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Abstract: Sparse data with a high portion of zeros arise in various disciplines. Modeling sparse
high-dimensional data is a challenging and growing research area. In this paper, we provide statistical
methods and tools for analyzing sparse data in a fairly general and complex context. We utilize
two real scientific applications as illustrations, including a longitudinal vaginal microbiome data
and a high dimensional gene expression data. We recommend zero-inflated model selections and
significance tests to identify the time intervals when the pregnant and non-pregnant groups of women
are significantly different in terms of Lactobacillus species. We apply the same techniques to select the
best 50 genes out of 2426 sparse gene expression data. The classification based on our selected genes
achieves 100% prediction accuracy. Furthermore, the first four principal components based on the
selected genes can explain as high as 83% of the model variability.

Keywords: zero-inflated model; hurdle model; longitudinal data; model selection; vaginal microbiome;
gene expression

1. Introduction

Sparse or zero-inflated data has a lot of applications in various disciplines such as
microbiome [1], gene expression [2], epidemiology [3], health care [4], security [5], so-
cial networks [6], and more. Modeling sparse data is very challenging due to the high
proportion of zeros and severe skewness of the distribution [7,8]. Modeling sparse data
appropriately is also critical for successful scientific applications. For example, zero read-
ings in the microbiome and RNA-seq data have two possible sources: First, some species or
genes exist but are not detected as a result of insufficient sequence depth or inefficiencies of
the technology processes (non-biological zeros); secondly, it is possible that some species or
genes are truly never represented (biological zeros) [9].

To model sparse data, zero-inflated and hurdle models have been widely used. Both
of them consist of two data-generating processes. The first process generates purely zeros,
while the second one is governed by some distribution, for example, Poisson distribution,
which may or may not generate zeros. The zero-inflated Poisson (ZIP) model was pro-
posed by Lambert (1992) with an application to defects in manufacturing [10]. In 1994,
Greene considered the zero-inflated negative binomial (ZINB) model with an application
on consumer behavior and default on credit card loans [11].

In this paper, we consider analyzing zero-inflated data in a more general and complex
context. One motivating example is the vaginal microbiome data, which is longitudinal,
and the goal is to identify the time intervals when the two groups of individuals are
significantly different [2].

The vaginal microbiome is a dynamic micro-ecosystem that inhabits the vaginal
surfaces and its cavity. The vaginal microbiome has great significance in maintaining
vaginal health and protecting the host from urogenital diseases such as sexually transmitted
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diseases [12]. Normal flora appears dominated by one or two species of Lactobacillus.
Lactobacilli are the most abundant vaginal bacteria in women [13]. It is known that 92%
of the normal vaginal flora consists of Lactobacillus species [14]. Lactobacilli produce lactic
acid, which acidifies the vagina to pH < 4 to restrict the growth of all bacteria and protect
the vagina against pathogens. Lactobacilli also produce hydrogen peroxide (H2O2) to kill
bacteria cells by destroying their cell walls [15]. Several bacteriocins produced by different
Lactobacillus species have been described [16,17]. The absence of vaginal Lactobacilli has
a negative effect on women’s health. For example, vaginal Lactobacilli have an impact on
In Vitro Fertilization (IVF) success rate. A very recent study shows that women with a
low percentage of Lactobacillus in the vaginal microbiome have a lower rate of success in
embryo implantation and embryo transfer [18].

Modeling Lactobacillus species is a growing research area. For example, Romero et al. (2014)
proposed a longitudinal study for comparing the vaginal microbiome between pregnant and
non-pregnant women [2]. The mixed effects modeling of the reads count data on the pregnancy
status was performed using the zero-inflated negative binomial mixed-effects (ZINBLME)
models. In addition, negative binomial linear mixed effects (NBLME) and Poisson linear mixed
effects (PLME) models were used in a comparison. The ZINBLME model provided the optimal
fit based on AIC values. Chen and Li (2016) proposed a zero-inflated beta regression model
with random effects (ZIBR) for testing the association between Lactobacillus species and clinical
covariates for a longitudinal vaginal microbiome study [19]. Both simulation studies and the real
application data have shown that the ZIBR model outperformed the previously used methods
such as zero-inflated Poisson, binomial, and negative binomial regression models with random
effects. Zhang et al. (2020) proposed zero-inflated Gaussian mixed models (ZIGMMs) to analyze
longitudinal vaginal microbiome data [20]. The Expectation-Maximization (EM) algorithm was
used to fit the ZIGMMs. The study concluded that ZIGMMs is a robust and flexible method
compared to some other models such as linear mixed models (LMMs), negative binomial mixed
models (NBMMs), and zero-inflated beta regression mixed models (ZIBR).

Another motivating example is the gene expression data [21], which involves
2426 genes and is high-dimensional. The goal is to select a small group of genes for
labeling five categories.

Over the past few decades, RNA sequencing (RNA-Seq) has been frequently used in
genomics, biological, medical, and drug research. Poisson, negative binomial, zero-inflated
Poisson (ZIP), zero-inflated negative binomial (ZINB), and Bayesian methods have been widely
used to model a single cell RNA-seq data [22–25]. For example, McDavid et al. (2013) pro-
posed a chi-square asymptotic distribution of the likelihood ratio test to compute p values
and assess the significance [26]. They showed that their test is more powerful than t-test on
zero-inflated data. Kharchenko et al. (2014) proposed a Bayesian model for single-cell differential
expression analysis [25]. They found out that their proposed method has a higher sensitivity
than commonly used RNA-seq differential expression methods (DESeq and CuffDiff) and the
zero-inflated approach developed by McDavid et al. (2013) [26]. Zero-inflated beta regression
(ZIBSeq) approach was developed by Peng et al. (2016) for identifying differential abundant
metagenomics features between multiple clinical conditions [27]. Compared with other available
methods, the ZIBSeq approach demonstrates better performance with larger AUC (area under
the curve) values for human metagenomics data and some simulation studies.

To analyze sparse data, there are some R packages available from the Comprehensive R
Archive Network (CRAN, https://cran.r-project.org/, accessed on 27 October 2022), including
“bzinb” [28], “hurdlr” [29], “iZID” [30], “gamlss” [31], “pscl” [32], “mhurdle” [33], “rbtt” [34],
“ZIBseq” [35], “zic” [36], “ZIM” [37], “ziphsmm” [38], etc. Among them, iZID covers 12
different discrete distributions including Poisson, negative binomial, beta binomial, beta negative
binomial, and their zero-inflated and hurdle versions [39]. It implemented the bootstrapped
Monte Carlo p value estimates for identifying a discrete distribution [7]. In this paper, we
recommend a newly developed R package, “AZIAD” [40], which covers 27 discrete and
continuous distributions and resolves some limitations of the other R packages [41]. The AZIAD
package provides maximum likelihood estimates (MLE) for model parameters, Kolmogorov-
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Smirnov tests (KS test) for fairly general distributions, likelihood ratio tests (LRT) for model
selection, Fisher information matrix and confidence intervals for parameter estimates. We
provide more details on utilizing AZIAD in Section 2.4.

In this paper, we use the two motivating examples as illustrations on analyzing
longitudinal or high-dimensional sparse data. For the longitudinal vaginal microbiome
data, we compare the pregnant and non-pregnant groups in terms of the Lactobacillus species
to identify the time intervals when the two groups are significantly different. Although we
use the Lactobacillus species as an example, our methods and analysis can be applied to any
other vaginal microbiome species in the dataset as well. For the gene expression data, we
select the most informative genes based on sparse data model selection and show how the
selected genes help with predicting the class labels. We also apply the principal component
analysis to the top 50 selected genes and show that the four principal components can
explain 83% of the model variability.

2. Materials and Methods

To analyze sparse data, we use zero-altered models (or hurdle models) and zero-
inflated models. In this section, we first briefly review zero-inflated and hurdle models.
Then we illustrate by examples how to use AZIAD for selecting the most appropriate
model for sparse data. One of our major contributions is the significance test that we
develop based on sparse data model selection, which will be used for selecting significant
time points for longitudinal sparse data and selecting the most informative covariates for
high-dimensional sparse data.

2.1. Zero-Altered or Hurdle Models

Zero-altered models, also known as hurdle models, have been widely used for modeling
sparse data (see, for example, [1] or [8], for a good review). Technically speaking, hurdle
models can also be used for modeling data with a number of zeros less than expected.
A general hurdle model consists of two components, one generating zeros and the other
generating non-zeros. Given a baseline distribution function fθ(y), where the parameter(s)
θ = (θ1, . . . , θp)T , p ≥ 1, the distribution function of the corresponding hurdle model can
be written as follows

fZA(y | φ, θ) = φ1{y=0} +
1− φ

1− p0(θ)
fθ(y)1{y 6=0} (1)

where φ ∈ [0, 1] is the weight parameter of zeros, fθ(y) is either a probability mass function
(pmf) for some discrete baseline distribution or a probability density function (pdf) for
some continuous baseline distribution, and p0(θ) = fθ(0) for discrete distributions or
simply 0 for continuous distributions.

2.2. Zero-Inflated Models

Unlike zero-altered models, a zero-inflated model always assumes an excess of zeros.
Besides zeros coming from the baseline distribution fθ(y), there are additional zeros mod-
eled by a weight parameter φ ∈ [0, 1]. The distribution function of the zero-inflated model
can be defined as follows

fZI(y | φ, θ) = [φ + (1− φ)p0(θ)]1{y=0} + (1− φ) fθ(y)1{y 6=0} (2)

2.3. Zero-Altered and Zero-Inflated Models with Continuous Baseline Distributions

When the baseline distribution fθ(y) is continuous, p0(θ) = 0 and models (1) and (2)
are the same, called a zero-altered and zero-inflated (ZAZI) model (see [41] for more details).
Its distribution function can be written as follows

fZAZI(y | φ, θ) = φ1{y=0} + (1− φ) fθ(y)1{y 6=0} (3)
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Commonly used continuous baseline distributions include Gaussian (or normal), log-
normal, half-normal, exponential, etc. The corresponding zero-inflated models are also
known as zero-inflated Gaussian (ZIG), zero-inflated log-normal (ZILN), zero-inflated
half-normal (ZIHN), and zero-inflated exponential (ZIE), respectively.

2.4. Model Selection Using AZIAD Package

To identify the most appropriate model for sparse data, we recommend the R pack-
age AZIAD. Compared with other existing R packages on analyzing zero-inflated data,
(1) it takes 27 different distributions under consideration; (2) it covers both discrete and
continuous baseline distributions; (3) it provides Fisher information matrix and confidence
intervals for estimated parameters as well.

When the baseline distribution is continuous with the pdf fθ(y), AZIAD covers normal,
log-normal, half-normal, exponential, and their corresponding zero-inflated and hurdle
models. When the baseline distribution is discrete with the pmf fθ(y), the package covers
Poisson, geometric, negative binomial, beta binomial, beta negative binomial, and their
corresponding zero-inflated and hurdle models.

We apply KS-test for each model under our consideration to test if the model is
appropriate for the given sparse data. If the p value of the KS-test is below 0.05, we usually
discard the corresponding model. There are two functions built in the AZIAD package,
kstest.A and kstest.B. According to [41], kstest.B is recommended for data with a
sample size of about 50 or below, such as the vaginal microbiome data of the pregnant
group on week three (see Section 3.1), while kstest.A is recommended for a larger sample
size, such as the gene expression data (see Section 3.2). We provide below two toy examples.

> set.seed(456)
> Data1=sample.h1(2000,phi=0.3,dist="normal",mean=10,sigma=2)
> kstest.A(Data1,nsim=100,bootstrap=TRUE,dist="normalh",

lowerbound=1e-10,upperbound=100000)$pvalue
> 1

> kstest.A(Data1,nsim=100,bootstrap=TRUE,dist="lognormal",
lowerbound=1e-1,upperbound=1000000)$pvalue

> 0

> kstest.A(Data1,nsim=100,bootstrap=TRUE,dist="zilognorm",
lowerbound=1e-1,upperbound=1000000)$pvalue

> 0

> Data2=sample.zi1(N=30,phi=0.4,r=10,alpha1=3,alpha2=5,dist="bnb")
> kstest.B(Data2,nsim=100,bootstrap=TRUE,dist="zibnb",

lowerbound=1e-10,upperbound=100000)$pvalue
> 0.76

> kstest.B(Data2,nsim=100,bootstrap=TRUE,dist="zip",
lowerbound=1e-10,upperbound=100000)$pvalue

> 0

The R function sample.h1 can be used for generating random samples from hurdle
models. We first generate a random sample (Data1) from a normal hurdle distribution with
parameters (φ, µ, σ) = (0.3, 10, 2) and sample size N = 2000. For reproducibility purposes,
we set a random seed 456. For this data, we apply kstest.A to three different distributions,
normal hurdle, log-normal, and zero-inflated log-normal. The results show that only the
true distribution normal hurdle is appropriate with a p value larger than 0.05.

We then generate a random sample Data2 from a zero-inflated beta negative bi-
nomial (ZIBNB) model using the R function sample.zi1. The model parameters are
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(φ, r, α, β) = (0.4, 10, 3, 2) and the sample size is N = 30. Since the sample size is below 50,
we apply kstest.A to two models, ZIBNB and ZIP. Again only the true model ZIBNB has
a p-value larger than 0.05.

To develop our significance test (see Section 2.5) for variable selection, we also need to
calculate the maximum likelihood estimate (MLE), which maximizes the likelihood function,
for each model under consideration. We use the AZIAD built-in R functions, new.mle
for general baseline distributions, and zih.mle for zero-inflated and hurdle models. To
demonstrate in more detail, we consider the toy examples as follows.

> library(AZIAD)
> set.seed(657)
> Data1=extraDistr::rbbinom(1000,size=4,alpha=2,beta=3)
> new.mle(Data1,n=10,alpha1=3,alpha2=4,dist="bb")
> n Alpha Beta loglik
> 3.99 1.975527 2.923279 -3060.583

> Data2=sample.zi1(2000,phi=0.3,dist=’bnb’,r=5,alpha=3,alpha2=3)
> zih.mle(Data2,r=10,alpha1=3,alpha2=4,dist="bnb.zihmle",type="zi")
> r alpha1 alpha2 phi loglik
> 5.095388 3.033706 2.902682 0.3025823 -5091.443

> Data3=sample.h1(2000,phi=0.3,dist="lognormal",mean=1,sigma=4)
> zih.mle(Data3,mean=4,sigma=2,dist="lognorm.zihmle",type="h")
> mean sigma phi loglik
> 1.049724 3.931015 0.3095 -6537.076

> Data4=sample.zi1(2000,phi=0.3,dist="exponential",lambda=20)
> zih.mle(Data4,lambda=10,dist="exp.zihmle",type="zi")
> lambda phi loglik
> 19.55911 0.305 1513

For illustration purposes, the data sets are simulated from beta binomial (BB) with true
parameters (n, α, β) = (4, 2, 3), ZIBNB with true parameters (φ, r, α, β) = (0.3, 5, 3, 3), log-
normal hurdle with true parameters (φ, µ, σ) = (0.3, 1, 4), and ZIE with true parameters
(φ, λ) = (0.3, 20), respectively. As observed, our corresponding estimates (n̂, α̂, β̂) =
(3.99, 1.97, 2.92), (φ̂, r̂, α̂, β̂) = (0.3, 5.09, 3.03, 2.90), (φ̂, µ̂, σ̂) = (0.3, 1.04, 3.93), and (φ̂, λ̂) =
(0.3, 19.55) are reasonably close to the true parameter values. Note that the initial values of
the parameters are required but fairly flexible.

2.5. Significance Test on Group Labels

In this section, we propose a significance test for selecting the most informative
covariates associated with group labels of sparse data.

First of all, we briefly review two commonly used model selection criteria, Akaike
information criterion (AIC) and Bayesian information criterion (BIC), defined as

AIC = −2 · loglik + 2 · k

BIC = −2 · loglik + (logN) · k

where loglik is the maximized likelihood (see Section 2.4), k stands for the number of
parameters in the model, and N is the sample size (see, for example, [42] for more details).
According to Hastie et al. (2009), BIC is asymptotically consistent in the sense that it will
choose the correct model with a probability approaching to 1 as the sample size N → ∞,
and AIC is more suitable for small or moderate sample sizes [42].

In this paper, we adopt AIC since the sample size is 52 for the vaginal microbiome
data (see Section 3.1), or 801 for the gene expression data (see Section 3.2).
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Now we propose a significance test based on our sparse data model selection proce-
dure. In general, we consider a data set with covariates {xij | i = 1, . . . , N; j = 1, . . . , p},
that is, consisting of N individuals and p covariates, and class labels yi ∈ {1, . . . , m}, m ≥ 2.
The goal is to select the most informative covariates for predicting the class labels. For each
covariate, say the jth covariate, the readings or measures xij, i = 1, . . . , N are grouped
into m blocks according to their class labels yi, i = 1, . . . , N. We summarize the following
procedure in three steps.

• Step 1: Choose the most appropriate model for all the N numbers, {xij | i = 1, . . . , N}
after ignoring their class labels. This task is accomplished by performing KS-tests using
kstest.A on all models under consideration (see also [7]). Then we compute the MLE
of the parameters for the chosen model using R function zih.mle. The corresponding
AIC value is denoted by ModelIAIC.

• Step 2: For each of the m classes, say the kth class, we choose the most appropriate model for
the data {xij | yi = k} of the kth class, compute the MLE and denote the corresponding AIC
value by AIC(k). Then aggregated AIC value ModelI IAIC is essentially the summation of
the AIC values from m classes, that is, ModelI IAIC = ∑m

k=1 AIC(k).
• Step 3: Take the difference of two AIC values with or without class labels, ModelIAIC−

ModelI IAIC = ModelIAIC − ∑m
k=1 AIC(k). A larger difference indicates that the jth

covariate is more informative for predicting the class labels.

We refer the readers to [43] for more discussion on using AIC or BIC for model selection.

3. Two Applications

In this section, we use two real examples to illustrate how our variable selection
techniques could be used for sparse data analysis.

3.1. Vaginal Microbiome

The purpose of this study is to characterize the changes in the composition of the vaginal
microbiome (including Lactobacilli) at some time points between two groups of women, pregnant
or non-pregnant. The dataset is available in Romero et al. (2014)’s study [2]. The original study
includes 32 non-pregnant women and 22 pregnant women who had a term delivery without
complications. Non-pregnant women self-sampled with a frequency of twice a week for 16
weeks. Pregnant women had a speculum examination at each visit when a sample of vaginal
fluid was collected as well. Samples were collected every 4 weeks till week 24 of pregnancy and
every 2 weeks till delivery. The numbers of samples for the 22 pregnant women are not balanced
and fluctuate between 3 and 8. In our analysis, we remove one sample of non-pregnant women
since there was only one observation. That is, 31 non-pregnant women are kept for our analysis.

The goal of our study in this paper is to observe the AIC differences between the
pregnant and non-pregnant women over the time of pregnancy (1 ≤ t ≤ 38) concentrated
on the Lactobacillus microbiome and identify time intervals when the two groups of women
are significantly different in terms of Lactobacillus. Eventually, we can extend this procedure
and do parallel analysis for any other species in this dataset.

3.2. RNA-Seq Gene Expression Data

The RNA-seq gene expression dataset is a high-dimensional dataset consisting of
801 tissue samples (N = 801) and 20,531 genes (p = 20,531) [21]. The 801 samples are
labeled by 5 different types of cancerous tumors, BRCA, KIRC, COAD, LUAD, and PRAD.
The data can be accessed from the UCI Machine Learning Repository (https://archive.ics.
uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq#, accessed on 4 November 2022)
and were collected as a part of the Cancer Genome Atlas (TCGA) analysis project [44] (see
also [21]).

The goal of our study is to select the most informative genes for identifying class labels.

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq#
https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq#
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4. Data Analysis and Results

In this section, we explain the data analysis procedures and report our results for the
two real applications described in Section 3.

4.1. Vaginal Microbiome

There are two challenging aspects of this dataset, missing time points and unbalanced
time intervals. Our first step is data imputation for the missing time points using k-nearest
neighbor, where k = 1 is used in our study (see, for example, [45] for other possible missing
value imputation strategies). Next, we apply linear interpolations on the readings of each
individual using R function approx with option method="linear". We select 38 discrete,
equally distanced time points on the curves. At each t = 1 . . . 38, we gather 53 values of
Lactobacillus microbiome which belongs to the two groups of women. By screening all
samples, we find out that all of the samples contain approximately 5% to 13% of zeroes.
Therefore, zero-inflated models are more appropriate in model selection.

Figures 1 and 2 summarize the result of 22 linear interpolated curves for pregnant
women, and 31 linear interpolated curves for non-pregnant women over the time of
pregnancy (38 weeks). As observed in the non-pregnant samples (Figure 2), there is an
apparent outlier curve that acts very differently from the other samples. We remove this
outlier since it is influential for our analysis (see Appendix A for more information). As a
result, our analysis is based on 30 non-pregnant women and 22 pregnant women.

Figure 1. Linear interpolated Lactobacillus readings of 22 pregnant women over 38 weeks of pregnancy.

Figure 2. Linear interpolated Lactobacillus readings of 31 non-pregnant women over 38 weeks.

After the data preparation, we perform the significance test described in Section 2.5.
Since the readings are real numbers, we consider 12 models including four continuous
distributions, normal (N), half-normal (HN), log-normal (LN), exponential (E), and their
zero-inflated and hurdle versions. Based on the KS-test p values (see Table 1), we obtain
several candidate models with p values larger than 0.05. Among them, normal (N) and
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normal hurdle (NH) are the best ones (for readers’ reference, an extended version of Table 1
can be found in the Supplementary Materials). We choose NH instead of N since the data
contains a proportion of zeros. We then calculate ModelIAIC for each of the 38 time points.

Table 1. KS-test p values for combined data (N = 52) under 12 distributions at three different weeks.

Time (Week) N ZIN NH HN ZIHN HNH LN ZILN LNH E ZIE EH

week 10 1.000 0.390 1.000 0.315 0.510 0.000 0.000 0.000 0.720 0.335 0.510 0.015
week 22 1.000 0.160 1.000 0.605 0.625 0.000 0.000 0.000 0.955 0.100 0.300 0.020
week 36 1.000 0.175 1.000 0.560 0.650 0.015 0.000 0.000 0.960 0.525 0.450 0.030

Note: N: Normal; ZIN: Zero-inflated Normal; NH: Normal Hurdle; HN: Half-normal; ZIHN: Zero-inflated
Half-normal; HNH: Half-normal Hurdle; LN: Log-normal; ZILN: Zero-inflated Log-normal; LNH: Log-normal
Hurdle; E: Exponential; ZIE: Zero-inflated Exponential; EH: Exponential Hurdle.

As Step 2, we apply the same procedure to pregnant and non-pregnant groups separately.
The proportions of zeros in the non-pregnant group are roughly between 10% and 20%, which
implies that sparse model should be used. The proportions of zeros in the pregnant group are
less than the non-pregnant group’s. Some samples contain 4% of zeroes at the beginning of the
pregnancy, while no sample has any zeroes after week 21. Therefore, we consider sparse models
for weeks 1–21, and regular continuous models on weeks 22–38. Based on the KS-tests on the
non-pregnant group (see Table A1 in Appendix B), we choose the normal hurdle (NH) model
again. For the pregnant group, NH model is chosen for weeks 1–21, and normal distribution is
chosen for weeks 22–38 (see Table A2 in Appendix B). In this case,

ModelI IAIC = AICnon−pregnant(n=30) + AICPregnant(n=22)

As Step 3, we calculate ModelIAIC − ModelI IAIC for each t = 1, . . . , 38. Figure 3
demonstrates the difference of AIC values over the weeks of pregnancy 1 ≤ t ≤ 38 in
terms of Lactobacillus microbiome. It indicates that the two groups tend to be significantly
different after week 22 (AIC differences are larger than 2). It means that the pregnant
women and non-pregnant women are significantly different during weeks 22–38 in terms
of Lactobacillus species.

Figure 3. AIC difference ModelIAIC − ModelI IAIC over 38 weeks of pregnancy.

To further investigate the differences between the two groups before and after week 22
of pregnancy observed in Figure 3, we conduct a more detailed analysis on the estimated
parameters (i.e., (µ̂, σ̂, φ̂) ) over time. Figures 4 and 5 demonstrate the changes of individual
parameters over time. Before week 22, we consider the changes of the estimated parameters
for combined groups (N = 52), while after week 22 we consider the changes of estimated
parameters for the two groups separately. Figure 4 shows that the estimated means of the
pregnant group is not so different from the non-pregnant group until week 28. Nevertheless,
it is clear that the mean differences are fairly large at the end of the pregnancy. On the
other hand, the estimated variances are quite different between the two groups right
after week 21. The estimated variance in the pregnant group seems to be much larger
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than the non-pregnant group’s from weeks 22 to 32, and then becomes smaller than the
non-pregnant group’s especially at the end of the pregnancy. The down difference is also
significant at the end of the pregnancy. This phenomenon indicates that Lactobacillus species
is significantly less in the pregnant group compared to the non-pregnant group at the end
of the pregnancy. These conclusions are free of the proportions of zeros in the data.

Figure 4. Change of parameter estimates µ̂, σ̂ over 38 weeks.

Figure 5. Change of φ̂ estimate over 38 weeks.

Figure 5 shows the changes of the weight parameter φ of zeros over time. The parame-
ter estimates are different between the two groups after week 22, which might be due to
the missing counts in the non-pregnant group. The estimated φ is 0 after week 22 in the
pregnant group, which might be because the pregnant group does examinations regularly,
especially when it is close to the end of the pregnancy.

In the microbiome literature, there are some other available methods for analyzing
longitudinal microbiome data. For example, MetaLonDA is an R package capable of
identifying significant time intervals of microbiome features [46]. It relies on two modeling
components, the negative binomial distribution assumption for modeling the read counts,
and the semi-parametric SSANOVA technique for modeling longitudinal profiles associated
with different phenotypes. For comparison purposes, we apply the MetaLonDA package
to the Lactobacillus species and compare the results with ours. The below MetaLonDA
interval p value results (weeks 2–38) claim that there is no significant difference between
the two groups during the first 11 weeks and during weeks 22–31, while the differences are
significant in weeks 12–21 and after week 31.

$intervals.pvalue
[1] 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
[9] 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

[17] 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
[25] 1.00000 1.00000 1.00000 1.00000 1.00000 0.69333 0.00000 0.00000
[33] 0.00000 0.00000 0.00000 0.00000 0.00000
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Our analysis result matches the MetaLonDA result in some time intervals and is
different in a small number of time intervals. The differences might be due to two reasons.
First, the data mainly consists of real numbers while the negative binomial distribution
assumed by MetaLonDA is for integers (counts). Secondly, the data contains a good
proportion of zeros, which indicates zero-inflated or hurdle models may fit the data better.

For example, according to MetaLonDA, there is no significant difference between the two
groups from week 22 to week 31, which is different from our result. From Figures 4 and 5, one can
see that the standard deviations (σ̂) and the proportions of zeroes (φ̂) are quite different between
the two groups starting week 22, although the group means (µ̂) are fairly close. MetaLonDA is not
able to detect such differences. For readers’ reference, we provide the estimated parameters of the
non-pregnant and pregnant groups starting week 21 in Table S4 of the Supplementary Materials.

4.2. RNA-Seq Gene Expression Data

The RNA-seq gene expression data is a high-dimensional dataset consisting of 801 sam-
ples and 20,531 genes (covariates). At our data preparation and screening stage, we first
delete 267 genes (columns) which contain only zeros. Secondly, we remove the columns
(12,356 genes) that have no zeros at all so that we can focus on zero-inflated covariates
(covariates without zeros are not sparse and can be dealt with classical data analysis).
For the same reason, we choose only the genes (columns) that carry a good proportion
(from 5% to 50%) of zeros. Therefore, the total number of genes used for our study is
N = 2426, which is still high-dimensional.

The 801 gene expression samples are classified into five cancer categories: BRCA, KIRC,
COAD, LUAD, and PRAD, which contain 300, 146, 78, 141, and 136 samples, respectively.
We use R package AZIAD for the rest analysis. Since the data consists of non-negative
real numbers, we consider the same set of 12 models as in Section 4.1. For each of the
2426 genes, we apply the three steps as described in Section 2.5. As Step 1, we apply
R function kstest.A to 801 gene expression levels of the gene under consideration after
ignoring the labels. Technically speaking, any model with a KS-test p value larger than
0.05 could be a candidate. In this study, we choose the model with the largest p value for
simplicity. In case of ties, we always choose the last one in the tie list.

As a summary of the model selection results for all 801 samples, among the 2426 genes,
normal hurdle (NH) model is chosen for 1, 194 genes, log-normal hurdle (LNH) model
is chosen for 885 genes, log-normal (LN) model is chosen for 98 genes, and zero-inflated
exponential (ZIE) model is chosen for another 98 genes. The rest genes are fitted with
exponential (66 genes), normal (60 genes), zero-inflated half-normal (22 genes), and half-
normal (3 genes) models. We also perform model selections for each of the five categories.
The results are slightly different. Log-normal hurdle model is in favor since it is either
comparable or better than normal hurdle model in each category. For example, for COAD
category, log-normal hurdle model passes 99% of KS-tests compared with 97% of normal
hurdle model. After finishing the three steps for each gene (see Section 2.5), we are able to
rank the 2426 genes based on their AIC differences from the largest one to the smallest one.

A critical question is how many genes should be chosen for predicting the class labels.
To choose a good threshold, we utilize the 1-nearest neighbor classifier (see, for example, [42])
with a various number of selected genes to predict the class labels. Table 2 lists the predicted
error rate (also known as the training error rate since all 801 class labels have been used by
the classifier) by 1-nearest neighbor classifier with 20, 50, 100, or 2426 ranked genes. For
comparison purpose, we also the prediction error rate (0.02) of 1-nearest neighbor classifier
based on the top 7 principle components suggested by [21]. Note that the principle components
here are based on 20,264 genes after removing the first column (sample indices) and all zero
columns. According to Table 2, 50 seems to be a good option for the number of selected
genes, whose prediction error (0.0037) is just below the top 7 PCA’s. For readers’ reference,
we provide the list of the top 50 genes in Appendix C.
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Table 2. Training error rate by 1-nearest neighbor classifier with various number of genes or PCAs.

Number of Genes Prediction Error

20 0.1500
50 0.0037

100 0.0037
2426 0.0012

7PCA 0.0200

It is known that the training error rate may underestimate the true prediction error
rate due to over-fitting [42]. To obtain a fair estimate for the prediction error, we conduct
a 5-fold cross-validation on this data. More specifically, we split the data (N = 801) into
5 roughly equal-sized blocks, with each containing about 160 samples. For each block
(used as the testing data), we combine the rest 4 blocks as the training data. The genes
are selected with AIC differences using the training data only, and the 1-nearest neighbor
classifier utilizes the class labels of training data only for predicting class labels of the
testing data. To simplify the procedure, we fix the model to be either log-normal hurdle
(with zero-inflation) or log-normal (without zero-inflation). We repeat the procedure so
that each block serves as the testing data once. The prediction error rate is calculated based
on the predictions on the 5 testing data sets.

Table 3 summarizes the result of the estimated perdition error rates based on the 5-fold
cross-validation with 1-nearest neighbor classifier as described above. As the number of
top selected genes increases, roughly speaking, the prediction error rate first decreases
and then increases. The best prediction error rate 0 is attained at 50 genes. In other words,
the best number of genes for this data is 50, which is chosen by the 5-fold cross-validation.
For comparison purpose, the prediction error rate using the top 7 principal components is
listed in Table 3 as well. Estimated by the 5-fold cross-validation, the prediction error rate
of 7PCA is 0.0037, which is worse than the top 50 selected genes’ and also higher than its
training error rate 0.02 listed in Table 2.

Table 3. Estimated prediction error rate by 5-fold cross-validation with 1-nearest neighbor classifier.

Number of Genes Prediction Error

10 0.0480
20 0.0012
30 0.0012
40 0.0024
50 0
60 0.0012

100 0.0012
7PCA 0.0037

For comparison purpose, we further apply principal components analysis (PCA) to
the top 50 selected genes. Figure 6 shows the cumulative variance explained by various
numbers of principal components of the 50 genes. We recommend the top 4 principal
components, which explain 83% of the variability of the data. For readers’ reference, we
need the top 10 principal components to explain 90% of the variability.

Many clustering methods have been used for gene expression data, including Ewens-
Pitman Attraction (EPA), MCLUST, hierarchical clustering in conjunction with the gap
statistic, k-means clustering in conjunction with the gap statistic, and Table Invitation Prior
(TIP) [47]. Compared with other clustering methods, the TIP clustering algorithm does not
require the analyst to specify the number of clusters and can still provide a good result [21].
For illustration purpose, we apply the TIP clustering method to this data with the top 4
principal components based on our top 50 selected genes. Its one-cluster plot is shown in
Figure 7, where the original 5 classes seem to be well separable.
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Figure 6. Cumulative proportions of variance explained by various numbers of principal components
based on the 50 selected genes.

Figure 7. Cluster plot using TIP.

5. Conclusions and Discussion

In this work, we use two different real-world examples to illustrate how the sparse
data model selection could be used for choosing the most significant covariates. The first
example is the vaginal microbiome which is dominated by one or two species of Lactobacillus.
The vaginal microbiome dataset is longitudinal and we aim to compare the Lactobacillus
abundance between pregnant and non-pregnant groups over 38 time intervals (weeks).
Based on our proposed variable selection method, the two groups are statistically different
after week 22. In addition, we compare the estimated parameters of the two groups at
each time point and show the differences in terms of model parameters. Our selected time
intervals overlap with the MetaLonDA method to some extent. This work can be extended
to other vaginal microbiome species as well. The second example is the gene expression
data, which is high dimensional, and the subjects are categorized into 5 different cancer
groups. The goal is to select the most important genes among a list of 2426 genes. Based on
our variable selection procedure and PCA, we select the top 50 genes with 100% prediction
accuracy. In addition, we pick up the first 4 principal components, which explain about
83% of the variability. Finally, we utilize the TIP clustering algorithm to the gene expression
data with the top 4 principal components based on our top 50 selected genes, the 5 cancer
classes are well separable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020403/s1, Table S1: KS-test p values for combined data
(N = 52) under 12 distributions at 38 different weeks; Table S2: KS-test p values for non-pregnant
group (N = 30) under 12 distributions at 38 different weeks; Table S3: KS-test p values for pregnant
group (N = 22) under 12 distributions at 38 different weeks; Table S4: Estimated parameters of
non-pregnant and pregnant groups starting week 21.

https://www.mdpi.com/article/10.3390/genes14020403/s1
https://www.mdpi.com/article/10.3390/genes14020403/s1
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Appendix A. Influence of Outlier in Vaginal Microbiome Analysis

Figure A1 shows the unstable AIC differences between the two groups over time when
the outlier presents (see Section 4.1). We remove the outlier from the non-pregnant samples
for our analysis.

Figure A1. AIC difference over 38 weeks of pregnancy with the outlier.

Appendix B. More KS-Test Results for Vaginal Microbiome Analysis

Table A1. KS-test p values for non-pregnant group (N = 30) under 12 distributions at different weeks.

Time (Week) N ZIN NH HN ZIHN HNH LN ZILN LNH E ZIE EH

week 10 1.000 0.395 1.000 0.460 0.580 0.020 0.000 0.000 0.870 0.330 0.725 0.040
week 22 1.000 0.480 1.000 0.520 0.420 0.010 0.000 0.000 0.785 0.450 0.590 0.025
week 36 1.000 0.160 1.000 0.480 0.790 0.020 0.000 0.000 0.955 0.145 0.375 0.015

Note: N: Normal; ZIN: Zero-inflated Normal; NH: Normal Hurdle; HN: Half-normal; ZIHN: Zero-inflated
Half-normal; HNH: Half-normal Hurdle; LN: Log-normal; ZILN: Zero-inflated Log-normal; LNH: Log-normal
Hurdle; E: Exponential; ZIE: Zero-inflated Exponential; EH: Exponential Hurdle.

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq#
https://cran.r-project.org/web/packages/tip/index.html
https://cran.r-project.org/web/packages/tip/index.html
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Table A2. KS-test p values for pregnant group (N = 22) under 12 distributions at different weeks.

Time (Week) N ZIN NH HN ZIHN HNH LN ZILN LNH E ZIE EH

week 10 1.000 0.355 1.000 0.505 0.385 0.170 0.000 0.000 0.390 0.500 0.130 0.130
week 22 1.000 0.250 1.000 0.295 0.490 0.415 0.020 0.000 0.000 0.135 0.005 0.170
week 36 1.000 0.380 1.000 0.635 0.975 0.560 0.005 0.000 0.000 0.425 0.550 0.410

Note: N: Normal; ZIN: Zero-inflated Normal; NH: Normal Hurdle; HN: Half-normal; ZIHN: Zero-inflated
Half-normal; HNH: Half-normal Hurdle; LN: Log-normal; ZILN: Zero-inflated Log-normal; LNH: Log-normal
Hurdle; E: Exponential; ZIE: Zero-inflated Exponential; EH: Exponential Hurdle.

For readers’ reference, extended versions of Tables A1 and A2 can be found in the
Supplementary Materials.

Appendix C. List of 50 Selected Genes for Gene Expression Data

Below is the list of the 50 selected genes based on all 801 samples (see Section 4.2).

"gene_14646" "gene_12695" "gene_17688" "gene_15945" "gene_5394"
"gene_12209" "gene_1054" "gene_3598" "gene_7235" "gene_11440"
"gene_4979" "gene_2288" "gene_6162" "gene_16817" "gene_15898"
"gene_4467" "gene_3946" "gene_16392" "gene_11566" "gene_1510"
"gene_9181" "gene_16246" "gene_16337" "gene_16169" "gene_10489"
"gene_9680" "gene_998" "gene_9176" "gene_4833" "gene_19661"
"gene_15447" "gene_12013" "gene_7964" "gene_13210" "gene_3461"
"gene_3737" "gene_15896" "gene_13497" "gene_17801" "gene_15633"
"gene_706" "gene_10460" "gene_3862" "gene_10950" "gene_10284"
"gene_9626" "gene_14866" "gene_3439" "gene_4618" "gene_3458"
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