 F2 = I (see expression (3.5) in [15]), Qw = W 1/2QW 1/2,

and Q is a square matrix (see expression (2.16) in [15]). After all, λ is obtained as Step 3.
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S.2. Technical details for Section 3.2

In this section, we provide more technical details on log-likelihood difference (LLD, see Section 3.2).
Given the class label k ∈ {0, 1} and a daily traffic flow data Y = {yt, t = 1, . . . , 288}, the likelihood

function of the negative binomial model is

L(νk, p(·, k) | Y) =

288∏
t=1

Γ(νk + yt)

yt!Γ(νk)
p(t, k)νk [1− p(t, k)]yt

In terms of η(t, k) = log p(t,k)
1−p(t,k)

, the log-likelihood function

l(νk, p(·, k) | Y) = l(νk, η(·, k) | Y)

=

288∑
t=1

{
log

Γ(νk + yt)

yt!Γ(νk)
+ νkη(t, k) + νk log[1− p(t, k)] + yt log[1− p(t, k)]

}

=

288∑
t=1

{
log

Γ(νk + yt)

yt!Γ(νk)
+ νkη(t, k) + (νk + yt) log[1− p(t, k)]

}

=

288∑
t=1

{
log
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yt!Γ(νk)
+ νkη(t, k)− (νk + yt) log[1 + eη(t,k)]

}

=

288∑
t=1

log[Γ(νk + yt)]− 288 log[Γ(νk)]−
288∑
t=1

log(yt!) + νk

288∑
t=1

η(t, k)

−
288∑
t=1

(νk + yt) log[1 + eη(t,k)]

Then the difference of log-likelihood between the workday class (k = 0) and the weekend class (k = 1)
is

LLD(Y) = l(ν̂0, p̂(·, 0) | Y)− l(ν̂1, p̂(·, 1) | Y)

=

288∑
t=1

log
Γ(ν̂0 + yt)

Γ(ν̂1 + yt)
− 288 log

Γ(ν̂0)

Γ(ν̂1)
+

288∑
t=1

[ν̂0η̂(t, 0)− ν̂1η̂(t, 1)]

−
288∑
t=1

{
log

[1 + eη̂(t,0)]ν̂0

[1 + eη̂(t,1)]ν̂1
+ yt log

1 + eη̂(t,0)

1 + eη̂(t,1)

}

S.3. More tables for Sections 2 and 4.1

The results of the missing data imputation mentioned in Section 2 are provided in Table S.1. We apply
the last-value-carried-forward strategy to handle these missing data and use bold font for “22:45:00”
column and “11:55:00” column indicating imputed data.

In Tables S.2 and S.3 mentioned in Section 2, the imputed data, marked in bold font, are obtained
by the linear interpolation plus round-off strategy.

In Table S.4, we list the holidays in Year 2017 used in our analysis mentioned in Section 4.1.

S.4. More figures for Sections 2 and 3.2

By courtesy of Figure 1 of [30] with the copyright permission, Figure S.1 displays the locations of ten
sensors in District 3 of Sacramento, mentioned in Section 2.

Mentioned in Section 2, Figure S.2 shows the boxplots of the log-likelihood differences of workdays
and weekends, respectively, which visually implies the possibility of using the difference for separating
traffic flows of workdays and weekends (see also Section 3.2).

Using Sensor S314147 as an illustration, Figure S.3 shows how the threshold obtained by the SVC
algorithm separates the two classes. For better visualization, we extend this one-dimensional space to

S2



Sensor
ID

Missing Time Periods
08/15/2017 10/15/2017

22:40:00 22:45:00 22:50:00 11:50:00 11:55:00 12:00:00
S312425 95 95 91 325 325 335
S312520 152 152 149 386 386 377
S312694 132 132 135 395 395 400
S312942 138 138 131 358 358 362
S314147 131 131 123 311 311 258
S315017 190 190 188 308 308 379
S315938 236 236 229 276 276 277
S317814 110 110 107 214 214 206
S318180 78 78 74 217 217 210
S318566 136 136 141 406 406 394

Table S.1. Imputed Missing Data Using the Last-value-carried-forward Strategy with Bold Font Indicating

Imputed Ones

Sensor
ID

Missing Time Periods
03/12/2017

01:55:00 02:00:00 02:05:00 02:10:00 02:15:00 02:20:00 02:25:00
S312425 39 38 38 37 37 36 36
S312520 53 53 54 54 55 55 55
S312694 61 61 61 61 62 62 62
S312942 70 70 69 69 68 68 67
S314147 66 67 68 68 69 70 71
S315017 145 145 145 145 145 145 145
S315938 57 56 55 55 54 53 52
S317814 66 66 66 66 66 66 66
S318180 39 39 38 38 38 37 37
S318566 83 84 84 85 85 86 87

Table S.2. Imputed Missing Data Using the Linear Interpolation plus Round-off Strategy with Bold Font
Indicating Imputed Ones (Part I)

a two-dimensional space by introducing the day index as the x-coordinate. The day index here is from

1 to 365 corresponding to the date from January 1 to December 31, 2017. Therefore, the threshold we

have obtained will become a straight line which is not influenced by the day index.

Using the negative binomial smoothing regression ANOVA model, we obtain the mean response

curve for the Martin Luther King Jr. Day (see Figures S.4 mentioned in Section 3.2). The mean

response curves associated with workdays and weekends are also obtained, respectively, as well as the

95% Bayesian credible bands.

S.5. 5-fold cross-validation in Sections 3.3 and 4.1

As mentioned in Sections 3.3 and 4.1, the 5-fold cross validation is applied for estimating the error rate

and avoiding the potential risk of overfitting. The 5 equally sized subsets here are from workdays and

weekends after removing holidays. To maintain the same data structure as the preceding datasets, the

workday data and weekend data are treated separately and divided into 5 equal parts, respectively.

By this way, the numbers of workdays and weekends in each subset (see Table S.5) can be kept with

a ratio of 5:2.

Table S.6 provides the error rates for each of the ten sensors based on the 5-fold cross-validation.

Note that all holidays are removed. It is consistent with the Workday and Weekend columns of Table 3.
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Sensor
ID

Missing Time Periods
03/12/2017

02:30:00 02:35:00 02:40:00 02:45:00 02:50:00 02:55:00 03:00:00
S312425 35 35 34 34 33 33 32
S312520 56 56 56 57 57 58 58
S312694 62 62 62 63 63 63 63
S312942 67 66 66 65 65 64 64
S314147 71 72 73 74 74 75 76
S315017 146 146 146 146 146 146 146
S315938 52 51 50 49 49 48 47
S317814 65 65 65 65 65 65 65
S318180 37 37 36 36 36 35 35
S318566 87 88 89 89 90 90 91

Table S.3. Imputed Missing Data Using the Linear Interpolation plus Round-off Strategy with Bold Font

Indicating Imputed Ones (Part II)

Holiday Date
New Year’s Day Observed Monday, January 2, 2017
Martin Luther King Jr. Day Monday, January 16, 2017

Superbowl Sunday Sunday, February 5, 2017
Presidents’ Day Monday, February 20, 2017
Memorial Day Monday, May 29, 2017

Independent Day Tuesday, July 4, 2017
Labor Day Monday, September 4, 2017

Thanksgiving Day Thursday November 23, 2017
Day After Thanksgiving Friday, November 24, 2017

Christmas Day Monday, December 25, 2017
Table S.4. List of the holidays in Year 2017 used in our analysis.

Table S.6 shows that there are 6 sensors have no prediction error at all; 3 sensors have only 1

prediction error; and 1 sensor (S312520) has 5 prediction errors. Overall the estimated prediction

error rates based on 5-fold cross-validation are fairly low. It indicates that the SVC algorithm with

log-likelihood difference works indeed very well.

S.6. Simulation study on robustness of estimated mean response curve

By applying Algorithm 1, we obtain the mean response curve µ̂(t, k) for the kth group of daily traffic

flow data. As mentioned in Section 4.2, in this section we use simulation study to check the robustness

of the estimated mean response curve.

We use the workday traffic flow data recorded by Sensors S312694 and S315017 for illustra-

tions. For each sensor, by applying Algorithm 1 to the group of workday traffic flow data {Yt0i, t =

1, . . . , 288, i = 1, . . . , n0}, we obtain the parameter estimates ν̂0 and p̂(t, 0). Assuming that the nega-

tive distribution f(y; ν̂0, p̂(t, 0)) as defined in (2) is the true distribution, we simulate a new dataset

Y ′
t0i ∼ f(y; ν̂0, p̂(t, 0)), t = 1, . . . , 288 and i = 1, . . . , n0. To show that the estimated mean response

curve is not much affected by potential outliers, we artificially add some outliers from reported real

traffic accidents. More specifically, we insert traffic flow data during the reported accident period into

the simulated dataset with randomly chosen dates (see Table S.7).

In Figure S.5 (for Sensor S312649) and Figure S.6 (for Sensor 315017) we show both the mean

response curves estimated from the real traffic data and the simulated data with inserted accidental

traffic flows. For readers’ reference, in each figure we add one simulated traffic flow with an inserted
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Figure S.1. Sensors with Known Locations in District 3 of Sacramento, Mainly Located on Highways

Figure S.2. Boxplots of Log-likelihood Differences of Workdays and Weekends from All Sensors

accident. The two inserted accidents displayed are real accidents originally occurred on 02/10/2017 (see

Figure S.5) and 02/06/2017 (see Figure S.6). Both accidents have a long duration and are evaluated

as severe according to our impact rate (see Section 4.3 and Table 4).

According to Figures S.5 and S.6, our estimated mean response curve is not affected by artificially

added accidents, even if some of them are severe. It shows that our proposed model is reliable and the

estimated mean response curve is fairly robust.

S.7. Step function versus linear function in Section 4.3

As mentioned in Section 4.3, the traffic flow y(x) is actually observed only at discrete time points. To

calculate the impact factor (4) and impact intensity (5), there are two methods: one is to use a step

function (still denoted by y(x); the other is to use a piecewise linear function f(x). In this section, we

compare these two methods.

Using Sensor S312694 as an illustration, the impact factors (I or a restricted version I5 with

xR − xL = 5 or less) and impact rates (or a restricted version I5/I × 100%) are listed in Table S.8.

It should be noted that the accident reported by S312694 was from 12:44:00 to 14:28:00 on February

10, 2017, with a total duration of 104 minutes. The total impact factor is 18735.97 with impact rate
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Figure S.3. SVC Classification for Sensor S314147: Straight line shows the threshold −45.53; hollow circles
represent workdays; solid triangles indicate weekends

5 Equal Sized Subsets
Workday

(except holidays)
51 50 50 50 50

Weekend
(except holidays)

21 21 21 21 20

Subset 72 71 71 71 70
Table S.5. Sizes of 5-fold Cross-validation Subsets: 251 workdays (without holidays) are divided into 5 equal-

sized subgroups; 104 weekdays (without holidays) are divided into 5 equal-sized subgroups; each subset of the

5-fold cross-validation consists of about 71 days

5.22% based on the step function or 18765.24 with impact rate 5.23% based on the piecewise linear

function, which are pretty close.

To visually see the difference, in Figure S.7 we show the graph of individual impact factors (impact

factors restricted to 5-min intervals) against the index of 5-min intervals. It can be seen that the two

curves are fairly close to each other, which implies the step function and piecewise linear function

provide essentially the same results in this study.

S.8. Further separating Saturdays and Sundays

As mentioned in Section 5, it is worthy of checking differences of traffic flow patterns between Saturdays

and Sundays. Have obtained the log-likelihood differences and their visualization, a special feature

emerges in the weekend cluster. There seems to be two paths and exists clear gaps between them. The

mean response curves and confidence bands are implemented again in this case. The weekend data

is divided into Saturday’s and Sunday’s. Figures S.8 and S.9 show that the pattern of Saturdays is

significantly different from Sundays’.

It can be found that the mean response curves and corresponding confidence bands of Saturday

and Sunday do not overlap during a considerate amount time, especially between 4am and 9am.

There is indeed a significant gap, although the overall trends are similar. Figures S.8 and S.9) show

that although Saturdays and Sundays both belong to weekends, their traffic flow patterns are still

significantly different. After checking the 24-hour data of weekends, it can be seen that the traffic

counts on Saturday tend to be higher than Sunday’s, which indicates that more travels involve on

Saturdays than Sundays.
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Figure S.4. Mean Response Curves and Confidence Bands with the MLK Day for Sensor S312425: Dotted

lines represent the mean response curves and the confidence bands of workdays and weekends, respectively;
solid line is the mean response curve of the Martin Luther King Jr. Day’s

Sensor
ID

5-Fold Cross-Validation
Error

Error
Count

Error
Rate (%)

S312425 0 0
S312520 5 1.41
S312694 0 0
S312942 0 0
S314147 0 0
S315017 1 0.28
S315938 1 0.28
S317814 1 0.28
S318180 0 0
S318566 0 0

Table S.6. Estimated Error Rates in Separating Patterns of Weekdays and Weekends Based on 5-fold Cross-
validation without Holidays

S.9. Functional data analysis

As mentioned in Section3.1, the traffic flows can be considered as a random function which the

functional data analysis (FDA) [31] could be applied to. Moreover, generalized functional linear models

[18, 21] and functional ANOVA [20] could be alternative approaches.

After implementing FDA to all the traffic flow data recorded by 10 sensors, the comparison results of

these two methods are obtained. In general, although the mean response curves obtained by both have

almost the same pattern, the SSANOVA-based mean response curves are smoother than the FDA-

based curves for all 10 sensors. It is important to note that the FDA-based mean response curves are

very rough during some time periods. Since Sensors S314147, S315017, S315938 and S318180 recorded

many accidents and the duration of these accidents are long (see Table 4), we use these sensors as

illustrations to show the comparison of the mean response curves. From Figures S.10, S.11, S.12

and S.13, it can be seen that the FDA-based mean response curves are overall rougher than the

SSANOVA-based curves, especially in the marked time periods.

In Section4.1, we perform Support Vector Classifier (SVC) and 5-fold cross-validations to validate

the threshold for classification and measure the error count based on the SSANOVA (see Table 3).

Similarly, we need to apply these two methods to the FDA. The summarized error counts based on
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Original
Accident
Date

Accident
Start

Timestamp

Accident
Duration
(mins)

Inserted Date
in Simulated

Dataset
09/05/2017 01:45:00 173 01/19/2017
09/26/2017 00:17:00 105 02/06/2017
02/10/2017 12:44:00 104 03/22/2017
03/22/2017 06:31:00 124 04/14/2017
01/12/2017 11:05:00 212 05/17/2017
05/05/2017 09:21:00 165 06/06/2017
07/18/2017 12:08:00 108 07/18/2017
02/06/2017 11:42:00 211 07/31/2017
04/05/2017 10:45:00 102 08/24/2017
05/30/2017 05:51:00 169 09/05/2017
12/01/2017 08:30:00 122 09/20/2017
07/26/2017 05:23:00 178 10/09/2017
09/05/2017 16:56:00 104 11/17/2017
10/28/2017 16:14:00 122 11/28/2017
06/12/2017 16:47:00 128 12/19/2017

Table S.7. Reported Traffic Accident Information and Randomly Inserted Date in Simulated Dataset

5-fold cross-validations for all 10 sensors based on the thresholds determined by the SVC algorithm

are provided in Table S.9.

Comparing the error rates in Table 3 and Table S.9, the classification results in Sensors S314147,

S315017 and S318180 are different. For Sensor S314147, the FDA-based SVC misclassifies one more

workday data point than the SSANOVA-based SVC. For Sensor S315017, the FDA-based SVC mis-

classifies by two more workday data points. And for Sensor S318180, the FDA-based SVC misclassifies

by two more workday data points than the SSANOVA-based SVC. Overall, the SSANOVA performs

more reliably than the FDA, especially for workday’s traffic flow data, and for weekend’s data, both

perform equally well.

In Section 4.3, we calculate the impact factors and impact rates of reported accidents for 10 sensors

(see Table 4). For comparison, after obtaining the FDA-based mean response curves, we also calculate

the FDA-based impact factors and rates for these reported accidents. The results are presented in

Table S.10. In general, the impact factors and rates based on these two methods are roughly the

same. Since only 15 accidents are reported in these 10 sensors, these impact factors and rates will

be approximately the same when the overall patterns of the estimated mean response curves are the

same, even the SSANOVA-based curves are smoother than the FDA-based curves.

Furthermore, we analyzed the robustness of FDA-based mean response curves needs to be analyzed

in comparison to the SSANOVA-based curves in Section S.6. In Section S.6, we use simulation study to

check the robustness of the estimated mean response curve and use the workday traffic data recorded

by Sensor S312694 and S315017 for illustrations. Therefore, for a fair comparison, we use the same

simulated dataset and the same sensors to implement the analysis on the robustness of FDA-based

mean response curves. The visualization results can be found in Figures S.14 and S.15.

For Sensor S312694 (see Figure S.14), after inserting multiple accidents, its mean response curve

(based on simulated data) appears to fluctuate significantly, and this curve becomes rougher compared

to the real data mean response curve. In particular, this roughness is very obvious within marked long

time period from 06:20:00 to 19:40:00. This situation indicates poor robustness of the FDA-based

mean response curve. It also happens with Sensor S315017 (see Figure S.15), the estimated mean

response curve obtained by simulated data becomes very rough and lasts for a long time from 03:20:00

to 18:50:00. From the performance of these two sensors, we find that the FDA-based curves lack

robustness, so we do not recommend this method in our analysis.

In summary, the SSANOVA method provides smaller error counts and rates, and the estimated

mean response curves obtained by this method are smoother and more robust than those obtained by

the FDA method. Therefore, we prefer SSANOVA in this paper.
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Figure S.5. Comparison of Mean Response Curves from Real Traffic Data and Simulated Data for Sen-

sor S312694: Bold dotted line represents the estimated mean response curve from real workday traffic data;
bold solid line is the estimated mean response curve from simulated data with inserted accidents; thin dashed

line is one simulated traffic flow curve with inserted accident originally occurred on 02/10/2017

Figure S.6. Comparison of Mean Response Curves from Real Traffic Data and Simulated Data for Sen-
sor S315017: Bold dotted line represents the estimated mean response curve from real workday traffic data;

bold solid line is the estimated mean response curve from simulated data with inserted accidents; thin dashed
line is one simulated traffic flow curve with inserted accident originally occurred on 02/06/2017
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Timestamp
Impact Factor

on Step Function
Impact
Rate (%)

Impact Factor
on Piecewise

Linear Function

Impact
Rate (%)

12:44:00 - 12:45:00 24.09 0.13 111.93 0.60
12:45:00 - 12:50:00 608.46 3.25 828.05 4.41
12:50:00 - 12:55:00 1047.63 5.59 1035.00 5.52
12:55:00 - 13:00:00 1022.37 5.46 982.61 5.24
13:00:00 - 13:05:00 942.85 5.03 1011.04 5.39
13:05:00 - 13:10:00 1079.22 5.76 1050.44 5.60
13:10:00 - 13:15:00 1021.66 5.45 1053.47 5.61
13:15:00 - 13:20:00 1085.29 5.79 1130.35 6.02
13:20:00 - 13:25:00 1175.40 6.27 1201.15 6.40
13:25:00 - 13:30:00 1226.90 6.55 1182.22 6.30
13:30:00 - 13:35:00 1137.54 6.07 1154.68 6.15
13:35:00 - 13:40:00 1171.81 6.25 1175.80 6.27
13:40:00 - 13:45:00 1179.80 6.30 1160.58 6.18
13:45:00 - 13:50:00 1141.35 6.09 1223.31 6.52
13:50:00 - 13:55:00 1305.26 6.97 1125.51 6.00
13:55:00 - 14:00:00 945.75 5.05 750.23 4.00
14:00:00 - 14:05:00 554.71 2.96 469.65 2.50
14:05:00 - 14:10:00 384.60 2.05 406.23 2.16
14:10:00 - 14:15:00 427.87 2.28 439.16 2.34
14:15:00 - 14:20:00 450.45 2.40 471.95 2.52
14:20:00 - 14:25:00 493.46 2.63 504.66 2.69
14:25:00 - 14:28:00 309.51 1.65 297.24 1.58

Total 18735.97 5.22 18765.24 5.23
Table S.8. Comparisons of Impact Factors and Rates Based on Step Function or Piecewise Linear Function

for Sensor S312694: Impact factor of each 5-min is restricted to 5-min intervals; impact rate of each 5-min is
the percentage of the restricted impact factor relative to the (total) impact factor; (total) impact rate is the

percentage of impact factor relative to the total area under the estimated mean response curve

Figure S.7. Impact Factors Restricted to 5-min Intervals against Interval Index: Real broken lines with solid
circles represent the 5-min impacts factors calculated with the step function. The dotted broken lines with solid

triangles represent the 5-min impact factors calculated by the piecewise linear function
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Figure S.8. Mean Response Curves and Confidence Bands on Saturdays and Sundays for Sensor S312425:

Higher curves are the Saturday’s. The lower curves are the Sunday’s.

Figure S.9. Mean Response Curves and Confidence Bands on Saturdays and Sundays for Sensor S312520:
Higher curves are Saturday’s. The lower curves are Sunday’s

Sensor
ID

Error
Total Error

Workday

(no holidays)

Weekend

(no holidays)

Holidays

Only
Error

Count

Error

Rate (%)

Error

Count

Error

Rate (%)

Error

Count

Error

Rate (%)

Error

Count

Error

Rate (%)

S312425 0 0 0 0 0 0 0 0

S312520 5 1.99 0 0 1 10 6 1.64

S312694 0 0 0 0 1 10 1 0.27

S312942 0 0 0 0 0 0 0 0

S314147 1 0.40 0 0 1 10 2 0.55

S315017 3 1.20 0 0 1 10 4 1.10

S315938 0 0 1 0.96 0 0 1 0.27

S317814 1 0.40 0 0 1 10 2 0.55

S318180 2 0.80 0 0 1 10 3 0.82

S318566 0 0 0 0 2 20 2 0.55
Table S.9. Error Counts and Rates of 5-fold Cross-validation with Holidays Treated as Weekends Based on
Functional Data Analysis
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Figure S.10. SSANOVA-Based Mean Response Curve vs FDA-Based Mean Response Curve for Sen-

sor S314147 Workday Traffic Flow Data: Dotted line represents the SSANOVA-based mean response curve
and solid line is the FDA-based mean response curve

Figure S.11. SSANOVA-Based Mean Response Curve vs FDA-Based Mean Response Curve for Sen-
sor S315017 Workday Traffic Flow Data: Dotted line represents the SSANOVA-based mean response curve

and solid line is the FDA-based mean response curve

S12



Figure S.12. SSANOVA-Based Mean Response Curve vs FDA-Based Mean Response Curve for Sen-

sor S315938 Workday Traffic Flow Data: Dotted line represents the SSANOVA-based mean response curve

and solid line is the FDA-based mean response curve

Figure S.13. SSANOVA-Based Mean Response Curve vs FDA-Based Mean Response Curve for Sen-

sor S318180 Workday Traffic Flow Data: Dotted line represents the SSANOVA-based mean response curve
and solid line is the FDA-based mean response curve
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Sensor Accident Smoothing Regression Functional Data Analysis

Sensor
ID

Accident
Date

Accident
Duration
(mins)

Impact
Factor

Impact
Rate (%)

Impact
Factor

Impact
Rate (%)

S312425 09/05/2017 173 2010 0.60 1957 0.58
S312520 09/26/2017 105 1008 0.26 940 0.24
S312694 02/10/2017 104 18736 5.22 18744 5.22
S312942 03/22/2017 124 7579 2.02 7630 2.03
S314147 01/12/2017 212 16605 5.27 16937 5.67
S314147 05/05/2017 165 6699 2.13 6939 2.36
S314147 07/18/2017 108 2636 0.84 2671 0.85
S315017 02/06/2017 211 33089 7.77 33085 7.76
S315017 04/05/2017 102 3234 0.76 3251 0.76
S315938 05/30/2017 169 10957 2.98 10883 2.95
S315938 12/01/2017 122 6366 1.73 6372 1.73
S317814 07/26/2017 178 15861 6.86 15979 6.92
S318180 09/05/2017 104 3051 1.28 3024 1.26
S318180 10/28/2017 122 4236 2.18 4063 1.70
S318566 06/12/2017 128 4487 1.03 4402 1.01

Table S.10. Impact Factors and Rates of Reported Accidents Based on Smoothing Regression and Functional

Data Analysis

Figure S.14. Comparison of FDA-Based Mean Response Curves from Real Traffic Data and Simulated Data
for Sensor S312694: Dotted line represents the mean response curve from real workday traffic data. The solid

line is the mean response curve from simulated data with inserted accidents
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Figure S.15. Comparison of FDA-Based Mean Response Curves from Real Traffic Data and Simulated Data
for Sensor S315017. The dotted line represents the mean response curve from real workday traffic data. The

solid line is the mean response curve from simulated data with inserted accidents
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