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Virus classification based on Q-vectors

Hui Zheng, Jie Yang, Rong L. He, and Stephen S.-T. Yau

Based on a Markov model, we propose a new alignment-free method,
Q-vector (QV), for sequence analysis. It incorporates the length
information of viral sequences and could reflect the relationship
between low mers and high mers. Compared with the k-mer and
composition vector methods, QV method is significantly more ef-
ficient and accurate in classifying viral genomes. By incorporating
the distance matrices derived by the QV and natural vector, re-
spectively, we define a new distance matrix for classifying viral
genomes and reduce the classification errors even further. We also
construct the phylogenetic trees based on the new distance.

1. Introduction

Due to the diversity of viruses, their classification becomes crucial. The
International Committee on Taxonomy of Viruses (ICTV) proposed a uni-
versal taxonomic scheme for all the viruses. Viral classification starts at the
level of order and continues as follows: Order, Family, Subfamily, Genus, and
Species. Correspondingly, the taxon suffixes are -virales, -viridae, -virinae,
-virus, and [disease]virus for species. For example: Dolphin morbillivirus
belongs to Mononegavirales (Order), Paramyxoviri-dae (Family), Paramyx-
ovirinae (Subfamily), Morbillivirus (Genus) and Measles virus (Species). In
this work, we focus more on Family and Genus labels due to the high miss-
ing rates of Order and Subfamily and Species labels in the records of ICTV.
Another major scheme used for classifying viruses is the Baltimore classifi-
cation system. Based on the combination of their nucleic acids, strandedness
(single-stranded or double-stranded) and methods of replication, viruses are
divided into the following seven groups: dsDNA, ssDNA, dsRNA, ssRNA-
RT, (+)ssRNA, (-)ssRNA, and dsDNA-RT [1].

Sequence analysis is a tool to study the feature, function, structure,
and the evolution of DNA, RNA, and proteins. Especially, it can be used
to analyze the similarity between sequences and discover the evolutionary
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relationships of species. Sequence comparison methods can be divided into
two categories: alignment-based and alignment-free. The alignment-based
methods use dynamic programming to align the sequences and find the sim-
ilarity or dissimilarity between sequences. It takes O(n2) time and memory
for comparing two length-n sequences. Alignment-free methods overcome
this disadvantage, which usually cost shorter time and lower memory to get
highly accurate results. Just as its name implies, alignment-free methods
do not rely on the alignments of sequences. They can be built up on k-mer
frequencies, information theory or substrings. Among them, the approach
based on k-mer frequencies is very popular and several algorithms have
been developed for it, such as, feature frequency profile [10], composition
vector [2], return time distribution [7], frequency chaos game representation
[6], and spaced words [8]. Alignment-free methods typically start with a
pairwise distance for measuring similarities between sequences. There usu-
ally exists an exact solution whose statistical significance could be readily
assessed. Different from the alignment-based methods, the alignment-free
methods depend less on evolutionary models and do not assume that the
homologous regions are contiguous [3].

Based on a Markov model, we propose a new alignment-free sequence
analysis method, called Q-vector. The Q-vector (QV) is inspired by the
composition vector (CV) [2], which was applied in prokaryotic phylogeny [5],
whole genome molecular phylogeny of large dsDNA viruses [4], and 16S and
18S rRNA sequences comparison based on maximum entropy principle [2].
The CV is defined on k-mer frequencies in a sequence. Compared with CV,
our QV keeps the sequence length information and reflects the relationship
of three conjoint mers.

The natural vector (NV) [13] method represents a viral nucleotide se-
quence by a 12-dimentional numerical vector based on the nucleotide po-
sitions, which does not rely on any model assumption. In later session, we
will show the comparison work by comparing QV, CV and NV, also we
developed a new distance by combined NV and QV.

Having applied QV, k-mer method, and CV to classify the viral reference
sequences in seven Baltimore classes, QV shows significant advantage in
both efficiency and accuracy. Phylogenetic analysis based on QV of viruses
in Balti-more III is done through UPGMA (Unweighted Pair Group Method
with Arithmetic Mean). By combining the distance matrix derived through
QV and natural vector, we define a new distance matrix, which reduces the
classification errors further.
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2. Definitions

Most alignment-free sequence analysis methods work by converting sequences
into vectors. Here we list some of them under consideration in this work.

2.1. Vectors based on frequencies

a. Frequency vector. Frequency is the proportion of a k-string occurred
in a sequence. For a nucleotide sequence with length L, we slide a width-k
sliding window along the sequence, and count the number of times n of the
k-string occurred. The frequency of k-string is then defined as n

L−k+1 .

b. k-mer vector. k-mer vector is an alignment-free method which is ap-
plied for sequence analysis. It has 4k dimensions for each sequence. Each
element of the vector corresponds to the frequency of a k-mer.

Suppose we have a nucleotide sequence with length L. Then the k-mer
vector is (

g(u1)

L− k + 1
,

g(u2)

L− k + 1
, . . . ,

g(u4k)

L− k + 1

)
,

where u1, u2, . . . , u4k are the 4k k-strings, g(u) is the number of times that
the k-string u occurs in the sequence.

For example, we have a sequence S = ATGCCTG, the 1-mer vector is
(A, T,G,C) = (17 ,

2
7 ,

2
7 ,

2
7) and the 2-mer vector is

(AA,AT,AG,AC, TA, TT, TG, TC,GA,GT,GG,GC,CA,CT,CG,CC)

=

(
0,

1

6
, 0, 0, 0, 0,

2

6
, 0, 0, 0,

1

6
, 0, 0,

1

6
, 0,

1

6

)
.

c. Composition vector. For sequence S, f(u) = f(u)−q(u)
q(u) where f(u) is

the frequency of k-string u, q(u) is the estimated noise.

d. Q-frequency vector. In the definition of composition vector, q(u) is
the estimated noise in the phylogenetic signals [2]. It is based on a Markov
model. Given a sequence LwR = ATGCCTG where L = A, R = G, w =
TGCCT , based on the joint probability and conditional probability formu-
lae, we have

P (LwR) = P (Lw)P (R |Lw).

Assuming the Markov property, when the conditional probability P (R |Lw)
does not depend on L, we have

P (LwR) = P (Lw)P (R |Lw) ≈ P (Lw)P (R |w) =
P (Lw)P (wR)

P (w)
.
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Then the estimated noise of the k-string LwR is

q(LwR) =
f(Lw) ∗ f(wR)

f(w)
,

where f(u) is the frequency of u.

2.2. Vectors based on counts

a. k-mer count vector. Compared with the k-mer (frequency) vector,
k-mer count vector replaces the frequencies with the corresponding counts of
k-strings. For example, given a sequence S = ATGCCTG, the 1-mer count
vector is A, T,G,C = (1, 2, 2, 2), and the 2-mer count vector is

(AA,AT,AG,AC, TA, TT, TG, TC,GA,GT,GG,GC,CA,CT,CG,CC)

= (0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1)

b. Q-count vector. The Q-frequency vector is presented by the frequen-
cies of the k-strings, which ignores the length of the sequence. The following
Q-count vector uses the numbers of the k-strings instead which improves the
classification accuracy dramatically in our experiments. For the sequence
LwR = ATCGCCTC, where L = A, R = G, w = TGCCT we define

q(LwR) =
N(Lw) ∗N(wR)

N(w)

where N(x) is the count of the string x. We use QV to represent Q-count
vector.

2.3. Distance measure

(a) Angle distance. The cosine of the angle between the two vectors
a, b ∈ S is defined as:

cos θ =
aT b

‖a‖ · ‖b‖
.

For comparison purpose we use the same formula [2] as the angle distance
between two vectors:

dHao(a, b) =
1

2

(
1− aT b

‖a‖ · ‖b‖

)
.
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For frequency vectors, it is reasonable to apply angle distance on them. We
apply it on k-mer frequency vector, composition vector and Q-frequency
vector.

(b) Euclidean distance. The Euclidean distance between two vectors
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is defined as

d(X,Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

We apply Euclidean distance on k-mer count vector, Q-count vector in this
work.

2.4. Phylogenetic tree

For a given virus sequence dataset, UPGMA first regard each virus sequence
as a cluster, then groups two smaller clusters of nodes to build up the phy-
logenetic tree until there is only one tree left that contains all the virus
sequences. It is a clustering method based on a distance matrix and has
been widely used in sequence similarity analysis [9].

3. Dataset and methods

Totally 1,988 single-segmented reference viruses up to Feb. 14, 2014 were
downloaded from NCBI. For the purpose of method comparison, we removed
the viruses with missing family or genus labels. Among the 1,988 viruses,
there are 1,752 viruses left after removing those missing family labels, and
1,422 viruses left after removing those without genus labels. Note that each
virus belongs to one of the seven Baltimore classes. For further study, we
divide the whole data set into seven groups according to their Baltimore
labels.

The parameter k is critical on computational complexity and the result
of sequence comparison for k-mer method, CV, and QV. However, some re-
searchers showed that there are some relationships between suitable k and
sequences’ lengths. For example, an optimal k for dissimilarity measurement
should be increased when the sequence length increases [12] and the optimal
word length lies within an approximate range with a lower bound log4(L),
where L is the length of sequence, and an upper bound given by the cri-
terion that the phylogenetic tree topology for length k must be parallel to
that of k + 1 [10]. So far, there is no recognized criterion on choosing the
optimal k for k-mer models [11]. By combining the previous research and
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All Balt
I

Balt
II

Balt
III

Balt
IV

Balt
V

Balt
VI

Balt
VII

Total 1833 758 323 45 539 67 39 62

LF 1752 732 310 36 509 64 37 62

LG 1422 415 302 30 503 56 37 55

k 6 7 5 6 6 6 6 6

Table I: The dataset and options of each Baltimore group.

our experimental results, we propose

k = floor(log4(median(s(L))))

where s(L) is the set of sequence lengths. In other words, we choose k to be
the largest integer no greater than log4(median(s(L))).

Table I shows the detailed dataset information considered in this work.
The row of “Total” lists the numbers of viruses after removing those without
Baltimore information and the numbers of viruses in each Baltimore group.
“LF” means “left Family”, listing the numbers of viruses after removing
those without family labels and the numbers of viruses in each Baltimore
groups. “LG” means “left Genus”, lists the numbers of viruses after removing
those without genus labels and the numbers of viruses in each Baltimore
groups. The last row, “k”, lists the option of k according to the median of
sequence lengths for that Baltimore group. Besides Balt I and Balt II, other
five Baltimore groups all choose k = 6 according to our criterion.

4. Results

We extracted the Baltimore information, family label and genus label of each
virus downloaded from NCBI. In the dataset, we calculated the distance ma-
trix based on QV, CV, k-mer methods, and NV. We assigned those viruses
with their smallest distance to the same group and predict their family labels
and genus labels. If the predicted label is not consistent with the dataset, we
regard it as an error. Table II shows the error counts of each method when
we predict family labels. A smaller number indicates the better model. We
compare QV.counts and QV.frequency, Mer.counts and Mer.frequency, re-
spectively. Count vectors show significant advantages according to Table II.
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Although composition vector performed well on other dataset such as [14],
it is the worst one on our virus dataset. We also find out that QV.count
vector has much less errors compared with mer.count vector. Note that the
error counts are NA for Balt VI, because there is only one family for this
Baltimore group and thus no need for classification.

Total QV.count Mer.count QV.frequency Mer.frequency CV

ALL 1752 143 216 365 754 677

Balt I 732 87 116 177 234 452

Balt II 310 8 9 9 14 30

Balt III 36 4 3 12 17 7

Balt IV 509 27 42 86 178 348

Balt V 64 0 2 4 9 17

Balt VI 37 NA NA NA NA NA

Balt VII 62 3 4 2 1 17

Table II: Classification comparison through counts and frequencies methods
(Family). Note: QV.count stands for Q-vector based on counts, QV.frequency
stands for Q-vector based on frequency, CV stands for composition vector.

Table III shows the error counts of each method when we classify genus
labels. There is a similar pattern as in Table II when we classify the family
labels. Besides the error counts of Balt VI that count vectors have 2 or 3
more error counts than the frequency vectors, count vector performs pretty
well on all other groups. Also, QV.count vector is the best one among the
five methods.

The reason that count vectors perform better than frequency vectors is
that, the length information does matter for virus classification. However,
frequency vectors use the k-string count divided by the sequence length,
which scales the vector and ignores the length information. Count vectors
use the original count of the k-string and keep the length information, which
reflects the relationship of viruses better. For example, Family Phycodnaviri-
dae has 10 members and the sequence lengths are between 185,373 and
407,339; family Adenoviridae has 24 members and the sequence lengths are
between 26,263 and 45,063; family Hepadnaviridae has 8 members and the
sequence lengths are between 3,027 and 3,323, etc.. If we keep the length
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Total QV.count Mer.count Qv.frequency Mer.frequency CV

ALL 1422 146 211 287 654 547

Balt I 415 50 72 123 149 259

Balt II 302 11 12 12 18 38

Balt III 30 5 7 10 18 19

Balt IV 503 53 71 118 191 358

Balt V 56 2 2 8 11 33

Balt VI 37 5 6 2 4 14

Balt VII 55 6 8 6 8 3

Table III: Classification comparison through counts and frequency (Genus).
Note: QV.count stands for Q-vector based on counts, QV.frequency stands
for Q-vector based on frequency, CV stands for composition vector.

information, we may easily separate these three families by count vector,
while it is not guaranteed if we use frequency vectors. Similar story hap-
pens for genus labels. For examples, family Alpha exiviridae has 8 genera,
the sequence lengths of genus Allexivirus are between 8,106 and 8,660; the
sequence lengths of Batrachovirus are between 220,859 and 231,801; the
lengths of Cyprinivirus are between 248,526 and 295,146; the lengths of
Potexvirus are between 5,816 and 7,212, etc.. Another good example, fam-
ily Astroviridae has 3 genera, genus Ascovirus has sequence lengths between
119,343 and 186,262, genus Avastrovirus has sequence lengths between 6,927
and 7,722, genus Mamastrovirus has sequence lengths between 6,440 and
6,813. We conclude that count vectors are more suitable for virus classifica-
tion.

Note that NV keeps the position information of the sequences, and QV
reflects the relationship of previous segment and last segment of the se-
quences. In order to utilize their advantages, we define a new distance:

dnew(vi, vj) =
dqv(vi, vj)

max(Dqv
ij )

+
dnv(vi, vj)

max(Dnv
ij )

where vi is the ith virus, dqv(vi, vj) is the distance of vi and vj based on QV
when k = 6 or k = 7, Dqv

ij is the distance matrix of all viruses based on QV,
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dnv(vi, vj) is the distance of vi and vj based on NV, and Dnv
ij is the distance

matrix of all viruses based on NV.
The reason that we use the distances between vi and vj divided by the

maximum of the distance matrix is to make a consistent scale of the QV
distance and the NV distance. By adding them together, we avoid seeing
one is too big while the other is too small.

We apply this new distance to the above classification job. Table IV
shows the comparison results. Among the whole dataset and the seven Bal-
timore groups, the new distance achieves the minimum error count in six
Baltimore groups and only 2 more error counts than QV and NV methods,
and 1 more error count than QV method. In addition, the new distance
performs excellent for Baltimore group I and only has 1/2 error counts of
QV method, and 1/4 error counts of NV method. Table V shows the genus
label classification results of the new distance. The new distance performs
almost same as well as QV method. Phylogenetic tree of Baltimore group
III is shown in Figure 1. Baltimore III has 36 viruses belonging to three
families: Endornaviridae, Hypoviridae and Totiviridae. These three families
are well separated in the tree.

Total QV NV Newdist

ALL 1752 143 316 145

Balt I 732 87 167 39

Balt II 310 8 9 5

Balt III 36 4 3 2

Balt IV 509 27 47 17

Balt V 64 0 7 1

Balt VI 37 NA NA NA

Balt VII 62 3 4 2

Table IV: Classification comparison through different distance (Family).
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Total QV NV Newdist

ALL 1422 142 296 158

Balt I 415 50 167 61

Balt II 302 11 9 9

Balt III 30 5 8 7

Balt IV 503 53 47 47

Balt V 56 2 6 4

Balt VI 37 5 12 6

Balt VII 55 6 6 6

Table V: Classification comparison through different distance (Genus).

4.1. Minor finding

In order to find the optimal k to reduce the classification errors, we check
the performance when k = 3, 4, 5, 6, 7, 8, 9, 10. The computational time and
storage space increase dramatically when k increases. For example, when
k = 9, the data size of 9-mer vectors for whole dataset reached 3.9G and
the computational time is 9.3 hours; when k = 10, the data size of 10-mer
vectors is 15.5G and it spends 25 hours to finish the computation. Note
that the computational time includes both the calculation from sequences
to vectors and the calculation of the distance matrix.

In order to reduce the computational cost, we employ a dictionary method.
The dictionary method is a method to simplify the computation and de-
crease the computing time. However, this method does not work here due
to the large size of our dataset. We sum up all the mer counts of each virus
for k = 6, 7, 8, 9 and find that all mers appear in the dataset. When k = 10,
1,988 viruses with 410 has 15.5G. Adding up the mers of the first 500 viruses,
we find out that only 2,616 mers never appear in the dataset. The rate is
2616/410 = 0.25%. We conclude that this method does not work for this
dataset.

In order to test the robustness of NV, k-mer and QV, we select a sequence
with length 11,965, which is close to the mean of the lengths of all the
sequences in this dataset. We delete one letter from the start to the end of
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Figure 1: Phylogenetic tree of Baltimore group III based on QV-method
through UPGMA.

the sequence and get 11,965 new sequences with length 11,964. We calculate
the QV vectors for these sequences and denote them as q1, q2, q3, . . . , q11965.
We denote the QV vector of the original sequence as q0. Then

diff =

11965∑
i=1

dist(qi, q0)

‖q0‖ · 11965
.
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Doing the same calculation for NV and k-mer (k = 6), we get the fol-
lowing results:

Method NV k-mer QV

diff 0.0001295576 0.005023519 0.006834223

Table VI: Robustness comparison.

From the above Table VI, NV shows the smallest distance between before
and after the letter deletion. It indicates that NV has the best robustness
when deletion happens in the sequence.
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