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Abstract: We consider the newly developed multinomial mixed-link models for a high-risk intestinal
metaplasia (IM) study with DNA methylation data. Different from the traditional multinomial
logistic models commonly used for categorical responses, the mixed-link models allow us to select the
most appropriate link function for each category. We show that the selected multinomial mixed-link
model (Model 1) using the total number of stem cell divisions (TNSC) based on DNA methylation
data outperforms the traditional logistic models in terms of cross-entropy loss from ten-fold cross-
validations with significant p-values 8.12 × 10−4 and 6.94 × 10−5. Based on our selected model,
the significance of TNSC’s effect in predicting the risk of IM is justified with a p-value less than
10−6. We also select the most appropriate mixed-link models (Models 2 and 3) when an additional
covariate, the status of gastric atrophy, is available. When the status is negative, mild, or moderate,
we recommend Model 2; otherwise, we prefer Model 3. Both Models 2 and 3 can predict the risk of
IM significantly better than Model 1, which justifies that the status of gastric atrophy is informative
in predicting the risk of IM.

Keywords: AIC; BIC; categorical response; cross-entropy loss; cross-validation; multinomial logistic
model; multinomial mixed-link model

1. Introduction

Gastric intestinal metaplasia (IM) is a precancerous change in the mucosa of the stom-
ach with intestinal epithelium [1], which increases the risk of gastric cancer [2], the third
leading cause of cancer death worldwide and the fifth most common malignancy in the
world [3]. Intestinal-type gastric cancer is more common and is associated with chronic
inflammation, atrophy, and IM of the stomach, often relevant to Helicobacter pylori infec-
tion [4]. The exact mechanism of how IM leads to gastric cancer is not fully understood,
but it may involve genetic and epigenetic alterations that affect the expression and function
of key genes, including DNA methylations [5]. There has been increasing evidence that
DNA methylation changes in normal tissue are correlated with cancer risk [6–12], including
gastric cancer [5,13]. The DNA methylation levels observed in IM tissue samples are sig-
nificantly higher than normal gastric samples, which indicates that the DNA methylation
profiles may help with predicting IM and gastric cancer [5].

In this study, we utilize the DNA methylation data of 124 samples obtained from
the Gastric Cancer Epidemiology Program (GCEP) and deposited in NCBI (GSE103186)
by [5]. We aim to build the most appropriate statistical model to predict the risk level of IM,
including Normal (normal gastric samples), MIM (mild IM or low-risk samples, type I),
and IM (high-risk samples, type II or type III), using the total number of stem cell divisions
per stem cell (TNSC) estimated by the epiTOC2 (Epigenetic Timer of Cancer-2, [12]) model
from the measured DNA methylation profile, along with other clinical information such as
the status of gastric atrophy [5].

For categorical responses with three or more categories, such as {Normal, MIM, IM}
in this study, multinomial logistic models have been widely used in the statistical literature,
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including the baseline-category, cumulative, adjacent-categories, and continuation-ratio
logit models [14–17]. Among the four classes of logit models, the baseline-category logit
model, also known as the (multiclass) logistic regression model, has been extended with
a probit link and is known as the multinomial probit model [18–20]; the cumulative logit
model has been extended to cumulative link models [19,21,22]; and the continuation-ratio
logit model has been extended with a complementary log-log link [23]. It should be noted
that all these models assume the same link function for all categories.

In this study, we adopt the multinomial mixed-link model (see Section 2.2), proposed
by [24] recently, because it not only covers all the models mentioned above but also allows
us to choose different link functions across categories. By choosing the multinomial mixed-
link model, we find out that the cumulative mixed-link model with proportional odds
(po) assumption and g1 = loglog, g2 = logit link functions outperforms the traditional
models, in terms of predicting the risk level of IM using DNA methylation profiles (see
Section 3.1). Based on ten-fold cross-validations, the improvement is statistically significant.
Our results also show that by incorporating the status of gastric atrophy can further improve
the prediction accuracy significantly. Having run our model selection procedure again,
we determine that an adjacent-categories logit model with po (see Section 3.2) is most
appropriate when the status of gastric atrophy is negative, mild or moderate, whereas an
adjacent-categories probit model with po (see Section 3.3) works the best when the status
is marked or unknown. For readers’ reference, we provide the predictive probabilities
for each tissue sample in the Supplementary Materials, as well as the sample IDs and the
corresponding covariates.

2. Materials and Methods
2.1. epiTOC2 Model and TNSC Covariate

The mitotic age of tissues is relevant to the total number of cell divisions, which can
be estimated by the DNA methylation changes in the stem cell. Recent studies have shown
the correlation between the mitotic age of tissue and the neoplastic transformation [25–27].
Many models for estimating mitotic age have been proposed based on DNA methylation
data, including the epiTOC model [28], the solo-WCGWs model [29], and the epiTOC2
model [12]. In this study, we adopt the epiTOC2 model, which shows good robustness
and is better for discriminating preneoplastic lesions [12]. The epiTOC2 model estimates
the total number of stem cell divisions directly (TNSC) and is based on CpG sites marked
by polycomb repressive complex-2 (PRC2). These sites are generally unmethylated across
fetal tissues and become methylated during ontogeny and aging. The epiTOC2 model was
fitted using the Illumina Infinium 450k data from [30], who selected nc = 163 CpG sites in
their model based on the rate of increase in DNA methylation rates. A simplified epiTOC2
model can be rewritten as a weighted average of DNA methylation beta values over the nc
CpGs in a sample s as follows:

TNSC(s) =
1
nc

nc

∑
i=1

wiβis =
1
nc

nc

∑
i=1

2βis
δi

where δi is a model parameter representing the probability of de novo methylation of parent
and daughter strands (see [12] for more details).

In this study, we first use TNSC as the only covariate representing the DNA methyla-
tion profile to predict the risk level of IM (see Section 3.1).

2.2. Multinomial Mixed-Link Models

In general, we consider d covariates or predictors with m distinct settings xi =
(xi1, . . . , xid)

T , for i = 1, . . . , m. At the ith setting, ni categorical responses are collected and
summarized into a multinomial response Yi = (Yi1, · · · , Yi J)

T ∼ Multinomial(ni; πi1, · · · ,
πi J), where Yij is the number of observations with the jth response category, and πij is
the probability that the response falls into the jth category, j = 1, . . . , J. Assuming all
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πij ∈ (0, 1), there are four classes of multinomial logit models that have ever been used in
the literature (see [16] and the references therein):

log
(

πij

πi J

)
= β0j + βT

j xi, baseline-category (1)

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πi J

)
= β0j + βT

j xi , cumulative (2)

log

(
πij

πi,j+1

)
= β0j + βT

j xi , adjacent-categories (3)

log

(
πij

πi,j+1 + · · ·+ πi J

)
= β0j + βT

j xi, continuation-ratio (4)

where βj = (β j1, . . . , β jd)
T , i = 1, . . . , m, and j = 1, . . . , J − 1. In the statistical literature

(see, for example, [16]), the four logit models, (1)–(4), are also called nonproportional
odds (npo) models, which allow βj’s to be different across j = 1, . . . , J − 1. If we further
assume βj ≡ β = (β1, . . . , βd)

T , then the four models are known as proportional odds (po)
models. For more general odds structures for multinomial logistic models, that is, partial
proportional odds (ppo) models, please see [16,17].

In the form of npo models, the multinomial mixed-link model [24] can be written as
follows

gj(ρij) = β0j + βT
j xi (5)

where

ρij =



πij
πij+πi J

, for baseline-category mixed-link models

πi1 + · · ·+ πij , for cumulative mixed-link models
πij

πij+πi,j+1
, for adjacent-categories mixed-link models

πij
πij+···+πi J

, for continuation-ratio mixed-link models

(6)

where gj is a predetermined link function, i = 1, . . . , m, and j = 1, . . . , J − 1. It can be
verified that if g1(ρij) ≡ · · · ≡ gJ−1(ρij) = log(ρij/(1 − ρij)), that is, the logit link, then the
multinomial mixed-link model (5) plus (6) leads to the four multinomial logit models (1)–(4).
In this study, we also consider some other link functions that have been commonly used
in the literature, namely, probit (gj(ρij) = Φ−1(ρij), where Φ is the cumulative distribution
function of standard normal distribution), log-log (or loglog, gj(ρij) = − log(− log(ρij)),
and complementary log-log (or cloglog, gj(ρij) = log(− log(1 − ρij)). For more options of
link functions, please see Table 1 in [24].

Following the notation in [24], the multinomial mixed-link model (5) plus (6) can be
written into its matrix form:

g
(

Lπi
Rπi + πi Jb

)
= β0 + BTxi (7)

where g = (g1, . . . , gJ−1)
T , L and R are (J − 1)× (J − 1) constant matrices, b is a constant

vector of length J − 1, πi = (πi1, . . . , πi,J−1)
T , πi J = 1 − ∑J−1

j=1 πij, β0 = (β01, . . . , β0,J−1)
T ,

B = (β1, . . . , βJ−1) is a d × (J − 1) matrix of parameters. Note that the vector g of link
functions in (7) applies to the ratio of two vectors component-wise. That is, if we denote
L = (L1, . . . , LJ−1)

T , R = (R1, . . . , RJ−1)
T and b = (b1, . . . , bJ−1)

T , then the multinomial
mixed-link model (7) can be written in its equation form:

gj

(
LT

j πi

RT
j πi + πi Jbj

)
= β0j + βT

j xi , j = 1, . . . , J − 1
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In other words, ρij in (5) and (6) can be written as

ρij =
LT

j πi

RT
j πi + πi Jbj

, j = 1, . . . , J − 1

In this study, we consider the four classes of mixed-link models listed in (6). For baseline-
category mixed-link models, L = R = IJ−1, the identity matrix of order J − 1, and b = 1J−1,
the vector of ones with length J − 1; for cumulative mixed-link models,

L =


1
1 1
...

...
. . .

1 1 · · · 1

 ∈ R(J−1)×(J−1)

R = 1J−11T
J−1, and b = 1J−1; for adjacent-categories mixed-link models, L = IJ−1,

R =



1 1
1 1

1
. . .
. . . 1

1

 ∈ R(J−1)×(J−1), and b =


0
0
...
0
1

 ∈ RJ−1

and for continuation-ratio mixed-link models, L = IJ−1,

R =


1 1 · · · 1

1 · · · 1
. . .

...
1

 ∈ R(J−1)×(J−1)

and b = 1J−1 .
In this study, we implement the algorithms described in Section 4 of [24] to find

the maximum likelihood estimate (MLE) θ̂ for either the npo model’s parameter vector
θ = (βT

0 , βT
1 , . . . , βT

J−1)
T of length p = (d + 1)× (J − 1), or the po model’s θ = (βT

0 , βT)T

of length p = d + J − 1.

2.3. Model Selection and Evaluation

In this study, we use the multinomial mixed-link model (5) plus (6) to predict the
risk level of IM in three ordered categories, namely, Normal, MIM, and IM. In terms of
the structure of ρij as defined in (6), we have four options, namely, baseline-category,
cumulative, adjacent-categories, and continuation-ratio mixed-link models. In this study,
the number of response categories is J = 3. For each j = 1, . . . , J − 1, we consider four
possible link functions, namely, logit, probit, loglog, and cloglog. From the right-hand side
of (5), we still have two options, an npo model (β0j + βT

j xi) or a po model (β0j + βTxi). As a
summary, we have 4 × 4J−1 × 2 candidate models.

In the statistical literature, the Akaike Information Criterion (AIC, [31,32]) and Bayesian
Information Criterion (BIC, [33]) have been widely used for model selection, given that a
statistical model is assumed. In our case, the maximized likelihood l(θ̂) is obtained along
with the MLE θ̂ after fitting the model. In our notation,

AIC = −2 · l(θ̂) + 2 · p

BIC = −2 · l(θ̂) + log(n) · p
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where n = ∑m
i=1 ni stands for the total number of observations or the sample size,

p = (d + 1)× (J − 1) for npo models or d + J − 1 for po models in our study. Smaller
AIC or BIC values imply better models. Since in this study the sample size n = 124 (see
Section 3) is not large, we recommend AIC against BIC if their results of model selection
are not consistent (see, for example, [34], for more discussions on AIC and BIC).

To show if the selected model is significantly better than commonly used models in
the literature, we use a ten-fold cross-validation to estimate the prediction errors of the
models under comparison. Different from five-fold cross-validations chosen by [17], we
choose ten-fold cross-validations in this study because our sample size n = 124 is relatively
smaller (for more discussion on ten-fold versus five-fold cross-validations, see [34]).

Different from many machine learning techniques, the multinomial mixed-link model
provides a stochastic classification answer [35] to each tissue sample. That is, given the
covariate or predictor setting xi, we obtain by the fitted multinomial mixed-link model pre-
dictive probabilities π̂ij for Normal (j = 1), MIM (j = 2), and IM (j = 3), respectively, which
is much more informative than a deterministic classification answer [35]. Following [17],
we use the cross-entropy loss to evaluate the performance of statistical models under
comparison. Given a random partition B of the index set [n] = {1, . . . , n}, which divides
[n] into ten non-overlapped subsets (called blocks) of roughly the same size, the (average)
cross-entropy (CE) loss for a specified model is

CE(B) = − 1
n

n

∑
i=1

log
(

π̂
k(i)
i,yi

)
where n = 124 is the sample size, yi is the observed response label of the ith tissue sample,
and k(i) is the block label to which the ith sample belongs. More details about calculating
CE can be found in Section 2.4 of [17] except that we use a ten-fold instead of five-fold
cross-validation.

A smaller CE value implies a better model. To check whether the improvement of
one model against another is statistically significant, in this study we randomly generate
partitions and use a one-sided paired t-test to check whether the improvement is significant.

3. Results
3.1. Statistical Model Selection for Predicting IM Based on TNSC

In this study, we first match the DNA methylation data downloaded from NCBI
(https://www.ncbi.nlm.nih.gov/geo/, GSE103186, accessed on 23 January 2024) with the
tissue samples listed in Table S3 in [5] (https://www.cell.com/cancer-cell/, accessed on
18 January 2024). Among the 134 tissue samples collected at the antrum site [5], there
are 10 samples lacking DNA methylation profiles. We use the remaining 124 samples
for our analysis. We then compute the TNSC values for the 124 samples using their
DNA methylation data, as described in Section 2.1. The R codes for computing TNSC
are accessible online (https://zenodo.org/records/2632938, epiTOC2.R, accessed on 15
January 2024) as indicated by [12]. In this section, we consider the multinomial mixed-link
model as described in Section 2.2, and use the computed TNSC as the only covariate to
predict the risk level of IM in three categories (Normal, MIM, and IM). For each of 4 × 2
models, the optimal link functions for j = 1, 2, respectively, along with their corresponding
AIC and BIC values, are listed in Table 1 (see Appendix A for the AIC and BIC values of all
link combinations).

Table 1. Best mixed-link models for predicting IM based on TNSC.

Model Best Link AIC BIC

Baseline-category npo loglog, loglog 146.69 157.97
Cumulative npo loglog, probit 145.53 156.81

Adjacent-categories npo loglog, loglog 145.97 157.25
Continuation-ratio npo loglog, loglog 145.93 157.21

https://www.ncbi.nlm.nih.gov/geo/
https://www.cell.com/cancer-cell/
https://zenodo.org/records/2632938
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Table 1. Cont.

Model Best Link AIC BIC

Baseline-category po probit, logit 151.12 159.58
Cumulative po loglog, logit 144.29 152.75

Adjacent-categories po loglog, logit 146.33 154.79
Continuation-ratio po loglog, logit 146.96 155.42

Note: The best model overall, along with its links and values, is highlighted in bold.

According to Table 1, the best multinomial mixed-link model with the lowest AIC
overall in this case, called Model 1, is a cumulative po model with loglog and logit links for
j = 1 (Normal) and j = 2 (MIM), respectively. Note that by default j = 3 (IM) is treated as
the baseline category. The fitted Model 1 is provided in (8), where xTNSC,i is the computed
TNSC value for the ith tissue sample.

− log(− log(πi1)) = β01 + β1xTNSC,i = 4.023 − 4.228 × 10−4xTNSC,i

log
(

πi1 + πi2
πi3

)
= β02 + β1xTNSC,i = 4.905 − 4.228 × 10−4xTNSC,i

(8)

In (8), the estimated coefficient of xTNSC,i is −4.228 × 10−4, which is fairly small.
To test whether the effect of TNSC is significant in predicting IM, we obtain its 95%
confidence interval (−4.167 × 10−4,−4.290 × 10−4), which does not contain zero. Actually,
the corresponding p-value of its significance test is less than 10−6. As a conclusion, the effect
of TNSC is statistically significant in predicting the risk level of IM.

To further check whether Model 1 outperforms the traditional statistical models,
as described in Section 2.3, we run a ten-fold cross-validation and compare its cross-entropy
loss against other models. For illustration purposes, we choose the baseline-category
logit model with npo (also known as the multiclass logistic regression model) and the
cumulative logit model with npo (one of the most popular models for ordinal responses) as
the alternative models. As for other models, including multinomial logit models and probit
models, the conclusions are similar (see Appendix A). To avoid misleading conclusions
relying on a particular partition, we randomly generate ten partitions and compute their
corresponding CE values. The boxplots of the resulting ten CE values are provided in
Figure 1, which shows that the CE values of Model 1 seem to be much lower than those
values of the other two models. Although we only run ten random partitions due to
computational intensity, our one-sided paired t-tests based on the ten CE values show that
the improvements of Model 1 are significant. The p-values of the t-tests for comparing
Model 1 against the baseline npo model and the cumulative npo model displayed in Figure 1
are 8.12 × 10−4 and 6.94 × 10−5, respectively. That is, the recommended cumulative po
model with loglog and logit links significantly outperforms the two multinomial logistic
models that are commonly used in practice.

Figure 1. Cross-entropy loss based on ten-fold cross-validations with ten random partitions.

To show how well Model 1 works, we plot in Figure 2 the predictive probabilities π̂ij
against the true response labels, j = 1, 2, 3, respectively.
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Figure 2. Predictive probabilities π̂ij based on Model 1 against true response labels (left panel: j = 1;
middle panel: j = 2; right panel: j = 3).

According to Figure 2, the recommended Model 1 works reasonably well. For exam-
ples, in the left panel, we plot π̂i1, which is the predictive probability that the ith tissue
sample belongs to Normal, against its true response label. If the true label is Normal, the left
boxplot in the left panel of Figure 2, which is apparently higher than the other two boxplots
in the same panel, indicates that the corresponding tissue sample tends to be predicted as
Normal as well. Similarly, in the right panel, π̂i3, the predictive probability that the sample
belongs to IM, is plotted, and the significantly higher boxplot to the right indicates that the
sample with true label IM tends to be predicted as IM as well. Nevertheless, the middle
panel, which plots the predictive probabilities for MIM, indicates that the MIM class is not
so different from Normal or IM, and thus is more difficult to predict correctly.

3.2. Statistical Model Selection for Predicting IM Based on TNSC and Gastric Atrophy

In this section, we show that when additional information, such as the status of gastric
atrophy, is available, the prediction accuracy of the IM risk level can be significantly im-
proved.

In this study, the status of gastric atrophy is a 5-class categorical variable (see Table S3
in [5]), namely, Marked, Moderate, Mild, Negative, and Unknown. In our regression
analysis involving the status of gastric atrophy, we replace it with four dummy variables:
xmild,i, xmoderate,i, xnegative,i, and xunknown,i. Each dummy variable is binary, taking a value of
either 1 or 0, with at most one variable allowed to be 1 for any given sample. For instance,
a configuration of (xmild,i, xmoderate,i, xnegative,i, xunknown,i) = (1, 0, 0, 0) indicates a mild gas-
tric atrophy status for the ith sample, (0, 1, 0, 0) indicates a moderate gastric atrophy status,
whereas (0, 0, 0, 0) indicates a marked status, that is, the baseline status. Similarly to Table 1,
we list the optimal link functions for j = 1, 2, respectively, along with their AIC and BIC
values, in Table 2.

Table 2. Best mixed-link models for predicting IM based on TNSC and gastric atrophy.

Model Best Link AIC BIC

Baseline-category npo logit, probit 109.95 143.79
Cumulative npo loglog, logit 109.20 143.04

Adjacent-categories npo logit, logit 109.97 143.81
Continuation-ratio npo logit, logit 110.97 144.82

Baseline-category po probit, logit 111.31 131.05
Cumulative po probit, probit 110.03 129.77

Adjacent-categories po logit, logit 108.89 128.63
Continuation-ratio po probit, probit 109.32 129.06

Note: The best model overall, along with its links and values, is highlighted in bold.
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With the presence of gastric atrophy, the best multinomial mixed-link model, called
Model 2, is an adjacent-categories logit model with po, which is different from the type
of Model 1 with TNSC only (see Section 3.1). Since its AIC value, 108.89, is much less
than 144.29 in Table 1, Model 2 is expected to outperform Model 1 significantly in terms of
prediction accuracy (see [36] for more discussion on AIC differences). The fitted Model 2 is
provided in (9).

log
(

πi1
πi2

)
=β01 + β1xTNSC,i + β2xmild,i + β3xmoderate,i + β4xnegative,i + β5xunknown,i

=− 1.859 − 4.586 × 10−4xTNSC,i − 1.144xmild,i − 2.103xmoderate,i

+ 6.469xnegative,i + 3.663xunknown,i

log
(

πi2
πi3

)
=β02 + β1xTNSC,i + β2xmild,i + β3xmoderate,i + β4xnegative,i + β5xunknown,i

=0.136 − 4.586 × 10−4xTNSC,i − 1.144xmild,i − 2.103xmoderate,i

+ 6.469xnegative,i + 3.663xunknown,i

(9)

Similarly to Figure 1, we compare in Figure 3 the cross-entropy loss of two recom-
mended models shown in (8) (Model 1) and (9) (Model 2). It is not surprising that Model 2
with both TNSC and gastric atrophy as predictors has a significantly smaller cross-entropy
loss, which implies that the status of gastric atrophy is informative in predicting the risk
level of IM.

Figure 3. Boxplots of cross-entropy loss of Model 1 and Model 2 based on ten-fold cross-validations
with ten random partitions.

Similarly to Figure 2, we plot the predictive probabilities based on Model 1 and
Model 2 against the true IM labels in Figures 4–6. When the true IM label matches the
predictive label, such as the left panel in Figure 4, the middle panel in Figure 5, and the right
panel of Figure 6, Model 2 tends to provide a higher predictive probability than Model 1,
which shows that overall Model 2 outperforms Model 1.

Figure 4. Predictive probabilities for the normal category based on Model 1 and Model 2.
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Figure 5. Predictive probabilities for the MIM category based on Model 1 and Model 2.

Figure 6. Predictive probabilities for IM category based on Model 1 and Model 2.

3.3. Statistical Model Selection after Removing Unknown and Marked Categories

Among the 124 samples considered in this study, there are only 3 cases with “Marked”
status of gastric atrophy, and there are 23 cases with “Unknown” status, which is not
informative. In this section, we consider the best multinomial mixed-link model for the 98
cases after removing the samples that belong to Marked or Unknown categories.

In this section, the status of gastric atrophy is a three-class categorical variable re-
stricted to the 98 samples. Similarly to Model 2 in Section 3.2, we replace the status of
gastric atrophy with two dummy variables (xmild,i, xmoderate,i). More specifically, (xmild,i,
xmoderate,i) = (1,0) stands for mild status, (0,1) for moderate status, and (0,0) for negative
status representing the baseline. Similarly to Tables 1 and 2, we provide in Table 3 the
optimal choices of link functions for each type of multinomial model. According to Table 3,
the best multinomial mixed-link model for this scenario is an adjacent-categories po model
with probit links for both j = 1, 2. We call it Model 3 and list its fitted model in (10).

Table 3. Best mixed-link models for predicting IM based on TNSC and 3-class gastric atrophy.

Model Best Link AIC BIC

Baseline-category npo logit, probit 81.43 102.11
Cumulative npo probit, probit 84.29 104.97

Adjacent-categories npo logit, probit 83.22 103.90
Continuation-ratio npo logit, probit 83.56 104.24

Baseline-category po probit, logit 82.39 95.32
Cumulative po probit, probit 77.99 90.92

Adjacent-categories po probit, probit 77.56 90.48
Continuation-ratio po probit, probit 77.77 90.69

Note: The best model overall, along with its links and values, is highlighted in bold.
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Φ−1
(

πi1
πi1 + πi2

)
=β01 + β1xTNSC,i + β2xmild,i + β3xmoderate,i

=3.153 − 3.446 × 10−4xTNSC,i − 4.260xmild,i − 5.347xmoderate,i

Φ−1
(

πi2
πi2 + πi3

)
=β02 + β1xTNSC,i + β2xmild,i + β3xmoderate,i

=5.275 − 3.446 × 10−4xTNSC,i − 4.260xmild,i − 5.347xmoderate,i

(10)

To compare the performance of Model 3 with Model 1 and Model 2, we use the cross-
entropy loss based on ten-fold cross-validations similarly to Sections 3.1 and 3.2. Since
Model 3 cannot be applied to cases with marked or unknown status of gastric atrophy, we
compare the performance of the three models on samples with mild, moderate, or negative
status of gastric atrophy only. Their boxplots of cross-entropy loss based on ten random
partitions for ten-fold cross-validations are displayed in Figure 7.

Figure 7. Boxplots of cross-entropy loss (on 98 Samples only) of Models 1, 2, and 3 based on ten-fold
cross-validations with ten random partitions.

According to Figure 7, Model 3 has a significantly smaller (average) cross-entropy
loss compared with Model 1 and Model 2, in terms of predicting IM for individuals whose
gastric atrophy statuses are negative, mild or moderate. Nevertheless, Models 1 and 2 are
still useful since they can be applied to cases with marked or unknown status of gastric
atrophy as well.

4. Discussion

In Section 3, we presented three models for different scenarios. When only the TNSC
(or the DNA methylation profile) is available, we recommend Model 1, a cumulative mixed-
link model with po, which works reasonably well with TNSC as the only input. When the
status of gastric atrophy is also available, there are two different scenarios. If the status is
negative, mild, or moderate, we recommend Model 2, an adjacent-categories logit model
with po, which belongs to the traditional multinomial logit models. If the status is marked
or unknown, we recommend Model 3 instead, which is an adjacent-categories probit model
with po. Each of the three models has its own advantages. For example, although both
Model 2 and Model 3 outperform Model 1 in terms of prediction accuracy, Model 1 is still
useful when the status of gastric atrophy is not available.

To further compare the performance of Models 1 and 2 on cases with marked or
unknown status of gastric atrophy, we display in Figure 8 the (average) cross-entropy
loss on predicting those 26 cases with marked or unknown status of gastric atrophy only.
According to Figure 8, Model 2 still outperforms Model 1 in predicting the risk level of IM
for those 26 cases, which suggests that Model 2 be recommended against Models 1 and 3
for cases with marked or unknown status of gastric atrophy.
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Figure 8. Boxplots of cross-entropy loss (on 26 Samples only) of Models 1 and 2 based on ten-fold
cross-validations with ten random partitions.

In practice, more covariates or predictors may be added to the multinomial mixed-link
model as well, given their availability. For example, it is known that Helicobacter pylori (Hp)
infection is an important factor for both IM and gastric cancer development [5,37]. When
the Hp status, in terms of Hp serology test result [38], histological examination result [39],
or Hp sequence reads [5], is available, one may add it into the model and use AIC, BIC,
or cross-validation to determine whether the model with the newly added covariate works
significantly better (see Section 2.3).

It should be noted that when using model selection techniques described in Section 2.3,
sometimes the differences between the best models are not significant. For example, when
selecting Model 3, two other models, a cumulative probit model with po and a continuation-
ratio probit model with po, have similar AIC values (see Table 3) that are not significantly
smaller than Model 3’s [36]. In this case, one may use any of them for prediction purposes.
That is saying, with the current data or a finite sample size, those models are comparable
or not significantly different from each other.

With an increased sample size, if there is a true statistical model associated with
the response and available predictors, then the true model is expected to be among the
best models asymptotically [40]. Nevertheless, it does not necessarily mean that the true
model is asymptotically identifiable (see [40] for more discussion on asymptotic consistency
related to model selections for multinomial models).

In a previous study [5], DNA methylation alteration has been reported as significantly
correlated with IM regression at the univariate level. Nevertheless, the significance vanishes
when mutation burden and Hp density are incorporated into a multivariate logistic regres-
sion analysis [5]. It is worthy of further exploration using the recommended multinomial
mixed-link model with the most appropriate link functions selected.

5. Conclusions

In this study, we recommend the newly developed multinomial mixed-link models for
predicting Intestinal Metaplasia using DNA methylation profiling. Using model selection
techniques, such as AIC, BIC, and cross-validations, we show that the selected multinomial
mixed-link model (Model 1) outperforms the traditional multinomial models that assume
the same link function for all categories. We also show that when additional information,
such as new covariates or predictors, is added to the model, the selection procedure needs
to be rerun and the best mixed-link model may change.

When four or more response categories are involved, models other than multinomial
mixed-link models have been proposed as well, including two-group models, which can
deal with NA or unknown response categories, and po-npo mixture models, which are
more flexible than npo, po, or ppo (partial proportional odds) models (see [24] for more
examples). Model selection techniques described in Section 2.3 can still be applied, just to a
much larger set of candidate models.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
BIC Bayesian information criterion
CE cross entropy
CpG 5’—C—phosphate—G—3’ sequence of nucleotides
cloglog complementary log-log link
DNA deoxyribonucleic acid
GCEP Gastric Cancer Epidemiology Program
ID identifier
IM intestinal metaplasia
loglog log-log link
MIM mild intestinal metaplasia
MLE maximum likelihood estimate
npo non-proportional odds assumption
po proportional odds assumption
PRC2 polycomb repressive complex-2
TNSC total number of stem cell divisions

Appendix A. AIC and BIC Values of Multinomial Mixed-Link Models Using TNSC for
Predicting IM

In this section, we provide a complete list of AIC and BIC values for the multinomial
mixed-link models with link functions in {logit, probit, loglog, cloglog}. A “-” in the
following tables indicates that the corresponding AIC or BIC value is not available, typically
due to numerical issues when fitting the corresponding model.
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Table A1. Baseline-category mixed-link models with npo.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 148.49 159.78 147.84 159.12 147.09 158.37 - -

probit 148.95 160.23 148.27 159.56 147.47 158.75 - -

loglog 148.83 160.11 148.11 159.39 146.69 157.97 - -

cloglog - - - - - - - -
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A2. Cumulative mixed-link models with npo.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 148.69 159.97 147.69 158.97 156.46 167.74 - -

probit 148.35 159.63 147.39 158.67 149.97 161.25 - -

loglog 146.24 157.52 145.53 156.81 147.10 158.38 - -

cloglog - - - - - - - -
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A3. Adjacent-categories mixed-link models with npo.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 148.49 159.78 147.87 159.15 146.83 158.11 149.47 160.75

probit 148.54 159.82 147.92 159.20 146.90 158.18 149.51 160.79

loglog 147.65 158.93 147.01 158.29 145.97 157.25 148.56 159.85

clog log 150.20 161.49 149.62 160.90 148.71 159.99 151.17 162.46
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A4. Continuation-ratio mixed-link models with npo.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 148.95 160.23 148.30 159.58 147.28 158.56 149.81 161.09

probit 148.55 159.84 147.91 159.19 146.88 158.16 149.41 160.70

loglog 147.61 158.89 146.96 158.24 145.93 157.21 148.47 159.75

clog log 151.95 163.23 151.30 162.58 150.27 161.55 152.81 164.09
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A5. Baseline-category mixed-link models with po.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 173.33 181.79 202.33 210.79 197.84 206.30 188.22 196.68

probit 151.12 159.58 172.76 181.22 164.81 173.27 162.85 171.31

loglog 159.04 167.50 180.71 189.17 176.63 185.09 170.09 178.55

clog log 156.83 165.29 176.00 184.46 169.15 177.61 166.43 174.89
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.
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Table A6. Cumulative mixed-link models with po.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 150.23 158.70 194.90 203.36 204.72 213.18 - -

probit 147.75 156.21 149.25 157.71 155.53 163.99 - -

loglog 144.29 152.75 148.81 157.27 147.08 155.54 - -

cloglog - - - - - - - -
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A7. Adjacent-categories mixed-link models with po.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 148.87 157.33 153.58 162.04 153.82 162.28 151.66 160.12

probit 146.57 155.03 148.59 157.05 148.14 156.60 148.17 156.63

loglog 146.33 154.79 149.87 158.34 149.56 158.02 148.63 157.09

clog log 148.21 156.67 150.03 158.49 149.74 158.20 149.68 158.14
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.

Table A8. Continuation-ratio mixed-link models with po.

logit probit loglog cloglog

AIC BIC AIC BIC AIC BIC AIC BIC

logit 154.43 162.89 167.30 175.76 165.20 173.66 162.05 170.51

probit 147.39 155.85 153.58 162.04 152.13 160.59 150.99 159.45

loglog 146.96 155.42 153.40 161.86 151.96 160.43 150.83 159.29

cloglog 152.17 160.63 161.47 169.94 159.67 168.13 157.42 165.88
Note: The AIC/BIC values, associated with the best pair of links, are highlighted in bold.
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