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ABSTRACT

The dissertation consists of two parts.

In Part I: Infinite Exchangeability and Partitions, we develop a partition model

with applications to multiple comparisons and cluster analysis. Unlike an ordinary

Bayesian setup, we construct an infinitely exchangeable variety process and assign

positive probability to each partition of the varieties. Using this process as a prior

in a Gaussian model, we obtain inferences in the form of a posterior distribution on

partitions. For typical multiple comparison applications, we suggest the Ewens family

as a class of prior distributions on partitions with parameter in the range roughly

1-4. We also give inference for variety contrasts from the partition model, which

allows positive probabilities for the events that two or more varieties are equal. For

application to cluster analysis, we develop MCMC algorithms to estimate summary

statistics, especially the similarity matrix.

In Part II: Permanent Process and Classification Models, we develop a classifica-

tion model based on the permanent process. In the model, there are only 2-3 estimable

parameters, regardless of the number of classes or the dimension of the feature space.

The model works well even if the classes occupy non-convex regions or disconnected

regions in the feature space. Under the model, we express the conditional distribution

of the class of a subsequent unit given the training data in terms of ratios of weighted

vii
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permanents. We propose an analytic approximation for the weighted permanent ra-

tios based on the cycle expansion of the weighted permanent. Our experience is that

the approximation usually has acceptable error for typical classification problems.
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CHAPTER 0

PRELIMINARIES

In this chapter, we shortly review several concepts including set partition, integer

partition, etc. We will revisit them in the later chapters.

0.1 Set Partition

0.1.1 Partition of Set

A partition of a non-empty set S is a collection of disjoint non-empty subsets, called

blocks, whose union is S ([4], [63]). In most cases, we are interested in the partitions

of a finite set such as

[n] = {1, 2, . . . , n} .

For example, there are totally 5 different partitions of [3] = {1, 2, 3}:

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, and {{1, 2, 3}}. (1)

Note that the order of the subsets or blocks in a partition does not matter.

2
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A more convenient notation for a set partition is to use vertical bars to indicate

the partitioning ([37]). Then the 5 partitions above can be rewritten as

1|2|3, 12|3, 13|2, 1|23, 123. (2)

Any partition of [n] naturally implies an equivalence relation among [n] by

i ∼ j if and only if i, j belong to the same block.

We denote sometimes a set partition by its equivalence relation matrix (see Sec-

tion 3.2.2) . For example, the matrix form of the partition 13|2|45 is




1 0 1 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 1 1




. (3)

As usual, the entry in the ith row and the jth column is 1 if and only if i ∼ j. The

matrix is always positive semi-definite. Its rank is equal to the number of blocks in

the corresponding partition.

0.1.2 Partition Lattice

Denote by En the set of all partitions of [n]. There is a natural partial order among

En, called sub-partition ([37]). Indeed, given two set partitions E1 and E2 of [n], we

say E1 is a sub-partition of E2, denoted by E1 ≤ E2, if each block of E1 is a subset
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of some block of E2. In matrix form,

E1 ≤ E2 ⇐⇒ E1
ij = 1 always implies E2

ij = 1. (4)

If both E1 ≤ E2 and E2 ≤ E1 are true, E1 and E2 must be the same partition.

The partial order “sub-partition” makes En a complete lattice, which means each

nonempty subset of En has both a least upper bound and a greatest lower bound in En

(see [13] for a good introduction on general lattices). For example, the least upper

bound of E1 = 1|23|4 and E2 = 1|24|3, denoted by E1 ∨
E2, is 1|234; the greatest

lower bound of E1 and E2, denoted by E1 ∧
E2, is 1|2|3|4.

Note that there exist partial order sets which are not lattices because the “least”

upper bound or the “greatest” lower bound of two arbitrary elements may not exist

(see [37] for such an example).

0.1.3 Bell Number

A fundamental question on set partitions is how many of them there are. In the

literature, the number of partitions of [n] is called a Bell number, denoted by Bn

([57]).

There is no explicit formula for Bn. Nevertheless, Bell numbers can be calculated

conveniently via the number of partitions of [n] including exactly k blocks, denoted
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by S(n, k) and known as the Stirling number of the second kind ([1], [57]). Indeed,

Bn =
n∑

k=1
S(n, k).

The Stirling numbers of the second kind can be obtained by the recursive relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), (5)

with initial values S(n, 1) ≡ S(n, n) ≡ 1. Indeed, there are only two ways to generate

a k-block partition En of [n] by adding the item n into a partition En−1 of [n−1]. One

way is to attach n as a single-item-block to En−1 which includes exactly k−1 blocks;

the other is to insert n into one of the existing blocks of En−1 containing exactly k

blocks. Thus S(n, k) is the sum of S(n − 1, k − 1) and k times of S(n − 1, k). In

practice, it is fairly convenient to establish by hand the triangle of S(n, k) as follows:

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1
... · · · · · · · · · · · · · · · . . .

Here the entry in the nth row and kth column is S(n, k). The sum of the nth row

provides the value of Bn. To see how fast Bn increases with n, we list the first 20

Bell numbers in Table 1 ([37]).
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Table 1: First 20 Values of Bell Numbers
n Bn n Bn

1 1 11 678,570
2 2 12 4,213,597
3 5 13 27,644,437
4 15 14 190,899,322
5 52 15 1,382,958,545
6 203 16 10,480,142,147
7 877 17 82,864,869,804
8 4,140 18 682,076,806,159
9 21,147 19 5,832,742,205,057

10 115,975 20 51,724,158,235,372

Lovász ([33]) showed the following asymptotic property of the Bell numbers

Bn ∼ n−
1
2 [λ(n)]n+1

2 eλ(n)−n−1,

where λ(n) is defined by

λ(n) ln[λ(n)] = n.

Thus, Bn increases slower than n! and faster than en ([27]).

The Bell polynomial Bn(λ) ([58]) is the coefficient of tn/n! in the Taylor expansion

of exp{λ(et−1)}, which is the moment generating function of the Poisson distribution

with mean λ. In other words, Bn(λ) = E(Xn) if X is a Poisson random variable with

mean λ. Note that all the cumulants of X are equal to λ. The relation between

moments and cumulants implies

Bn(λ) =
∑

E∈En
λ#E ,
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where #E is the number of blocks of partition E. Particularly, the Bell number

Bn = Bn(1) =
1

e

∞∑

k=0

kn

k!
,

which is known as Dobinski’s Formula ([59]).

0.1.4 Partition Path

In many cases, we use a partition of [n] to describe the homogeneous relationship

among a finite number of objects (see Section 3.2.2) . If additional objects need to

be considered, we also need to use partitions of [n + 1], [n + 2], and so on. In other

words, we need to consider a sequence of partitions.

To make the sequence of partitions consistent, we insist that the partition of [n]

in the sequence can be embedded into the partition of [n + 1] and so on. That is, the

homogeneous relationship among the first n objects remains the same after adding

the (n + 1)th object and so on.

In general, we call a sequence of partitions {En}n=1,2,... a partition path, or a

partition-valued path, if

(i) En is a partition of [n] = {1, 2, . . . , n}, and

(ii) En is the restriction of En+1 to [n],

for each n. The “restriction of En+1 to [n]” indicates deleting the item n + 1 from

En+1 in the original form (1) or (2) of partitions. For example, the restriction of
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partition 13|2 to [2] is 1|2. If we denote by π[n] the restriction operation from En+1

to En, then π[2](13|2) = 1|2. In the matrix form (3), the restriction indicates deleting

both the (n + 1)th row and the (n + 1)th column. An example of a partition path is

E1 = 1,

E2 = 1|2,
E3 = 13|2,
E4 = 13|2|4,
E5 = 13|2|45, . . .

Indeed, a partition path E = {En}n=1,2,... can also be regarded as a partition of

the set of natural numbers N = {1, 2, 3, . . . , n, . . .}. The restriction of E to [n] is

En. From this point of view, a partition path E is not only a sequence of partitions

{En}n, but also a set of partitions {ES}S , where S runs all finite subset of N and

ES is the restriction of E to S.

0.2 Integer Partition

0.2.1 Partition of a Natural Number

A partition of a natural number n is a way of writing n as a sum of positive integers

and without regard to their order. By convention, a partition of n is normally written

from the largest to the smallest addend ([4], [60]).
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For example, for n = 4, there are totally 5 different integer partitions:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, (6)

which can also be written in frequency representation ([4], [60]) as

10203041, 11203140, 10223040, 12213040, 14203040.

Here the indices of 1, 2, 3, or 4 indicate the corresponding frequencies in integer

partitions.

In general, a partition of n can be written as

1α12α2 · · ·nαn ,

with αj indicating exactly αj occurrences of j’s in the integer partition. So

n∑

j=1
j αj = n.

0.2.2 Partition Function

A natural question is how many integer partitions there are for each n. In the math-

ematical literature, the number of partitions of n is called partition function, denoted

by P (n) or p(n) ([61]).
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Just like computing Bell numbers, there is no simple formula to calculate P (n)

either. Instead, we first calculate P (n, k), which is the number of partitions of n

containing exactly k terms. Then

P (n) =
n∑

k=1
P (n, k).

To compute P (n, k), we may use the recursive relation ([50], [61])

P (n, k) = P (n− 1, k − 1) + P (n− k, k), (7)

with P (n, k) = 0 for k > n, P (n, n) = 1, and P (n, 0) = 0. Following a similar

argument as in (5), the equation (7) can be derived by classifying the k-term partitions

into two groups according to their smallest addends in the original form (6). Those

k-term partitions containing addend 1 form group one. The other k-term partitions

form group two. There is a one-to-one correspondence between group one and the

(k− 1)-term partitions of n− 1 if one addend 1 is deleted from the k-term partition.

Similarly, a one-to-one correspondence between the partitions in group two and the

k-term partitions of n− k is established if each addend in the former is reduced by 1.

So P (n, k) is the sum of P (n−1, k−1) and P (n−k, k). Based on (7), it is convenient

and practically useful to set up the triangle of P (n, k) by hand ([61])
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1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
... · · · · · · · · · · · · · · · . . .

Here the entry in the nth row and the kth column is P (n, k). The sum of the entries

in the nth row is P (n). To see how fast P (n) increases with n, we list the first 20

values of P (n) in Table 2 ([37]). More precisely ([26], [61]),

P (n) ∼ 1

4n
√

3
eπ
√

2n/3, as n →∞.

Table 2: First 20 Values of Partition Function P (n)
n 1 2 3 4 5 6 7 8 9 10

P (n) 1 2 3 5 7 11 15 22 30 42

n 11 12 13 14 15 16 17 18 19 20
P (n) 56 77 101 135 176 231 297 385 490 627

0.2.3 From Set Partition to Integer Partition

Given a set partition of [n], there is a corresponding integer partition of n if we ignore

the difference among the n subjects and count the block sizes only. For example,

given the set partition 1|23, the corresponding integer partition is 2+1 in its original

form where {2, 1} are the blocks sizes of 1|23. Denote by πI the mapping from set

partitions to the corresponding integer partitions via block sizes of the former. Then

πI(1|23) = 2 + 1 or 112130.
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As in Section 0.1.2, denote by En the set of partitions of [n]. Furthermore, denote

by $n the set of partitions of n ([31]). Evidently, the mapping πI from En to $n is

onto. That is, for each en ∈ $n, there exists an En ∈ En such that πI(En) = en.

Indeed, given the frequency representation en = 1α12α2 · · ·nαn , the number of En’s

satisfying πI(En) = en is ([44])

N(α1, α2, . . . , αn) =
n!∏n

j=1(j!)
αj αj !

.



CHAPTER 1

PARTITION DISTRIBUTION

In this chapter, we first review two classes of probability distributions on set parti-

tions, the exchangeable type and the product type. To construct a partition-valued

process, we need a non-inference assumption or Kolmogorov consistency. Then we

reveal that self-similarity is the characteristic property of a partition-valued process

of the product type. Finally, our discussion leads to the Ewens family, the partition-

valued processes that are both exchangeable and self-similar.

1.1 Exchangeable Partition Distribution

As in Section 0.1.2, we denote by En the set of all partitions of [n]. If a probability

distribution on En serves as a prior for uncertain homogeneous relationships among

n subjects, the principle of egalitarianism or symmetry requires that the partition

distribution should remain invariant under permutations of [n]. Such a distribution

on partitions is called finitely exchangeable, or exchangeable in short.

For example, given an exchangeable partition distribution P on E3, then P (1|23) =

P (2|13) = P (3|12), because σ12(1|23) = 2|13, σ23(2|13) = 3|12, where σ12 =
(
1 2 3
2 1 3

)
,

σ23 =
(
1 2 3
1 3 2

)
are permutations of [3]. Notice that the set partitions 1|23, 2|13 and

13



14

3|12 have the same set of block sizes {1, 2}. Following the notation in Section 0.2.3,

πI(1|23) = πI(2|13) = πI(3|12), where πI is the mapping from set partitions to

integer partitions.

In general, given any two partitions E1 and E2 of [n], there exists a permutation σ

of [n] such that σ(E1) = E2 if and only if E1 and E2 have the same set of block sizes.

Therefore the set of block sizes or πI(·) is the maximal invariant under permutations

given only P is exchangeable.

Proposition 1.1 A partition distribution P on En is exchangeable if and only if there

exists a function g defined on the set of integer partitions $n such that

P (E) ∝ g ◦ πI(E). (1.1)

Denote by B1, B2, . . . , Bk the blocks of partition E of [n]. Let |B1|, |B2|, . . . , |Bk| be

the corresponding block sizes. Then the function g in (1.1) is indeed a function of

the set of block sizes {|B1|, |B2|, . . . , |Bk|} ([46]).

Example 1.1 : Gibbs partition distribution A probability distribution P on En is

called a Gibbs partition distribution ([46]) if there exist two sequences of non-negative

real numbers {vi}i=1,...,n and {wi}i=1,...,n such that

P (E = B1|B2| . . . |Bk) ∝ vk

k∏

i=1
w|Bi| . (1.2)

The Gibbs partition distribution is exchangeable based on Proposition 1.1 .
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1.2 Product Partition Distribution

To combine data from different sources, Hartigan ([27]) developed a method for con-

structing probability models by means of random partitions, known as product parti-

tion model. The model comes with partition distribution P of the product type:

P (E = B1|B2| . . . |Bk) ∝
k∏

i=1
c(Bi), (1.3)

where B1, B2, . . . , Bk are blocks of the partition E, c(·) is a cohesion which attaches a

non-negative real number c(B) to each subset B of [n]. Such a partition distribution

is called a product partition distribution. Note that different cohesions in (1.3) may

lead to the same partition distribution. Indeed, for any sequence of positive real

numbers {ai}i=1,...,n , the cohesions c(·) and c(·) ∏
i∈· ai determine the same P by

(1.3). Thus we may always assume c({i}) = 1 for i = 1, . . . , n.

A product partition distribution is not necessary exchangeable. For example, if

c(B) =





2, if B = {2, 3};

1, otherwise,

then the corresponding P on E3 satisfies P (1|23) = 1/3 while P (2|13) = 1/6.

It is interesting to see what product partition distributions are exchangeable.

Indeed, if P with cohesion c is exchangeable, then c(B1) = c(B2) whenever |B1| =

|B2|. In other words, the cohesion c is determined by a sequence of non-negative real
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numbers {wi}i=1,2,.... Thus,

Proposition 1.2 Given an exchangeable partition distribution P on En, P is of prod-

uct type if and only if there exists a sequence of non-negative real numbers {wi}i=1,2,...

such that

P (E = B1|B2| . . . |Bk) ∝
k∏

i=1
w|Bi|. (1.4)

Note that a partition distribution satisfying (1.4) is a special case of the Gibbs par-

tition distribution. Letting wi ≡ λ for some λ > 0, (1.4) leads to a distribution on

partitions as follows

Example 1.2 : Exponential family on partitions A set of probability distribu-

tions {pn(·; λ), λ > 0} on En is called the exponential family on partitions generated

from the uniform distribution with canonical parameter θ = log λ and canonical sta-

tistic equal to the number of blocks if

pn(E; λ) = λ#E/Bn(λ), (1.5)

where E is a partition of [n], #E is the number of blocks of E, Bn(λ) is a Bell

polynomial (see Section 0.1.3) .

Each partition distribution in the exponential family is of the product type and ex-

changeable. Note that it is uniform on partitions if λ = 1. The exponential family

on En can be generated from the uniform distribution by exponential weighting with

canonical statistic #E.
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1.3 Kolmogorov Consistency

1.3.1 Partition Process

Consider a sequence of random partitions {En}n=1,2,..., where En is a random par-

tition of [n] with distribution Pn on En. Typically, we need the sequence of partition

distributions {Pn}n=1,2,... to be consistent. That is, we require that the restriction

of Pn+1 to [n] be identical to Pn for each n. Following the notation in Section 0.1.4,

Pn(·) =
∑

x∈π−1
[n]

(·)
Pn+1(x), for each n. (1.6)

For example, the restriction of P3 to [2] is identical to P2 if and only if

P2(12) = P3(123) + P3(12|3),

P2(1|2) = P3(13|2) + P3(1|23) + P3(1|2|3).

If there exists a random partition path E = {E′n} (see Section 0.1.4) such that E′n

has the distribution Pn for each n, then (1.6) must be true. On the other hand, given

a sequence of partition distributions {Pn} satisfying (1.6), such a random partition

path E = {E′n} can always be constructed. Indeed, if we denote the set of partitions

of N by E∞, then each partition of [n] can be regarded as a subset of E∞ specifying

only the relationship among [n]. Therefore any subset of En can be embedded into

E∞. The union A = ∪∞k=12
Ek containing every subset of En for each n is a field which



18

is closed under complement and finite union. The existence of a probability measure

P on (E∞,A) is ensured by the consistency condition (1.6). By the extension theorem

([9], Theorem 3.1) in measure theory, P can be extended uniquely to the σ-field F

generated by A. Thus,

Proposition 1.3 Let {Pn}n=1,2,... be a sequence of partition distributions, where Pn

is a distribution on En for each n. Then {Pn} satisfies the consistency condition (1.6)

if and only if there exists a random partition path E = {E′n} such that the random

partition E′n has distribution Pn for each n.

In other words, the consistency condition (1.6) guarantees that a sequence of random

partitions {En} has an equivalent-in-probability modification {E′n} which also serves

as a partition-valued process, or a partition process in short. It is similar in spirit

to the Kolmogorov consistency for the set of finite-dimensional distributions for real-

valued processes. So the condition (1.6) is called Kolmogorov consistency too.

Note that Proposition 1.3 is only a special case of a more general result as follows.

As long as there is a sequence of onto mappings πn : En+1 → En such that Pn =

Pn+1π
−1
n , we can construct a partition-valued Markov chain {E′n} such that the

random partition E′n of [n] has the the distribution Pn.

For statistical problems involving random partitions, Kolmogrov consistency is

often an essential assumption. It indicates that the same probabilistic statements

hold for an extended trial including additional subjects, known as non-interference.
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Example 1.2 : Exponential family on partitions(Continued) The Bell polyno-

mials B2(λ) = λ2 + λ, B3(λ) = λ3 + 3λ2 + λ. Then

p2(12; λ) =
λ

B2(λ)
=

1

λ + 1
,

p3(123; λ) =
λ

B3(λ)
=

1

λ2 + 3λ + 1
,

p3(12|3; λ) =
λ2

B3(λ)
=

λ

λ2 + 3λ + 1
.

Note that for each λ > 0, the exponential family {pn(·; λ)}n is not Kolmogorov con-

sistent. Particularly, the set of uniform distributions {pn(·; λ = 1)}n on partitions

doesn’t determine a process. In fact, if {pn(·; λ)}n satisfies the Kolmogorov consis-

tency, then

p2(12; λ) = p3(123; λ) + p3(12|3; λ) ,

which implies λ = 0. It can’t be true because pn(E; λ) = λ#E/Bn(λ) is a probability

distribution.

Following the discussion in Section 0.1.4, any partition path {E′n(ω)}n also in-

dicates a set of partitions {E′S(ω)}S . Therefore, a partition process {E′n}n indexed

by n induces a partition process {E′S}S indexed by nonempty finite subsets S of N ,

since {E′S}S satisfies the Kolmogorov consistency too. That is, E′S has the same

distribution as the restriction of E′
S′ to S given any pair of finite subsets S ⊂ S′.

If {Pn} or {PS}S satisfies both Kolmogorov consistency and exchangeability, it is

called infinitely exchangeable ([46]).
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1.3.2 Permutation Process

A permutation of [n] is a one-to-one correspondence from [n] to itself. It can be rep-

resented uniquely as a product of permutation cycles up to the order of cycles ([62]).

For example, the permutation σ6 =
(
1 2 3 4 5 6
1 5 4 3 6 2

)
can be rewritten as (1)(256)(34).

Let Sn be the set of permutations of [n]. Define a mapping φ∗n from Sn+1 to Sn

such that, for each permutation σ ∈ Sn+1 and i = 1, . . . , n,

(φ∗nσ)(i) =





σ2(i), if σ(i) = n + 1;

σ(i), otherwise.

For example, φ∗5((1)(256)(34)) = (1)(25)(34). So φ∗n(σ) is the permutation of [n]

derived by removing n + 1 from σ in its cyclic form. Furthermore, (φ∗n−1 ◦ φ∗n)(σ) =

φ∗n−1(φ
∗
n(σ)) is the permutation of [n− 1] derived by removing n, n + 1 from σ.

Similar to the definition of partition path (see Section 0.1.4), a sequence of per-

mutations {σn}n is called a permutation path if φ∗n(σn+1) = σn for each n ≥ 1, where

σn is a permutation of [n]. Let {Pn}n be a set of probability distributions on permu-

tations, where Pn is defined on Sn. Then {Pn}n is called Kolmogorov consistent if

for each n,

Pn(·) =
∑

σ∈(φ∗n)−1(·)
Pn+1(σ) . (1.7)
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For example, the consistency of {Pn}n implies

P3((13)(2)) = P4((143)(2)) + P4((134)(2)) + P4((13)(24)) + P4((13)(2)(4)).

Following a similar argument as in Proposition 1.3, we conclude that

Proposition 1.4 Let {Pn}n=1,2,... be a sequence of permutation distributions, where

Pn is defined on Sn for each n. Then {Pn}n satisfies the Kolmogorov consistency (1.7)

if and only if there exists a random permutation path {Σn}n such that the random

permutation Σn has the distribution Pn.

Let {Σn}n be a sequence of random permutations with distribution functions

{Pn}n . Based on Proposition 1.4, if {Pn}n satisfies the Kolmogorov consistency,

then there exists a sequence of random permutations {Σ′n}n defined on a common

probability space (Ω,F , P ) such that {Σ′n(ω)}n is a permutation path for each ω ∈ Ω

and Σ′n has the distribution function Pn for each n.

In general, the Kolmogorov consistency may be defined for the set of permutation

distributions {PB}B , where B runs through all possible finite subsets of an index set

I. For example, I = N . For any two finite subsets B and B′ such that B ⊆ B′, the

insertion φ : B → B′ induces a mapping φ∗ from SB′ to SB similar to the mapping

φ∗n from Sn+1 to Sn. So the Kolmogorov consistency requires

PB(·) =
∑

σ∈(φ∗)−1(·)
PB′(σ).
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Fortunately, the subsequence {P[n]}n is enough to determine {PB}B uniquely as long

as the Kolmogorov consistency is satisfied. Therefore, we only need to consider the

sequence {Pn}n = {P[n]}n in the case I = N .

Example 1.3 : Exponential families on permutations ([38]) The set of proba-

bility distributions

pn(σ; λ) = λ#σΓ(λ)/Γ(n + λ), λ > 0 (1.8)

on Sn is called the exponential family on permutations generated from the uniform

distribution with canonical parameter θ = log λ and canonical statistic equal to the

number of cycles, where σ is a permutation of [n], and #σ is the number of cycles of

σ .

For each λ > 0, the set of permutation distributions {pn(·; λ)}n is Kolmogorov con-

sistent. In fact, for each permutation σ of [n],

∑

σn+1∈(φ∗n)−1(σ)

pn(σn+1; λ) = n · λ#σ Γ(λ)

Γ(n + 1 + λ)
+ λ#σ+1 Γ(λ)

Γ(n + 1 + λ)

= λ#σ · (n + λ) · Γ(λ)

(n + λ)Γ(n + λ)

= λ#σ Γ(λ)

Γ(n + λ)

= pn(σ; λ) .

If n = 1, (1.8) is a probability distribution on S1. For n > 1, the Kolmogorov

consistency (1.7) ensures that (1.8) is a probability distribution on Sn too.
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Note that the cycles of a permutation of [n] determine a partition of [n]. Let πn be

the mapping from Sn to En changing cycles into blocks. For example, π6((1)(256)(34))

= 1|256|34. The mappings are onto. Then a random permutation induces a random

partition, and a permutation process induces a partition process. For example, the

partition process induced by (1.8) is called the Ewens process (see Section 1.5).

Similar to the exchangeability for partitions, we introduce the exchangeability for

permutations. A permutation distribution Pn on Sn is called exchangeable if, for each

permutation σ of [n],

Pn(σ1) = Pn(σσ1σ
−1), for each σ1 ∈ Sn.

In the cyclic form of permutations, the conjugate mapping gσ : · → σ · σ−1 keeps

the cycle structure invariant and permutes the orders of items only. For example, if

σ = (1234)(5)(6), σ1 = (1235)(46), then

gσ(σ1) = σσ1σ
−1 = (σ(1)σ(2)σ(3)σ(5))(σ(4)σ(6)) = (2345)(16).

Note that the permutations also have matrix representations. Indeed, a permu-

tation σ ∈ Sn can be represented as a permutation matrix Σ = (Σij)n×n, such that

Σij = 1 if j = σ(i) and 0 otherwise. A permutation matrix is always orthogonal ([6]).

Given two permutations σ, σ1 ∈ Sn with corresponding permutation matrices Σ, Σ1,

the composition σσ1 is equivalent to the matrix multiplication Σ1Σ in reverse order.
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So gσ(σ1) indicates permuting the rows and columns of Σ1 simultaneously according

to σ. In the matrix form, a random permutation is exchangeable if and only if the

corresponding random permutation matrix remains invariant under simultaneous row

and column permutations. It is similar to the case of exchangeable random partitions

in matrix forms. However, to construct a permutation process in matrix form, the

mapping φ∗n from Sn+1 to Sn is not simply deleting the (n+1)th row and column of the

permutation matrices. Instead, (φ∗nΣ)ij = max{Σij , Σi,n+1Σn+1,j}, i, j = 1, . . . , n.

An exchangeable random permutation induces an exchangeable random parti-

tion, and an exchangeable permutation process induces an exchangeable partition

process. For example, the exponential families on permutations are exchangeable.

So the induced partition distribution Ewens sampling distribution (see Section 1.5) is

exchangeable too.

On the other hand, given an exchangeable partition process, it is simple to generate

an exchangeable permutation process by assigning the probability of each partition

E uniformly on the set of permutations π−1
n (E). For example, if the probability of

a partition E = B1|B2| · · · |Bk of [n] is p, then any permutation σ of n satisfying

πn(σ) = E is assigned the probability p/
∏k

i=1(|Bi| − 1)! .

1.4 Self-Similarity

For each finite subset S of N , denote by ES the set of partitions of S. Let {PS}S be

a set of partition distributions, where S runs all nonempty finite subsets of N and PS
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is a distribution on ES . Then {PS}S is called self-similar if, for all non-overlapping,

nonempty, finite subsets S, S′ of N ,

PS∪S′(E|E′) = π(S|S′)PS(E)PS′(E
′), (1.9)

where E and E′ are partitions of S and S′ respectively, E|E′ is the partition of

S ∪S′ collecting simply all the blocks of E and E′, π(·) is the cumulative probability

function in the sense of partition lattice (see Section 0.1.2) . Specifically,

π(S|S′) =
∑

E′′≤S|S′
PS∪S′(E

′′) =
∑

E≤S, E′≤S′
PS∪S′(E|E′). (1.10)

If {PS}S is self-similar, then for any non-overlapping S1, S2, S3,

PS1∪S2∪S3
(E1|E2|E3) ∝ PS1

(E1)PS2∪S3
(E2|E3) ∝ PS1

(E1)PS2
(E2)PS3

(E3),

where E1, E2, E3 are partitions of S1, S2, S3 respectively. So

PS1∪S2∪S3
(E1|E2|E3) = π(S1|S2|S3)PS1

(E1)PS2
(E2)PS3

(E3),

which implies π(S1|S2|S3) = π(S1|S2 ∪ S3)π(S2|S3). By induction,

Proposition 1.5 If the set of partition distributions {PS}S is self-similar, then for
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any positive integer k and any non-overlapping nonempty finite subsets S1, S2, . . . , Sk,

PS1∪···∪Sk
(E1| · · · |Ek) = π(S1| · · · |Sk)PS1

(E1) · · ·PSk
(Ek), (1.11)

where E1, . . . , Ek are partitions of S1, . . . , Sk respectively.

Self-similarity on partitions is a property similar in spirit as the lack-of-memory

property of the exponential distribution on the real line. For any fixed subset S′

and any fixed partition E′ of S′, self-similarity ensures that the conditional partition

process below S|E′ behaves as the original process. In other words, once a subset S

is identified as isolated from its coset, this property guarantees that no adjustment is

needed after the coset is removed. In the literature, it is also known as subset deletion

([31], [3]).

Proposition 1.6 Let {PS}S be a set of partition distributions, where S runs all

nonempty finite subsets of N . Then {PS}S is self-similar if and only if there exists

a cohesion c associating a nonnegative real number to each nonempty finite subset of

N , such that PS is of product type determined by the common c for each S.

Proof (1) If there exists such a c independent of S, then PS∪S′ , PS and PS′ are

all of product type, where S and S′ are two non-overlapping subsets of N . For any

partitions E = B1|B2| · · · |Bs of S, E′ = B′1|B′2| · · · |B′t of S′,

PS∪S′(E|E′) ∝ c(B1)c(B2) · · · c(Bs) · c(B′1)c(B′2) · · · c(B′t),
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PS(E) ∝ c(B1)c(B2) · · · c(Bs),

PS′(E
′) ∝ c(B′1)c(B′2) · · · c(B′t),

Therefore, there exists a constant K(S, S′) determined only by S and S′ such that

PS∪S′(E|E′) = K(S, S′) · PS(E)PS′(E
′). (1.12)

Based on (1.10) and (1.12),

π(S|S′) =
∑

E,E′
PS∪S′(E|E′) = K(S, S′)

∑

E

PS(E)
∑

E′
PS′(E

′) = K(S, S′).

So (1.9) is true and {PS}S is self-similar.

(2) If {PS}S is self-similar, a cohesion c can be constructed as follows:

(i) c({i}) = 1, for each i ∈ N ;

(ii) c(B) = PB(B)/PB(‖B‖), for each finite subset B = {i1, . . . , ik} of N , where

‖B‖ denotes the smallest partition {i1}|{i2}| · · · |{ik} of B, and B itself can be

regarded as the single-block partition of B.

Let {P ∗S}S be the set of partition distributions determined by c. The only thing left

is to verify P ∗S = PS for each S. Indeed, for any partition E = B1| · · · |Bk of S, ‖S‖

is a sub-partition of E. By self-similarity and (1.11),

PS(‖S‖) = π(B1| · · · |Bk)PB1
(‖B1‖) · · ·PBk

(‖Bk‖),
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P ∗S(E) ∝
k∏

i=1
c(Bi)

=
k∏

i=1
P−1

Bi
(‖Bi‖)PBi

(Bi)

= P−1
S (‖S‖) · π(B1| · · · |Bk)

k∏

i=1
PBi

(Bi)

∝ PS(E)

Note that both P ∗S and PS are distributions on ES . Therefore P ∗S = PS . #

Note that a self-similar set of partition distributions {PS}S need not be Kol-

mogorov consistent or exchangeable. If each PS is exchangeable, then by Proposi-

tion 1.2,

Corollary 1.1 Let {PS}S be a set of exchangeable partition distributions. Then

{PS}S is self-similar if and only if there exists a sequence of non-negative real numbers

{wn}n=1,2,... such that for each S,

PS(B1|B2| · · · |Bk) ∝
k∏

i=1
w|Bi|, (1.13)

where B1|B2| · · · |Bk is a partition of S.

1.5 Ewens Sampling Distribution

An interesting question is, what partition distributions {PS}S satisfy Kolmogorov

consistency, self-similarity and exchangeability at the same time?
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Theorem 1.1 ([31]) Let {PS}S be a set of exchangeable partition distributions. Sup-

pose 0 < P{12}(1|2) < 1. Then {PS}S is both self-similar and Kolmogorov consistent

if and only if there exists a positive real number λ such that for each S,

PS(B1| · · · |Bk) =
Γ(λ)λk

Γ(|S|+ λ)

k∏

i=1
(|Bi| − 1)! , (1.14)

where B1| · · · |Bk is a partition of S, and Γ(·) is the gamma function.

Proof (1) If {PS} is self-similar, then by Corollary 1.1, there exists a sequence of

non-negative real numbers {wn}n such that (1.13) is true.

Without any loss of generality, we assume w1 = 1. Denote

λ =
P{12}(1|2)

1− P−1
{12}(1|2)

=
P{12}(1|2)

P{12}(12)
= w−1

2 .

Since 0 < P{12}(1|2) < 1, λ is a positive real number. We claim that

wn = λ1−n(n− 1)! (1.15)

if {PS}S satisfies Kolmogorov consistency. Evidently, (1.15) is true for n = 1 and 2.

For k ≥ 2,

P[k](12 · · · (k − 1)k)/P[k](12 · · · (k − 1)|k) = wk/wk−1.
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Since P[k](12 · · · (k − 1)k) = P[k+1](12 · · · k(k + 1)) + P[k+1](12 · · · k|(k + 1)),

P[k+1](12 · · · k(k + 1))/P[k+1](12 · · · k|(k + 1)) = wk+1/wk

implies P[k+1](12 · · · k|(k +1)) = P[k](12 · · · (k− 1)k) ·wk/(wk+1 +wk). On the other

hand, P[k+1](12 · · · k|(k+1)) = P[k](12 · · · (k−1)|k) ·wk/(wk +wk−1w2 +wk−1) since

P[k](1 · · · (k − 1)|k)

= P[k+1](1 · · · (k − 1)(k + 1)|k) + P[k+1](1 · · · (k − 1)|k(k + 1))

+P[k+1](1 · · · (k − 1)|k|(k + 1)).

Thus, the Kolmogorov consistency implies

1 = wk/wk−1 · (wk + wk−1w2 + wk−1)/(wk+1 + wk).

If (1.15) is true for k − 1 and k, then wk+1 = λ−kk!, which indicates (1.15) is true

for k + 1 too. By induction, (1.15) is true for each n.

Based on (1.13), (1.15) and the exchangeability, there exists a sequence of real

numbers {an}n such that

PS(B1|B2| · · · |Bk) = a|S| · λk−|S| ·
k∏

i=1
(|Bi| − 1)! .
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To prove (1.14), the only thing left is to verify that

an = λnΓ(λ)/Γ(n + λ). (1.16)

It is straightforward to derive a1 = 1, a2 = 1/(1 + w2) = λ/(1 + λ). Since Γ(1 + x) ≡

xΓ(x) for x > 0, (1.16) is true for n = 1 and 2. If (1.16) is true for n = k ≥ 2, then

the Kolmogorov consistency implies akwk = ak+1wk+1 + ak+1wk and

ak+1 = ak · λ/(k + λ) = λk+1Γ(λ)/Γ(k + 1 + λ).

By induction, (1.16) is true for each n.

(2) If {PS}S is defined by (1.14), in other words, if it is determined by the sequence

wn = λ1−n(n− 1)! as in (1.13), then {PS}S is self-similar by Corollary 1.1.

To verify that {PS}S is Kolmogorov consistent, it is sufficient to prove that for

each S, each partition B1| · · · |Bk of S and each u which does not belong to S,

PS(B1| · · · |Bk) = PS∪{u}(B1| · · · |Bk|{u}) +
k∑

i=1
PS∪{u}(B1| · · · |Bi ∪ {u}| · · · |Bk),

which is straightforward based on (1.14).

Therefore Theorem 1.1 is proved. #

Given the set of partition distributions {PS}S satisfying Kolmogorov consistency,

it is sufficient to consider a subset {Pn}n instead, where Pn = P[n] for each n. In
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those cases, {PS}S or {Pn}n is called a partition process (see Section 1.3) . For

example, the partition process defined by (1.14) can be represented by a sequence of

partition distributions as follows

pn(E; λ) =
Γ(λ)λ#E

Γ(n + λ)

∏

blocks
(b− 1)! , (1.17)

where λ > 0, #E is the number of blocks of E, the product runs over the blocks of

E, b is a block size.

The partition distribution (1.17) is called the Ewens sampling distribution, named

after Warren J. Ewens ([19], [20]). It was first proposed for population genetics

purposes. Consider a sample of n gametes taken from a population and classified into

blocks according to the alleles at a certain locus. Under suitable conditions ([31])

including moderate and non-recurrent mutations and negligible selection effect at the

locus, etc, the random partition E based on genotype follows the Ewens sampling

distribution.

The Ewens sampling distribution is also related to the urn models widely used in

physics. For example, Costantini ([16]) considered the case where balls are sequen-

tially put into m urns as follows. If n balls have been placed into the urns and the jth

urn contains nj balls, then the (n + 1)th ball is put into the jth urn with probability

(nj +δ)/(n+mδ). The distribution (1.17) can be derived as a limit if δ → 0, m →∞

and mδ = λ ([29], Chapter 41). On the other hand, the classical Maxwell-Boltzmann,
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Bose-Einstein and Fermi-Dirac partition formulae correspond to δ → ∞, δ = 1 and

δ = −1 respectively.

The Ewens sampling distribution is of the full exponential-family type with canon-

ical statistic #E. The canonical parameter is θ = log λ, and the cumulant function

is log Γ(n + λ) − log Γ(λ). Writing ψ(·) = (log Γ(·))′, the expected number of blocks

is E(#E) = λ(ψ(n + λ)−ψ(λ)), which behaves asymptotically as λ log n for large n.

The variance is a little smaller than the mean, and the number of blocks is roughly

Poisson for large n. For λ = 1, the probability of one block is n−1, and the probability

of n blocks is 1/n! . Basically, greater λ indicates that the random partition tends

to have more blocks. For population genetics purpose, the parameter λ indicates the

level of mutation rate up to a constant depending on the reproductive mechanism.

Consider extreme cases of Theorem 1.1: P{12}(1|2) = 0 or 1. If P{12}(1|2) goes to

0, then λ = P{12}(1|2)/P{12}(12) goes to 0. The limit distribution PS based on (1.14)

satisfies PS(S) = 1. In other words, the partition distribution PS puts mass 1 on

the maximal partition with only 1 block. Similarly, if P{12}(1|2) = 1 which indicates

λ = ∞, then the limit distribution PS puts mass 1 on the minimal partition ‖S‖.

Corollary 1.2 Let {PS}S be a set of exchangeable partition distributions.

(i) If P{12}(1|2) = 0, then {PS}S is both self-similar and Kolmogorov consistent if

and only if PS(S) = 1 for each S.

(ii) If P{12}(1|2) = 1, then {PS}S is both self-similar and Kolmogorov consistent if

and only if PS(‖S‖) = 1 for each S.
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The cases (i) and (ii) in Corollary 1.2 can be regarded as two extreme cases of the

Ewens sampling distribution corresponding to λ = 0 and λ = ∞ respectively. The

only exchangeable and self-similar partition process is the extended Ewens family

with 0 ≤ λ ≤ ∞. Kingman ([31]) derived the same conclusion under the terminology

partition structure and subset deletion (see also [3]).



CHAPTER 2

SAMPLING FROM A PARTITION DISTRIBUTION

In this chapter, we first review the Chinese Restaurant process which generates inde-

pendent, identically distributed samples from the Ewens sampling distribution. Then

we describe the so-called cocktail process on partitions with unique stationary distri-

bution that belongs to the exponential family. As a variant of the cocktail process, we

propose the Ewens-cocktail process that converges to the Ewens sampling distribu-

tion. It could be used for Markov chain monte carlo if combined with the Metropolis-

Hastings algorithm. Because the number of partitions of [n] increases even faster than

en, it’s practically important to generate a random sample of partitions conveniently

and efficiently.

2.1 Sequential Construction: Chinese Restaurant Process

Assume a restaurant has infinitely many tables numbered from 1 to ∞. Each table

is capable of seating infinitely many customers. Suppose customers arrive one by one

and are seated according to the following rule:

1) The 1st customer sits at table 1;

35



36

2) After the first n customers have occupied the first k tables with ni customers

sitting at table i, i = 1, 2, . . . , k, the (n + 1)th customer randomly chooses one

of the first k + 1 tables with probabilities proportional to

n1 : n2 : · · · : nk : λ , (2.1)

where λ > 0 is a parameter.

If the labels of those tables are ignored, the determined partition process of customers

with blocks indicated by tables is known as the Chinese restaurant process. It was

devised by Dubins and Pitman and published first on page 92 in [2]. The name came

from some Chinese restaurants in San Francisco which seem to be capable of seating

infinitely many customers ([10]).

It is straightforward to verify by induction that the Chinese restaurant process

follows the Ewens sampling distribution with parameter λ ([43]). This fact provides

an alternative way to derive some important properties of the Ewens family. For

example, the Chinese restaurant process shows clearly that the probability that the

first two customers sit both at table 1 is 1/(1+λ). By exchangeability, the probability

that any two customers sit at the same table is also 1/(1 + λ), no matter where the

other customers sit. Besides, the Chinese restaurant process suggests an easy way to

generate independent, identical distributed random partitions from the Ewens family.
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If the proportions in (2.1) are changed into

(n1 − δ) : (n2 − δ) : · · · : (nk − δ) : (λ + kδ) ,

where 0 ≤ δ < 1 and λ > −δ, then the determined partition process is called the two-

parameter generalization of the Ewens sampling distribution ([43]). The corresponding

partition distribution function defined on En is

pn(E; λ, δ) =
Γ(λ + 1− δ)

∏#E−1
j=0 (λ + jδ)

Γ(λ + n− δ)Γ(1− δ)#E [λ + (#E − 1)δ]

∏

blocks
Γ(b− δ), (2.2)

which yields (1.17) as a special case if δ = 0. Evidently, the partition process deter-

mined by (2.2) is exchangeable too.

If the cyclic order of customers sitting at the same table is taken into accounts,

the Chinese restaurant process generates an exchangeable permutation process which

belongs to the exponential family on permutations. Here the exchangeability of a

permutation process indicates that the distributions remain invariant under conjugate

symmetric group operations (see Section 1.3.2 for more details). Suppose there is

always an empty seat between any two occupied ones. The (n + 1)th customer in

the Chinese restaurant process chooses a seat at random between any two adjacent

customers or at a table occupied by a single customer with probability 1/(n + λ),

and sits alone at the next unoccupied table with probability λ/(n + λ). Since each

occupied table with its cyclic order of customers indicates a cycle of permutation,



38

the seating plan of the first m customers generates a random permutation. It is

straightforward to verify that the random permutation belongs to the exponential

family. The distribution is

pn(σ; λ) = λ#σΓ(λ)/Γ(n + λ),

where #σ indicates the number of cycles of σ.

2.2 Markov Chain Monte Carlo: Cocktail Process

In this section, we describe a partition-valued Markov chain called the cocktail process,

which has the unique stationary distribution belonging to the exponential family (see

Example 1.2).

Guests at a cocktail party numbered from 1 to n arrange themselves in

conversational blocks, which determine a partition of the n individuals

present. At regular time intervals, a transition occurs from the partition

E to another partition E′ as follows. An individual u chosen uniformly at

random splits off from the block to which he or she belongs. Suppose there

are k blocks left formed by the other n− 1 guests. The individual u joins

one of the k blocks with probability 1/(λ + k) for each block, or strikes

out on his or her own and forms a new block with probability λ/(λ + k),

where λ is a positive real number.
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Proposition 2.1 The cocktail process has the unique stationary distribution

pn(E; λ) = λ#E/Bn(λ) ,

which satisfies the detailed balance condition

pn(E; λ)P (E, E′) = pn(E′; λ)P (E′, E) , (2.3)

where E, E′ are partitions of [n], Bn(λ) =
∑n

k=1 S(n, k)λk is known as the Bell

polynomial, S(n, k) is the Stirling number of the second kind, and P (E, E′) is the

transition probability from E to E′.

Proof Evidently, the cocktail process is both aperiodic and irreducible (see [55] or

[15] for a good review on Markov chains). Since it has only finitely many states, the

cocktail process has unique stationary distribution.

The only thing left is to prove (2.3), which implies pn(·; λ) is the unique stationary

distribution. Note P (E, E′) > 0 only if there exist two integers 0 ≤ i, i′ < n and one

partition E∧ formed by the n− 1 guests other than u, such that,

1) the individual u comes from a size-i block in E;

2) the individual u belongs to a size-i′ block in E′.
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The transition probabilities are

P (E, E′) =





1
λ+#E∧ , if i′ > 0;

λ
λ+#E∧ , if i′ = 0.

P (E′, E) =





1
λ+#E∧ , if i > 0;

λ
λ+#E∧ , if i = 0.

With these notations, it is straightforward to verify that (2.3) is true. #

If we ignore the labels of the guests and count only the block sizes, then the

cocktail process induces a Markov chain on integer partitions. The exchangeability

and the detailed balance condition of the cocktail process imply that the induced

integer-partition-valued Markov chain also satisfies the detailed balance condition.

In general, let {E(k)}k be a homogenous Markov chain taking values in partitions

of [n]. We call {E(k)}k exchangeable if its one-step transition probability P (·, ·)

remains invariant under permutations of [n]. That is,

P (E, E′) = P (Eσ, E′σ), for each σ ∈ Sn, (2.4)

where Eσ is the partition defined by Eσ(i, j) = E(σ(i), σ(j)), i, j = 1, . . . , n. For

example, if σ =
(
1 2 3
2 3 1

)
and E = 13|2, then Eσ = σ−1(1)σ−1(3)|σ−1(2) = 32|1 =

1|23. We call the transition probability P (·, ·) exchangeable if it satisfies (2.4). In

that case, it is straightforward to verify that the k-step transition probability P k(·, ·)

is exchangeable too. If {E(k)}k is both irreducible and aperiodic, then the unique

stationary distribution on partitions is exchangeable as the limit of P k(E, ·) which is
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independent of E.

Let {e(k)}k be the induced Markov chain by {E(k)}k taking values in integer

partitions of n. If {E(k)}k is exchangeable, then {e(k)}k is a homogenous Markov

chain with one-step transition probability

P (I)(e, e′) =
∑

E′∈π−1
I (e′)

P (E, E′), (2.5)

where πI is the mapping from set partitions to integer partitions, and E is an arbitrary

partition of [n] satisfying πI(E) = e.

Proposition 2.2 Let {E(k)}k be a homogenous Markov chain taking values in par-

titions of [n]. Assume it is exchangeable, irreducible and aperiodic. Denote by pn

the unique stationary distribution of {E(k)}k. Let {e(k)}k be the induced Markov

chain taking values in integer partitions of n. Then {e(k)}k has unique stationary

distribution p
(I)
n such that

p
(I)
n (e) = N(α1, . . . , αn) · pn(E),

where e = 1α1 · · ·nαn is an integer partition of n, N(α1, . . . , αn) is the combina-

tion number n!/[
∏n

j=1(j!)
αj αj !], E is an arbitrary partition satisfying πI(E) = e.

Furthermore, if {E(k)}k satisfies the detailed balance condition, so does {e(k)}k.
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Proof Evidently, {e(k)}k has unique stationary distribution. Let P (·, ·) be the

transition probability of {E(k)}k. Then

pn(E) =
∑

E′∈En
pn(E′)P (E′, E) =

∑

e′∈Sn

∑

E′∈π−1
I (e′)

pn(E′)P (E′, E).

Note that pn is exchangeable. Write e = πI(E). Then

p
(I)
n (e) =

∑

E∈π−1
I (e)

pn(E)

=
∑

E∈π−1
I (e)

∑

e′∈Sn

∑

E′∈π−1
I (e′)

pn(E′)P (E′, E)

=
∑

e′∈Sn

∑

E′∈π−1
I (e′)

pn(E′) · ∑

E∈π−1
I (e)

P (E′, E)

=
∑

e′∈Sn

∑

E′∈π−1
I (e′)

pn(E′)P (I)(e′, e)

=
∑

e′∈Sn

p
(I)
n (e′)P (I)(e′, e).

Therefore, p
(I)
n is the stationary distribution of {e(k)}k. Using the same trick, it is

straightforward to verify that

p(I)(e)P (I)(e, e′) = p(I)(e′)P (I)(e′, e)

if {E(k)}k satisfies the detailed balance condition. #

Corollary 2.1 The integer-partition-valued process induced by the cocktail process
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has the unique stationary distribution

p
(I)
n (en; λ) = N(α1, . . . , αn) · λ

∑
j αj/Bn(λ),

which satisfies the detailed balance condition, where en = 1α1 · · ·nαn is an integer

partition of n, and Bn(λ) is the Bell polynomial.

2.3 Ewens-Cocktail Process

If we modify the cocktail process as follows, the new Markov chain yields the Ewens

sampling distribution as its stationary distribution on partitions.

As in the original cocktail process, an individual u chosen uniformly at

random splits off from the block to which he or she belongs. Suppose

there are k blocks left formed by the other n− 1 guests. The individual u

joins one of the k blocks with probability block size/(λ + n− 1), or strike

out on his or her own and form a new block with probability λ/(λ+n−1).

We call the modified process the Ewens-cocktail process. Following a similar argument

as in Proposition 2.1, we conclude that

Proposition 2.3 The Ewens-cocktail process has the unique stationary distribution

pn(E; λ) =
Γ(λ)λ#E

Γ(n + λ)

∏

blocks
(b− 1)! ,
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which satisfies the detailed balance condition.

By Proposition 2.2, the induced process on integer partitions satisfies the detailed

balance condition too.

Corollary 2.2 The integer-partition-valued process induced by the Ewens-cocktail

process has the unique stationary distribution

p
(I)
n (en = 1α1 · · ·nαn ; λ) = N(α1, . . . , αn) · Γ(λ)λα•

Γ(n + λ)

n∏

j=1
[(j − 1)!]αj ,

which satisfies the detailed balance condition, where α• =
∑n

j=1 αj.

The Ewens-cocktail process provides an alternative way to simulate the Ewens

sampling distribution. Unlike the Chinese restaurant process generating i.i.d. sam-

ples, the Ewens-cocktail process generates a reversible Markov chain {E(k)}k with

stationary distribution pn(·; λ). By the ergodic theorem (for example, Theorem 3 in

[52]), for any real-valued function f defined on En,

1

m

m∑

k=1
f(E(k))

a.s.−→ ∑

En∈En
f(En)pn(En; λ), as m →∞.

Composed with the Metropolis-Hastings algorithm (see [12], [14] for a good review),

it may be used conveniently to sample a distribution close to the Ewens’.
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2.4 Poisson-Ewens-Cocktail Process

If the number of guests in the cocktail process is no longer fixed, a Markov process

on integer partitions can be introduced as follows.

Suppose the arrival process is Poisson with constant rate λ. Once a new

guest arrives, he or she follows the same rule as the Ewens-cocktail process

to join the party. Suppose the departure process is Poisson with rate Ntδ

independent of the arrivals, where Nt is the number of guests in the party

at time t. All the current guests at time t have the equal chance to leave

the party, independently of each other.

Note that we do not arrange the arrivals in any order, since there are infinite candi-

dates. Nevertheless, if we focus only on the related integer-partition-valued process,

called Poisson-Ewens-Cocktail process, we get the stationary distribution as follows.

Proposition 2.4 The Poisson-Ewens-cocktail process is time reversible with respect

to the stationary distribution on integer partitions as follows

P (n, en = 1α1 · · ·nαn ; λ, δ) = pλ/δ(n)×N(α1, . . . , αn) · Γ(λ)λα•

Γ(n + λ)

n∏

j=1
[(j − 1)!]αj ,

where λ > 0, δ > 0, α• =
∑

j αj, and pλ/δ(n) is the Poisson mass function with rate

λ/δ.



46

In other words, the stationary distribution is separable. The marginal distribution

of the number of guests is still Poisson. Fixing the number of guests in the party,

the conditional distribution on integer partitions is the induced distribution by the

Ewens’.



CHAPTER 3

A PARTITION MODEL FOR BAYESIAN MULTIPLE

COMPARISONS

In this chapter, we propose a partition model for Bayesian multiple comparisons. In-

stead of making inference based on pairwise comparisons, the partition model provides

inference in the form of set partitions. We suggest the marginal prior on partitions be

infinitely exchangeable and the posterior distribution on partitions be location-scale

invariant.

3.1 Remarks on the Literature

The purpose of multiple comparisons or simultaneous inference is to summarize a

set of statistical statements. The statements can be confidence intervals, significance

tests, etc. A typical problem might be how to compare the means of k populations.

Two different approaches are used in the literature to solve this problem.

The classical approach is based on multiple pairwise comparisons. For example,

the standard t-procedure may be used for each of the k(k − 1)/2 pairwise compar-

isons. To control the chance of false discoveries, for example, the Fisher protected

least significant difference (LSD) test uses an initial F -test to check the hypothesis
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that all means are equal. Pairwise comparisons are meaningful only when the ini-

tial hypothesis is rejected. Some other methods, such as Bonferroni intervals, Sheffé

intervals or Tukey’s Q-method, provide wider confidence intervals than the t-type in-

tervals to reduce false discoveries. Typically, the lengths of adjusted intervals depend

on the number k (see [34] for a good review). In other words, the inference about

whether or not two populations a and b have equal means might depend on some

other population c.

The more recent approach is a Bayesian one. Berry ([7]) suggested considering

every possible combination of equality and inequality among the k means. A mixture

of Dirichlet processes ([21], [5]) might be used to model the population means. It

allows a statement of the type “population a and b have the same mean” has positive

probability. Since then, Bayesian analysis using the Dirichlet prior ([24]) or the

uniform prior ([41]) has been applied to the multiple comparisons problem.

We propose a Bayesian model for multiple comparisons using infinitely exchange-

able priors on the partitions of the k populations. The partitions are identified by

the equality and inequality relationships among the population means. The uniform

prior on partitions however is not infinitely exchangeable. Unlike Gopalan and Berry

([24]), we use residual statistics to make the inference on partitions be location-scale

invariant under data transformations.



49

3.2 A Bayesian Model Permitting Multiple Comparisons

3.2.1 Infinite Exchangeability

Consider finitely many varieties. From a Bayesian point of view, the principle of egal-

itarianism or symmetry requires that the prior on the variety effects be exchangeable.

For example, if the statement “the mean for variety a exceeds that for b by more than

10%” has prior probability 0.15, then the same is true with varieties c and d.

Infinite exchangeability is just finite exchangeability plus non-interference, which

means that the same probabilistic statements hold for an extended trial that includes

additional varieties. As a consequence, if a is found to be superior to b in a trial

involving ten additional varieties, a may be said to be superior to b without qualifi-

cation. The notion is a natural one, that these additional varieties do not interfere

with the values for the pair being compared.

Infinite exchangeability in this sense is a model assumption. It is not a statement

of personal belief, nor is it a statement of agricultural, chemical, or educational fact.

The non-interference component is especially critical. Without it, we cannot deduce

by mathematical argument alone that the observed contrast for a − b might not be

reversed if variety c had been included in the trial.
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3.2.2 The Variety Process

Perhaps the simplest model for the observation process is such that, conditional on

the variety effects τ1, . . . , τk, the observations are generated by Yij = τi + εij , where

the εs are independent N(0, σ2). The variety effects are distributed marginally as

N(µ, σ2
τ ), but for each finite set of indices {i1, . . . , ir} the probability is positive that

τi1 = · · · = τir . In other words, two or more varieties having different labels may be

genetically identical or otherwise equivalent in terms of yield.

To construct such a process, the distribution for (τ1, . . . , τk) on Rk is obtained in

two steps as follows.

E ∼ pk on Ek,

τ ∼ Nk(µ1, σ2
τE) on Rk.

In these expressions Ek is the set of partitions of [k] = {1, . . . , k}, so E ∈ Ek is an

equivalence relation on the set. 1 is the constant vector. For example if k = 4, the

partition denoted by E = 3|1|24 may also be represented by the equivalence relation

E =




1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1


 ,

a positive semi-definite matrix of rank equal to the number of blocks; rank(E) =

#E. For two levels such that Eij = 1, i.e. varieties i and j in the same block,

the distribution Nk(µ1,E) implies that τi = τj . Operationally, therefore, a random
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partition E is chosen with distribution pk on Ek, and independent random variables

are generated, one for each block. If E = 1|24|3, three independent random variables

are generated, and the sequence of length 4 is such that τ4 = τ2. The Gaussian

assumption is not essential for exchangeability, but it does simplify computations.

In order that the marginal distribution of τ on Rk be finitely exchangeable, it is

necessary and sufficient that each distribution pk be invariant under permutation of

elements. For k = 4, the 15 partitions of {a, b, c, d} are conventionally listed in the

form

abcd [1], abc|d [4], ab|cd [3], ab|c|d [6], a|b|c|d [1]

showing an orbit representative followed by the orbit size. A distribution is finitely

exchangeable, or symmetric, if and only if it is uniform on each of the orbits. There

are as many group orbits in Ek as there are partitions of the number k, i.e. three

orbits for k = 3, five for k = 4, seven for k = 5 and so on. In order that the

construction determine a process, the Kolmogorov consistency condition must be

satisfied, so pk is necessarily the marginal distribution of pk+1 under elementwise

deletion. In particular, this means that

p3(123) = p4(1234) + p4(123|4)

p3(1|23) = p4(14|23) + p4(1|234) + p4(1|4|23)

p3(1|2|3) = 3p4(14|2|3) + p4(1|2|3|4).
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Thus p3(123) = 0 implies that every partition of [k] having a block of size three

or more has zero probability. Conversely p3(1|2|3) = 0 implies that only binary

partitions have positive probability.

The marginal distribution on E3 of the uniform distribution on E4 is not uniform, so

the uniform distributions on Ek do not determine an infinitely exchangeable partition.

An exchangeable prior on partitions is necessarily non-uniform. For the purposes of

this section, we restrict attention to processes such that pk is strictly positive on Ek, so

all partitions have positive prior probability. Specific examples of such exchangeable

partition processes are given below.

3.2.3 Exchangeable Partition Processes

The following are instances of infinitely exchangeable partition processes, most of

which are not suitable for multiple comparisons.

(i) For each finite set, pk puts mass one on the minimal partition with k blocks in

Ek.

(ii) pk puts mass one on the maximal partition with only 1 block in Ek.

(iii) Each infinitely exchangeable random sequence X = (X1, X2, . . .) determines an

infinitely exchangeable random partition as follows. For each set [k], define the

random partition E by Eij = 1 if Xi = Xj , and zero otherwise. Let pk(E) be

the probability induced by X.
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(iv) A binomial random partition is obtained by the construction (iii) in which X is

an i.i.d. Bernoulli sequence with parameter θ. Each partition E of [k] containing

two blocks of sizes r, k − r, has probability

pk(E; θ) = θr(1− θ)k−r + (1− θ)rθk−r.

Non-binary partitions having three or more blocks have zero probability.

(v) If, in the preceding construction, the parameter θ is a symmetric beta random

variable with parameter α, the probability is

pk(E; α) =
2 Γ(r + α) Γ(k − r + α) Γ(2α)

Γ(k + 2α) Γ2(α)
.

(vi) If, in (iv) and (v), the Bernoulli is replaced by the multinomial with n levels,

and the beta by the symmetric Dirichlet, the limiting probability as α → 0 and

n →∞ such that nα = λ > 0 is fixed, is

pk(E; λ) =
Γ(λ) λ#E

Γ(k + λ)

∏

blocks
(b− 1)!, (3.1)

where #E is the number of blocks, b is a block size, and the product runs

over the blocks ([30], [32]). Note that the distribution (3.1) is just the Ewens

sampling distribution (see Section 1.5) . The limit distribution of (3.1) as λ → 0

(or ∞), is (ii) (or (i)).
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(vii) If, in (iv) and (v), the Bernoulli is replaced by random discrete distribution

{Pi}i=1,2,..., and the beta is replaced by a sequence of independent random

variables Wj ∼ beta(1− δ, λ + (j − 1)δ) with parameters λ > 0 and 0 ≤ δ < 1,

such that Pi = (1 − W1) . . . (1 − Wi−1)Wi, then each partition E of [k] has

probability

pk(E; λ, δ) =
Γ(λ + 1− δ)

∏#E−1
j=0 (λ + jδ)

Γ(λ + k − δ)Γ(1− δ)#E[λ + (#E− 1)δ]

∏

blocks
Γ(b− δ),

which yields (vi) as a special case if δ = 0 ([43], [45]). It is the two-parameter

generalization of the Ewens’ (see Section 2.1) .

Although it is more usually defined on number partitions, the process constructed

in (vi) with distribution functions {pk(·; λ)}k is called the Ewens partition process (see

Section 1.5) . It has the essential property for present purposes that all partitions

have positive probability. More than that, in all exchangeable partition processes,

the extended Ewens family, which allows λ taking values in [0,∞], is the only one

satisfying the self-similarity. It makes the Ewens family the preferred prior when the

self-similarity serves as an assumption.

3.2.4 Likelihood Function

We consider in this section what is meant by the likelihood function based on a

finite-dimensional observation y ∈ Rn. If X is the indicator matrix for varieties, the
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simplest model has three principal components as follows:

Y ∼ Nn(Xτ, σ2In) on Rn

τ ∼ Nk(µ1, σ2
τE) on Rk (3.2)

E ∼ pk(·) on Ek.

Our focus initially is on the determination of the varieties that are equivalent, so

we aim first to obtain a posterior distribution on variety partitions in Ek rather

than variety effects in Rk or contrasts in the quotient space Rk/1. Accordingly, the

likelihood is based on the first two components, and the third component is a part of

the prior. To the extent that it is necessary, a prior distribution may be required for

the three remaining parameters (µ, σ2, σ2
τ ). The first two components of the model

imply that, given the parameter values E ∈ Ek, plus (µ, σ2, σ2
τ ),

Y ∼ N(µ1, σ2In + σ2
τXEXT ). (3.3)

It is important here to understand that X is the matrix whose columns are the

indicator vectors for the k varieties. The basis matters, and X is not the matrix

produced by the model formula y ∼ variety in R or S.

To simplify the exercise, we base the likelihood function on a particular function of

Y rather than Y itself. Let Ȳ , s2 be the sample mean and variance. The standardized

residual vector Y̌ = (Y − Ȳ 1)/s evidently has a distribution depending only on
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(σ2
τ/σ2,E). The marginal log likelihood ([54]) for the pair (θ = σ2

τ/σ2,E) is

ľ(θ,E; y̌) = −n− 1

2
log(yTΣ−1Qy)− 1

2
log |Σ| − 1

2
log |1TΣ−11|, (3.4)

where Σ = In + θXEXT and Q = In − 1(1TΣ−11)−11TΣ−1. The choice of sample

mean and sample standard deviation for standardization purposes is of no conse-

quence: any location and scale statistic such as the sample median and inter-quartile

range yields exactly the same marginal likelihood. The use of the standardized resid-

ual vector for likelihood calculations implies that the conclusions regarding (θ,E) are

unaffected by component-wise affine transformation y 7→ a + by.

Most of the terms occurring in the marginal log likelihood can be expressed in

terms of block sizes and block averages as follows. The k × k matrix E is a partition

of the varieties into #E blocks, and XEXT is the corresponding n × n matrix that

partitions the n units into #E blocks. Let b1, b2, . . . , b#E be the block sizes of XEXT ,

and let Jb be the b× b matrix whose elements are all one. It is convenient to reorder

the components of y such that

Σ = In + θ · diag{Jb1
, . . . ,Jb#E

}.

in which case the inverse is

Σ−1 = In − θ · diag





Jb1

1 + b1θ
, . . . ,

Jb#E

1 + b#Eθ



 .
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If we set wi = bi/(1 + θbi), the various terms in the likelihood function reduce to

|Σ| =
#E∏

i=1
(1 + θbi)

1TΣ−11 =
∑

wi

yTΣ−1Qy = S2
w +

∑
wi(ȳi − ȳw)2

where S2
w is the within-blocks sum of squares, ȳi is the mean of y in the ith block,

and ȳw =
∑

wiȳi/
∑

wi is the weighted average of the block means.

3.2.5 Posterior Distribution on Partitions

Following the analysis in the preceding section, the marginal likelihood function at

(θ,E) is

L(θ,E;y) ∝ (yTΣ−1Qy)−
n−1

2 |Σ|−1
2 (1TΣ−11)−

1
2 .

For a formal Bayesian analysis we must choose a proper prior distribution for the

variance ratio, and the symmetric F -family

π(θ) ∝ θα−1

(1 + θ)2α

with α > 0 offers a range of reasonable choices. It is implicit in the construction that

the variance ratio is independent of the partition, so the marginal likelihood function
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at E ∈ Ek is

L(E;y) =
∫ ∞
0

L(θ,E;y) π(θ) dθ.

The posterior distribution at E ∈ Ek is then

p(E|y) ∝ pk(E)× L(E;y). (3.5)

In all calculations in the examples, pk(E) = pk(E; λ) is the Ewens distribution with

parameter λ.

The posterior mean partition

Ē =
∑

E∈Ek
E · p(E |y)

is a convex combination of symmetric positive semi-definite binary matrices and is

not itself a partition. Nevertheless the elements

Ērs = Pr(r ∼ s |y)

have a simple straightforward interpretation, so this is a useful partial summary of

the posterior. The values, which can also be obtained from the cumulative posterior

distribution P (E′ |y) =
∑

E Pr(E′ ≤ E |y), are shown for two examples in Tables 3.3

and 3.6 . The posterior distribution on the number of blocks is another useful sum-

mary statistic.
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3.3 Examples

3.3.1 Example 1: Fat Absorbed by Doughnuts

The first example taken from from Snedecor & Cochran ([51], p. 259), is a balanced

one-way design with k = 4 and n = 24. Six batches of doughnuts were cooked using

each of four types of fat, making a total of 24 batches. The response is the amount

of fat in grams absorbed by each batch.

The marginal posterior distribution on partitions is shown in Table 3.2 for a range

of nine prior distributions of the form

θα−1

(1 + θ)2α × p4(E; λ)

with λ = 1, 2, 10 and α = 0.5, 1, 2. The partitions are arranged in descending order

at λ = 1. For this range of prior distributions, the conclusions depend to a moderate

extent on the choice of λ but are relatively insensitive to α, which determines the prior

on the variance ratio. For λ = 1, the prior distribution on the number of blocks is

(0.25, 0.46, 0.25, 0.04), and the posterior distribution is (0.06, 0.44, 0.41, 0.09) for α =

1. For λ = 2, the distributions are (0.10, 0.37, 0.40, 0.13) and (0.02, 0.27, 0.49, 0.22).

Since the prior expected number of blocks, is monotone increasing in λ, a similar

trend is evident in the posterior, larger values favoring more fragmented partitions.

The prior probability that all four fats are equivalent is 6/((λ + 1)(λ + 2)(λ + 3), or

1/4, 1/10, 1/286 for the values in Table 3.1 . At the other extreme, the completely
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fragmented partition into four blocks has prior probability 0.04, 0.13, 0.58. These

values make it clear that the range of λ-values considered here is fairly extreme.

Table 3.1: Grams of Fat Absorbed Per Batch of Doughnuts
Type of Fat a b c d

64 78 75 55
72 91 93 66
68 97 78 49
77 82 71 64
56 85 63 70
95 77 76 68

Ȳj 72 85 76 62
sj 13.3 7.8 9.9 8.2
Pooled s=10.0

The posterior probability in Table 3.2 is uniformly small for each partition such

that b, d occur in the same block. At the other extreme, most partitions in which a, c

are in the same block have appreciable probability. These conclusions are consistent

with the pattern of observed sample means as shown in Table 3.1, where b has the

highest mean, d the lowest, and a, c are the closest pair. For (λ, α) = (1, 1) the

marginal posterior probability that a, c are equivalent is 55%, while the posterior

probability that b, d are equivalent is only 9%. The posterior probabilities for all six

pairwise comparisons are shown in Table 3.3 . Although the numerical values depend

to a great extent on the prior, the ordering of pairwise contrasts is strongly consistent

across the entire range of priors. For all nine priors in this example, the ordering

P (a ∼ c|y) > P (b ∼ c|y) > P (a ∼ d|y) > P (a ∼ b|y) > P (c ∼ d|y) > P (b ∼ d|y)
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Table 3.2: Marginal Posterior Probabilities for the 15 Partitions, p(E|y, λ, α)× 100%

Prior parameter values (λ, α)
E (1, 0.5) (1, 1) (1, 2) (2, 0.5) (2, 1) (2, 2) (10, 0.5) (10, 1) (10, 2)

abc|d 18 19 19 12 11 11 2 2 1
ac|b|d 16 17 17 19 20 21 12 12 12
acd|b 13 13 13 8 8 8 1 1 1
a|bc|d 9 10 10 12 12 12 7 7 7
ad|bc 9 9 9 6 5 5 1 1 1

a|b|c|d 8 9 9 21 22 23 66 66 67
ad|b|c 8 8 8 9 10 10 6 6 6
abcd 8 6 5 3 2 2 0 0 0

ab|c|d 3 3 4 4 4 4 3 3 3
a|b|cd 3 3 3 3 3 3 2 2 2
ab|cd 2 1 1 1 1 1 0 0 0
abd|c 1 1 1 1 1 0 0 0 0
a|bcd 1 1 1 1 1 0 0 0 0
ac|bd 1 0 0 0 0 0 0 0 0
a|bd|c 0 0 0 0 0 0 0 0 0

is consistent with the ascending order of the differences among sample means. How-

ever, the relationship between posterior probabilities and sample mean differences is

not invariably monotone.

Table 3.3: Posterior Probabilities That Two Types Belong to the Same Block, P (· ∼
·|y, λ, α)× 100%

(λ, α) (1, 0.5) (1, 1) (1, 2) (2, 0.5) (2, 1) (2, 2) (10, 0.5) (10, 1) (10, 2)
a ∼ c 56 55 55 42 42 41 15 15 15
b ∼ c 46 44 43 33 31 30 10 9 9
a ∼ d 39 37 36 27 26 25 8 8 7
a ∼ b 33 31 29 20 19 18 4 4 4
c ∼ d 27 25 23 16 15 14 3 3 3
b ∼ d 11 9 7 5 3 3 1 0 0

Snedecor & Cochran ([51], pp. 272-273) give the results of several classical signifi-

cance tests, all based on comparisons of differences between sample means. The least
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significant difference (LSD) test declares significant at the 5% level any pair whose

sample means differ by more than 12.1 grams. By this criterion, the differences be-

tween a&b, c&d and b&d are large enough that they are deemed unlikely to be due to

random variation alone. More conservatively, Tukey’s Q-method requires the differ-

ence in sample means to be at least 16.2 grams for significance to be declared at the

5% level. Only the mean difference of b&d is significantly nonzero by this criterion.

Each of these classical tests computes the probability under the null hypothesis

of equal means of obtaining a value of the statistic as extreme as the value observed.

The smaller this probability, the less likely it is that the observed difference is due to

random variation, and accordingly the greater the evidence against the hypothesis.

The Bayesian analysis aims instead to find a posterior distribution on partitions.

The posterior values reported in Tables 3.2 and 3.3 are thus not directly comparable

with p-values in significance tests. Nevertheless, they are likely to be interpreted in

a similar manner, and we aim here to make such a comparison.

Roughly speaking, at the 5% level, the LSD test is consistent with the posterior for

λ ' 10 in Table 3.3 . The set of partitions such that a ∼ b has posterior probability

4%, while c ∼ d has probability 3% and b ∼ d less than 1%. These are also the

contrasts declared significantly different from zero by the LSD test at the 5% level.

The more conservative Q-method is consistent with λ ' 2 in that only the pair (b, d)

has posterior probability or tail probability less than 5%. In other words, the LSD test

and the Q-method are consistent with Bayesian calculations based on very different
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prior distributions. From Table 3.3, it appears the more conservative Q-method

corresponds to a moderately uniform prior on partitions, while the LSD method

corresponds to a prior that puts the greater part of its mass on highly fragmented

partitions. The prior probability for each pair a ∼ b is 1/(λ + 1), so the Q-method

has an implicit prior of 1/3 for each contrast, while the LSD method has a prior of

1/11.

3.3.2 Example 2: Dyestuff Data

Example 2 is a comparison of six dyestuffs taken from Davies ([18], p. 105). These data

have been analyzed by Box and Tiao ([11], p. 246, 370) to illustrate the differences

between fixed-effects models and random effects models for estimation and prediction.

Five observations are available on each of six dyestuffs. The six sample means and

sample standard deviations are shown in Table 3.4 .

Table 3.4: Sample Means and Sample Standard Deviations for the Dyestuff Data
Dyestuff 1 2 3 4 5 6

Ȳj 105 128 164 98 200 70
sj 63 33 38 69 50 31

With α = 1 in the prior for the variance ratio, the posterior probability distrib-

ution on partitions was computed for various values of λ. The posterior distribution

of the number of blocks shown in Table 3.5 indicates that the varieties are not all

equivalent. The posterior probability of six blocks is small, but it is greater than the

prior probability. For λ = 1 it was found that the modal partition is 1246|35 with
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posterior probability 15%, followed by 1246|3|5 with probability 9%, and 12346|5 with

probability 7%. The unpartitioned set has probability 3%, and these values are fairly

constant for 0.5 < λ < 2.

Table 3.5: Posterior Distribution on the Number of Blocks for the Dyestuff Data
Number of blocks 1 2 3 4 5 6

λ=1 0.03 0.33 0.41 0.19 0.04 0.00
λ=2 0.01 0.14 0.37 0.33 0.13 0.02

The posterior probabilities for pairwise comparisons are shown in Table 3.6 for

α = 1 and for a range of λ-values. The p-values for the standard t-test and Tukey’s

Q test are also shown for comparison. The prior probability that any specific pair

is equivalent is 1/(λ + 1), and the posterior probabilities also decrease with λ. For

λ = 2, the posterior probability that dyestuffs 1 and 4 belong to the same block, or

are equivalent, is 51%. At the other extreme, the posterior probability that 5 and

6 are equivalent is only 2%. At the 5% level, the conclusions from Tukey’s Q test

correspond roughly to λ = 2, while the standard LSD test corresponds to λ = 9.

Table 3.6 illustrates another curious feature of the Bayesian model, namely that

the order of the posterior probabilities for pairs does not correspond to the order of

the sample mean differences. Several instances of such inversions may be observed.

For example, we find that

Ȳ3 − Ȳ2 : 164− 128 = 36

Ȳ5 − Ȳ3 : 200− 164 = 36
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All standard comparisons via pairwise differences inevitably conclude that µ3 = µ2

is just as likely as µ5 = µ3 because the observed differences are the same. The

p-values in the final two columns based on pairwise standardized differences reflect

this view, 26% for the LSD test and 86% for the Q test. However, in the Bayesian

comparison with λ = 2, the posterior probability that µ3 = µ5 is 40%, while the

posterior probability that µ2 = µ3 is only 26%.

Table 3.6: Posterior Probabilities ×100 for Pairwise Comparisons As a Function of λ
λ p-value

Pair 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 LSD Q
1,4 66 51 42 35 30 27 24 21 20 18 83 100
4,6 64 49 40 33 29 25 22 20 18 17 38 94
1,6 61 45 36 30 25 22 20 17 16 14 28 87
1,2 56 42 33 28 24 21 18 16 15 14 47 98
2,4 54 40 31 26 22 19 17 15 14 12 35 93
3,5 53 40 33 28 25 22 20 18 16 15 26 86
2,6 45 30 22 17 14 12 10 9 8 7 8 45
2,3 35 26 21 18 16 14 12 11 10 9 26 86
1,3 23 16 12 10 8 7 6 6 5 5 7 43
3,4 21 14 10 8 7 6 5 4 4 4 5 31
2,5 20 13 10 8 6 6 5 4 4 4 3 23
3,6 15 8 5 4 3 2 2 2 1 1 0.6 6
1,5 10 5 4 3 2 2 2 1 1 1 0.6 6
4,5 8 4 3 2 2 1 1 1 1 1 0.3 3
5,6 5 2 1 1 1 0 0 0 0 0 0.0 0.0

The explanation for these inversions is fairly simple. In order for a difference of 36

units to occur well separated from the body of the data, either a single large outlier in

τ1, . . . , τk has occurred and the two groups are equivalent, or two large outliers have

occurred and the two groups are not equivalent. The latter event is considerably less

likely than the former, increasing the likelihood that the two groups are homogeneous.



66

A similar difference in the main body of the data could equally well be generated by

one group or by two since no outliers are required.

3.4 Inference for Variety Contrasts

If we have six observations on each of four varieties {a, b, c, d}, the analysis in Sec-

tion 3.2.5 yields a posterior distribution on the 15 partitions of {a, b, c, d}. Suppose,

for example, that the partition ac|bd has probability 0.75 suggesting that varieties

a, c are similar, as are b, d, but all four varieties are unlikely to be equivalent. This

piece of information may be useful, but we would ordinarily like to know more, for

example which pair of varieties has the higher yield and by how much. Quantitative

information of this sort is not available directly from the posterior distribution on

partitions, but it may be obtained indirectly as follows. Let i∗ be a new unit or

plot, and let x(i∗) = r be the variety. Given the parameter values E, µ, σ2, σ2
τ , the

conditional distribution of Y (i∗) given the observed data is Gaussian with mean and

variance

σ2µ + nrσ
2
τ ȳr

σ2 + nrσ2
τ

σ2 +
σ2

τ

1 + nrσ2
τ/σ2 .

where nr = #{i | Ex(i),x(i∗) = 1} is the number of sample units whose variety

is equivalent to x(i∗), and ȳr is the average of the response on these units. The

predictive distribution can now be obtained by posterior averaging.

The more conventional approach leading ultimately to the same conclusion is to
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modify the model by the inclusion of variety effects as a component of the parameter

space. For this purpose, the second component in (3.2) is a part of the prior, not a

part of the parametric model in the conventional sense. This distinction is critical in

the definition of likelihood and the interpretation of the likelihood principle. From a

Bayesian point of view, the joint distribution function including variety effects is

f(y, τ, µ, σ2, σ2
τ ,E) ∝ p(µ, σ2, σ2

τ ,E)f(τ |µ, σ2
τ ,E)f(y|τ, σ2).

The posterior distribution on variety contrasts depends on the data, but it depends

on the scale of y and is not a function of the residual configuration. Nevertheless,

from the posterior distribution on variety contrasts it is possible to calculate prob-

abilities such as Pr(τa = τc |y) from which the marginal distribution on partitions

can be determined. If contradictory conclusions are to be avoided, we must arrange

matters so that the marginal distribution on partitions coincides with the calcula-

tions in Section 3.2.5 . This consistency condition implies that the marginal posterior

distribution on partitions depends only on the residual configuration statistic.

3.4.1 Compatible Prior on the Original Parameter Space

In order to avoid contradictory conclusions on the variety effects, we aim to construct

a prior p on the original parameter space Θ = {(µ, σ2, σ2
τ ,E)} such that the following

diagram is commutative:
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y̌ ∈ Řn

y ∈ Rn P({(µ, σ2, σ2
τ ,E)})

P({(E, θ)})-

-

? ?

Model, prior

Model′, prior′
TS TΘ

Here TS(y) = (y− ȳ1)/s, TΘ((µ, σ2, σ2
τ ,E)) = (E, σ2

τ/σ2), and P(·) indicates the set

of all possible probability measures defined on the given parameter space.

Proposition 3.1 If the (improper) prior p on Θ takes the form of

p(µ, σ2, σ2
τ ,E)dµ dσ2dσ2

τ = c · pk(E) · (σ2)−2 · p1(
σ2

τ

σ2 )dµ dσ2dσ2
τ , (3.6)

where c > 0, p1(·) is a positive and integrable function defined on (0,∞), then the

above diagram is commutative with the prior p′ on Θ′ = {(E, θ)} defined by

p′(E, θ)dθ = c · pk(E)p1(θ)dθ. (3.7)

Proof Write ϑ = (µ, σ2, σ2
τ ,E), dϑ = dµdσ2dσ2

τ , and Σ0 = σ2In + σ2
τXEXT . Let

Σ = In + θ ·XEXT , Q = In − 1(1TΣ−11)−11TΣ−1 as in Section 3.2.4 . Then

∫

ϑ∈T−1
Θ ((E,θ))

f(y|ϑ)p(ϑ)dϑ

=
∫

µ∈R,
σ2
τ

σ2 =θ
(2π)−

n
2 |Σ0|−

1
2 exp{−1

2
(y − µ1)TΣ0

−1(y − µ1)}

·c · pk(E) · (σ2)−2 · p1(
σ2

τ

σ2 )dµ dσ2dσ2
τ
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u=σ2,θ=σ2
τ

σ2
=

∫

µ∈R,u∈R+
(2π)−

n
2 |Σ|−1

2u−
n
2 exp{−1

2
(y − µ1)TΣ−1(y − µ1)

1

u
}

·c · pk(E) · u−2 · p1(θ) · u dµ du · dθ

= c pk(E)(2π)−
n
2 |Σ|−1

2p1(θ)
∫

u∈R+
u−

n+2
2 exp{−1

2
yTΣ−1Qy

1

u
}du

·
∫

µ∈R
exp{−1TΣ−11

2u
· (−µ + (1TΣ−11)−11TΣ−1y)2}dµ · dθ

= c pk(E)(2π)−
n
2 |Σ|−1

2p1(θ)
∫

u∈R+
u−

n+2
2 exp{−1

2
yTΣ−1Qy · 1

u
}

·(2π)
1
2u

1
2 (1TΣ−11)−

1
2du · dθ

= Γ(
n− 1

2
)π−

n−1
2 · |Σ|−1

2 (1TΣ−11)−
1
2 (TS(y)TΣ−1QTS(y))−

n−1
2

·c pk(E)p1(θ)dθ · ‖y − ȳ1‖1−n

∝ f(TS(y)|(E, θ)) · p′(E, θ)dθ.

Therefore,

∫

ϑ∈T−1
Θ ((E,θ))

f(ϑ|y)dϑ =

∫
ϑ∈T−1

Θ ((E,θ)) f(y|ϑ)p(ϑ)dϑ
∫
ϑ1∈Θ f(y|ϑ1)p(ϑ1)ν(dϑ1)

=

∫
ϑ∈T−1

Θ ((E,θ)) f(y|ϑ)p(ϑ)dϑ

∑
E1

∫
θ1∈R+

[∫
ϑ∈T−1

Θ ((θ1,E1)) f(y|ϑ)p(ϑ)dϑ
]

=
f(TS(y)|(E, θ))p′(E, θ)dθ∑

E1

∫
θ1∈R+

f(TS(y)|(E1, θ1))p′(E1, θ1)dθ1

= f((E, θ)|TS(y))dθ.

So the diagram is commutative. #

Based on Proposition 3.1, the prior (3.6) defined on {(µ, σ2, σ2
τ ,E)} for the original
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model (3.2) is compatible with the corresponding prior (3.7) for the reduced model

depending only on the residual configuration statistic. Specifically, if we choose

p1(θ) ∝ θα−1/(1 + θ)2α

with α > 0, the Bayesian inference on variety effects is consistent with the marginal

posterior distribution on partitions calculated in Section 3.2.5 .

3.4.2 Posterior Distribution on Variety Effects

Fixing any partition E, let bi, ȳi be the number of observations and the sample mean

in the ith block respectively as in Section 3.2.4 . Let i(r) be the block in which variety

r occurs. Given the sample y, the marginal posterior distribution of τ conditional

on (E, θ) is the multivariate t distribution ([28]) defined on Rk with location vector

τ̂E = (τ̂E
1 , . . . , τ̂E

k )T , scale matrix Λ and n− 1 degrees of freedom, where

τ̂E
r = ȳi(r) −

1

1 + θbi(r)
(ȳi(r) − ȳw),

Λrs =
1

n− 1
(yTΣ−1Qy)


 θErs

1 + θbi(r)
+

1/Σwi

(1 + θbi(r))(1 + θbi(s))


 .
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Furthermore, if the varieties r and s are not in the same block of E, the marginal

posterior distribution of the variety contrast τr − τs conditional on (E, θ) satisfies

(τr − τs)− (τ̂E
r − τ̂E

s )

(DT
rsΛDrs)

1
2

∼ t(n− 1),

where the elements of Drs ∈ Rk are all zero except that the rth one is 1 and the sth

one is −1. Otherwise, τr − τs ≡ 0.

After averaging over θ and E, the marginal posterior distribution of the variety

contrast τr− τs is a mixture, which has an atom at 0 with probability Pr(r ∼ s |y) =

∑
E:Ers=1 p(E|y) and a continuous component with density function

∑

E:Ers=0
p(E|y)

∫

θ>0
f(τr − τs|θ,E,y)f(θ|E,y)dθ. (3.8)

Both the marginal posterior distribution of θ and the marginal posterior distribution

of E have the forms given in Section 3.2.5 .

3.4.3 Example 2: Dyestuff Data (Continued)

With α = 1 and λ = 1 in the prior for (E, θ), Figure 3.1 shows the continuous

component of the marginal posterior distribution of the greatest observed difference

τ5 − τ6, as well as the marginal posterior distributions from the classical random

and fixed effect models in Box and Tiao ([11], sec. 7.2). Indeed, the distribution

from the random effect model can also be derived from the partition model by fixing
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E = 1|2|3|4|5|6 and setting p1(θ) = 1/(1 + kθ), which is the Box and Tiao prior.
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Figure 3.1: Marginal Posterior Distributions of τ5 − τ6 for the Dyestuff Data

Based on (3.8), the continuous component of p(τ5−τ6|y) from the partition model

is indeed a linear combination of p(τ5 − τ6|E,y)’s such that E56 = 0. The shrinkage

towards zero is more severe than the conventional random effect model. Besides

that, unlike the random or fixed effect models, it allows a positive probability for

p(τ5 = τ6|y).

Table 3.7: Posterior Probabilities on Variety Contrast τ5 − τ6 ×100%
Models τ5 < τ6 τ5 = τ6 τ5 > τ6
Fixed effect model 0.02 0 99.98
Random effect model 0.32 0 99.67
Model with partitions 0.42 4.97 94.61



CHAPTER 4

APPLICATION TO CLUSTER ANALYSIS

The aim of cluster analysis or unsupervised classification is to cluster the subjects

into homogeneous groups based their observed features (see [25] for a good review).

A set of non-overlapping clusters naturally forms a partition of the subjects. From

a Bayesian point of view, the purpose of cluster analysis is not only to identify the

modal partition, but to make inference on the marginal posterior distribution on

partitions. In this chapter, we apply the partition model described in the previous

chapter to cluster analysis. Since the number of partitions Bn increases rapidly with

n, the marginal posterior probabilities of partitions are not practical to be calculated

explicitly for large n. Instead, the Markov Chain Monte Carlo (MCMC) methods

are used to estimate the posterior probabilities that two subjects belong to the same

block, as well as the posterior distribution on the number of blocks. We describe two

different Metropolis-Hastings algorithms for this purpose.

4.1 A Partition Model for Cluster Analysis

Consider a special case of the model (3.2). There are n varieties numbered from

1 to n. Each variety has only one observation. Denote by yi the observed value

73
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belonging to the variety i, i = 1, . . . , n. Throughout this chapter, we consider yi ∈ R

only. For applications to higher-dimensional cases, please see [39]. Denote by E the

homogeneous relationship among the n varieties, which is not observed. The model

is as follows

Y | µ, σ2, σ2
τ ,E ∼ Nn(µ1, σ2In + σ2

τE) on Rn,

E ∼ pn(·) on En.

Evidently, if additional variety n + 1 with observation yn+1 is considered, the joint

density of (E,y) satisfies the Kolmogorov consistency condition ([38]):

pn(E, y1, . . . , yn) =
∑

E′∈π−1
[n]

(E)

∫ ∞
0

pn+1(E
′, y1, . . . , yn, yn+1)dyn+1,

where π[n] : En+1 → En is the deletion operator that removes the (n + 1)th row and

column.

In all calculations in this chapter, pn(·) = pn(·; λ) is the Ewens sampling distri-

bution with parameter λ. The corresponding joint density of (E,y) belongs to the

Gauss-Ewens cluster process ([38]), which is infinitely exchangeable.

For the same reason as in Section 3.4.1, we choose the prior on (µ, σ2, σ2
τ )

p(µ, σ, σ2
τ ) ∝ (σ2)−2(σ2

τ/σ2)α−1/(1 + σ2
τ/σ2)2α
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for α > 0. Following a similar argument as in Section 3.2.5, the posterior distribution

at E ∈ En is

p(E|y) = c · pn(E)× L(E;y).

The normalized constant c is just the reciprocal of
∑

E pn(E) × L(E;y). It is not

practical to calculate c explicitly if n is large. For example, n ≥ 20.

4.2 Simple Metropolis-Hastings Algorithm

Fortunately, we can still use the Metropolis-Hastings algorithms to generate Markov

chains with stationary distribution p(E|y) without knowing c. Then we can estimate

summary statistics such as p(#E = k|y), E(#E|y) or pr(r ∼ s|y) by Markov Chain

Monte Carlo methods.

Perhaps one of the simplest Metropolis-Hastings algorithms is as follows:

0◦ Simulate the initial partition E1 of the index set [n] = {1, . . . , n} following the

Ewens sampling distribution (see Section 2.1) .

1◦ Choose unit i from [n] randomly. Denote by

B1, B2, . . . , Bk

the blocks formed by the left n−1 elements. Denote by i# = 1, 2, . . . , k or k+1

the index of block where i comes from. Here i# = k + 1 indicates that i comes
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from a single-element block.

2◦ Randomly choose j# = 1, 2, . . . , k or k + 1 such that j# 6= i#. Put the unit i

into the block Bj# and form a new partition E2. Again, j# = k + 1 indicates

letting i form a single-element block in E2.

3◦ Accept E2 with probability

r = min

{
1,

p(E2|y)

p(E1|y)

}
.

Otherwise keep E1 for the next iteration.

4◦ Repeat steps from 1◦ to 3◦ until the target statistics converge.

Basically, the transition distribution from E1 to E2 is just uniform. It won’t

reflect any information about the target distribution p(E|y). In a typical simulation,

the average acceptance ratio is only 5% or lower. So the MCMC based on this simple

algorithm is not quite efficient.

4.3 Proposed Metropolis-Hastings Algorithm

We propose the following Metropolis-Hastings algorithm. In each iteration, we either

“split” a single block into two smaller ones or “combine” two blocks into a bigger one.

0◦ Simulate the initial partition E1 of [n] following the Ewens sampling distribu-

tion.
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1◦ Determine to do the “split” step or the“combine” step.

In detail, if #E1 = 1, go to Step 2 (“split”); if #E1 = k, go to Step 3 (“com-

bine”); if 1 < #E1 < k, go to Step 2 with probability 1 − pc, or go to Step 3

with probability pc. Here, pc is pre-determined. Typically, pc = 0.5 .

2◦ If #E1 < k, choose one block of E1 containing more than two elements, then

“split” it into two nonempty blocks.

In detail, given E1 = {B1, B2, . . . , BL} ∈ Ek with nonzero block sizes b1, b2,

. . . , bL, do the following steps:

a) Choose block Bl with probability proportional to the sample variance of

Bl (0, if bl = 1).

b) Choose m ∈ {1, 2, . . . , bl − 1} randomly to split Bl into two nonempty

blocks with block sizes m, bl −m.

c) Choose 0 ≤ r ≤ R = min{m, bl −m} with probability proportional to δr

(0 < δ < 1). For example, δ = 0.5 .

d) Rewrite Bl = {a1, a2, . . . , abl
} in ascending order, randomly choose r el-

ements from {a1, . . . , am}, then exchange them with r randomly chosen

elements from {am+1, . . . , abl
}. Denote the two subsets after the exchange

by Bl1 and Bl2.
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The new partition candidate after “split” is

E2 = {B1, B2, . . . , Bl−1, Bl1, Bl2, Bl+1, . . . , BL} .

3◦ If #E1 > 1, choose two blocks of E1 amd “combine” them into one block.

In detail, given E1 = {B1, B2, . . . , BL} ∈ Ek with block means ȳ1, ȳ2, . . . , ȳL,

choose block Bi randomly, then choose block Bj 6= Bi with probability propor-

tional to [(|ȳj − ȳi| + ε0]
−1, where 0 < ε0 ¿ 1. For example, ε0 = 0.0001 .

Combine Bi & Bj into a new block Bij . The new partition candidate E2 after

“combine” consists of Bij and the blocks of E1 other than Bi, Bj .

4◦ Calculate the acceptance ratio

γ = min

{
1,

p(E2|y)p(E1|E2)

p(E1|y)p(E2|E1)

}
= min

{
1,

L(E2; y)

L(E1; y)
· pk(E2)

pk(E1)
· p(E1|E2)

p(E2|E1)

}
.

Accept E2 with probability γ, otherwise keep E1.

In detail, if E2 is generated after the “combine” step,

p(E2|E1) =
p
1{#E1<k}
c

#E1

[
(|ȳi − ȳj |+ ε0)

−1
∑

l 6=i(|ȳl − ȳi|+ ε0)−1 +
(|ȳi − ȳj |+ ε0)

−1
∑

l 6=j(|ȳl − ȳj |+ ε0)−1

]
.
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Otherwise, E2 is generated by the “split” step. Then

p(E2|E1) =
(1− pc)

1{#E1>1}s2(Bl)

(bl − 1)
∑#E1

i=1 s2(Bi)
·


δr12/

∑R
i=0 δi

(
m
r12

)(
bl−m
r12

) +
δr21/

∑R
i=0 δi

(
m
r21

)(
bl−m
r21

)


 ,

where r12 is the number of elements needed to be exchanged to get Bl1 & Bl2 if

Bl1 contains the first m elements before exchange, r21 is the number of elements

needed to be exchanged if Bl2 contains the first bl−m elements before exchange,

and s2(Bi) is the sample variance of block Bi.

5◦ Repeat Step 1 ∼ Step 4 until the target statistics got from MCMC converge.

The algorithm described above is much more complicated than the simple one in

the previous section. It reflects p(E|y) better by splitting a block according roughly to

the increasing order of the observations in it or combining two blocks if their sample

means are close to each other. Besides, in each iteration, the proposed algorithm

has much greater chance to change the entire partition structure such as the number

of blocks. In a typical simulation, the average acceptance ratio is between 0.35 and

0.40 .
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4.4 Simulation Study

4.4.1 Comparison of Two Algorithms

To compare the proposed algorithm in Section 4.3 with the simple one in Section 4.2,

we simulate a data set of size 20 from

Y1, ..., Y10 i.i.d. ∼ N(−2, 1);

Y11, ..., Y20 i.i.d. ∼ N(2, 1).

For the same data set, we run 9 independent Markov chains for each algorithm

to estimate E(#block|y) and the average of P (i ∼ j|y). Each chain starts from a

randomly chosen partition E following the Ewens sampling distribution with λ = 1.

For each Markov chain, 100, 000 iterations are counted after 500 burn-in iterations.

It takes an Intel Pentium 2.4GHz desktop with 512 Mb of RAM about 11 minutes to

complete each Markov chain.

Table 4.1 shows that the proposed algorithm converges much faster than the simple

one when estimating E(#block|y) and p(i ∼ j|y). Indeed, the standard deviations of

the estimates by the proposed algorithm are as small as 1/6 of the ones by the simple

algorithm.
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Table 4.1: Estimated E(#block|y) and p(i ∼ j|y) by Metropolis-Hastings Algorithms
E(#block|y) Average of p(i ∼ j|y)

Algorithm Simple Proposed Simple Proposed
Chain 1 3.748 3.621 0.455 0.475
Chain 2 3.492 3.625 0.499 0.479
Chain 3 3.573 3.637 0.478 0.472
Chain 4 3.592 3.627 0.463 0.473
Chain 5 3.614 3.644 0.471 0.469
Chain 6 3.802 3.657 0.457 0.469
Chain 7 3.690 3.658 0.465 0.469
Chain 8 3.884 3.631 0.430 0.471
Chain 9 3.649 3.621 0.462 0.476
Mean 3.671 3.636 0.465 0.472
Std 0.123 0.015 0.019 0.003

4.4.2 Cluster Analysis

To see how much information about the clusters we can get from data, we simulate

four data sets in R1 as follows. First, the number of clusters k = 1, 2, 3 or 4 is

specified. Secondly, the cluster centers are simulated from N(0, k2) to make the

clusters well-separated. Thirdly, the cluster labels of points are simulated from the

discrete uniform distribution on {1/k, . . . , 1/k}. Finally, the observations y1, . . . , y20

are just the cluster centers plus random noises simulated i.i.d. from N(0, 1). The

realized block sizes with cluster centers in increasing order are {8, 12} for k = 2,

{10, 5, 5} for k = 3, and {5, 3, 3, 9} for k = 4. The four data sets are shown in the

same plot (see Figure 4.1) .

We assume that the prior on the partitions is the Ewens sampling distribution with

λ = 1 and the prior on the variance ratio θ = σ2
τ/σ2 has density 1/(1 + θ)2. To make
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Figure 4.1: Four Simulated Data Sets Given Number of Clusters 1, 2, 3, or 4

inference on the partition E, we use the proposed algorithm to estimate P (#E = i|y)

and P (i ∼ j|y) = E(E(i, j)|y), i, j = 1, . . . , n. The latter P (i ∼ j|y) indicates

how likely the ith and jth points belong to the same cluster. The average estimates

based on 5 independent Markov chains are summarized in Table 4.2, Table 4.3 and

Table 4.4 . Chains as long as 200,000 after 500 burn-in iterations are used to make

sure the target statistics converge. For illustrative purpose, only part of P (i ∼ j|y)’s

are list in Table 4.3 and Table 4.4 .

In Table 4.2, P (#E = ·|y) for Case 1 is fairly close to the Ewens’ prior. Roughly

speaking, the smallest i such that P (#E = i|y) is greater than the prior or at least

comparable with the prior might indicate the number of observed clusters. Bigger

probability shows stronger evidence. For example, the first significantly large item
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Table 4.2: Posterior Distribution of Number of Blocks, P (#E|y)× 1000
#E 1 2 3 4 5 6 7 8 9 10 11 E(#E|y)
Case 1 44 167 273 257 160 69 23 6 1 0 0 3.66
Case 2 0 196 344 274 131 43 10 2 0 0 0 3.52
Case 3 7 50 222 325 243 110 34 7 1 0 0 4.26
Case 4 5 23 59 261 344 211 75 17 3 0 0 4.95
Ewens 50 177 275 251 153 66 21 5 1 0 0 3.60

for Case 2 is P (#E = 2|y) = 0.196 while P (#E = 2) is 0.177 in the prior. Table 4.2

also shows that P (#E = 1|y) is almost 0. Indeed, the 5 Markov chains of length

200, 000 visit the single-block partition 14 times on average. The evidence for #E = 2

in Case 2 is fairly strong.

Table 4.3: Posterior Probabilities for Case 2, P (i ∼ j|y)× 100
i, j 1 3 5 7 8 9 11 13 15 17 19 20
1 100 65 58 55 54 0 0 0 0 0 0 0
3 65 100 78 75 74 0 0 0 0 0 0 0
5 58 78 100 80 80 0 0 0 0 0 0 0
7 55 75 80 100 80 0 0 0 0 0 0 0
8 54 74 80 80 100 0 0 0 0 0 0 0
9 0 0 0 0 0 100 70 69 69 68 66 64
11 0 0 0 0 0 70 100 87 87 87 85 82
13 0 0 0 0 0 69 87 100 87 88 86 82
15 0 0 0 0 0 69 87 87 100 88 86 83
17 0 0 0 0 0 68 87 88 88 100 86 84
19 0 0 0 0 0 66 85 86 86 86 100 85
20 0 0 0 0 0 64 82 82 83 84 85 100

The posterior probabilities that two units belong to the same block in Table 4.3

also support the two-block conclusion for Case 2. Clearly, the matrix P (i ∼ j|y)

identifies the true partition for Case 2, where the indices 1, . . . , 20 are corresponding

to the reordered points in increasing order. Because the two clusters in Case 2 are
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well separated (see Figure 4.1) .

Table 4.4: Posterior Probabilities for Case 3, P (i ∼ j|y)× 100
i, j 1 3 6 9 10 11 13 15 16 17 19 20
1 100 85 83 82 76 11 6 6 5 5 4 4
3 85 100 84 83 77 11 6 6 5 5 5 4
6 83 84 100 83 79 11 6 6 5 5 5 5
9 82 83 83 100 79 12 7 6 5 5 5 5
10 76 77 79 79 100 13 7 6 6 5 5 5
11 11 11 11 12 13 100 54 48 24 14 13 13
13 6 6 6 7 7 54 100 65 38 24 22 21
15 6 6 6 6 6 48 65 100 43 28 25 25
16 5 5 5 5 6 24 38 43 100 58 55 54
17 5 5 5 5 5 14 24 28 58 100 77 76
19 4 5 5 5 5 13 22 25 55 77 100 81
20 4 4 5 5 5 13 21 25 54 76 81 100

Case 3 shows an example that the clusters in the data set are not separated very

well. Note that P (#E = 2|y) = 0.050 for Case 3 (see Table 4.2), which is a little less

than 1/3 of the corresponding prior probability 0.177. If we denote by E′ the partition

generated by combining the clusters 1 and 2 in the true partition E0 to form a two-

block partition, then P (E′|y)/P (E0|y) = 0.25 . If we check P (i ∼ j|y)’s in Table 4.4,

the smallest item is P (11 ∼ 20|y) = 0.13 if both i and j belong to the clusters 1 and 2.

Besides, the clustering information based on the matrix P (i ∼ j|y) is not so clear as

in Case 2. The 16th point, which is the circled “1” in Figure 4.1, also has chance to be

clustered into the cluster 2. Indeed, the probability ratio P (E′′|y)/P (E0|y) = 0.46,

where E′′ indicates the partition clustering 16 into the block {11, 12, . . . , 15} and

keeping the other relationships as in E0 .

Typically, P (#E = i|y) is still large if i is bigger than the true number of clusters
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by 1, 2 or even 3. For example, P (#E = i|y) = 0.325, 0.243 or 0.110 for i = 4, 5

or 6 in Case 3. It suggests E(#E|y) may not be a good estimate for the number of

observed clusters unless the clusters are separated very well. Fortunately, the matrix

P (i ∼ j|y) is fairly informative for clustering.



PART II: PERMANENT PROCESS AND

CLASSIFICATION MODELS



CHAPTER 5

PERMANENT PROCESS

In this chapter, we review the permanent process described by McCullagh and Møller

([36]). We develop an algorithm for searching the maximum likelihood estimate for

the parameters of the permanent process.

5.1 Permanent Polynomial

For each n by n matrix K = (Kij), there is a polynomial of degree n

perα(K) =
∑
σ

α#σK1σ(1) · · ·Knσ(n) ,

where the sum runs over all permutations of {1, 2, . . . , n} and #σ indicates the number

of cycles of the permutation σ. For example,

σ =




1 2 3

1 3 2


 =⇒ σ = (1)(23) =⇒ #σ = 2.

In the mathematical literature, perα(K) is called the α-permanent of K ([56]).

Particularly, per1(K) is called the permanent of K (see [40] for more details), and

87
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per−1(−K) is just the determinant of K. The quantity detα(A) = αnper1/α(A) is

called the α-determinant ([49]).

The coefficient of α in the permanent polynomial perα(K) is the sum of cyclic

products ([36])

cyp(K) = lim
α→0

α−1perα(K) =
∑

σ:#σ=1
K1σ(1) · · ·Knσ(n) .

5.2 Gaussian Moments

The permanent polynomial arises naturally in statistical works associated with the

Cox process as follows ([36]). Let Z be a Gaussian random field on the feature space

X with mean 0 and covariance function C/2. In other words, Z(x) ∼ N(0, C(x, x)/2)

and Cov(Z(x), Z(x′)) = C(x, x′)/2 for any x, x′ ∈ X . Then the joint cumulant and

the joint moment of Z(x1)
2, . . . , Z(xn)2 ([36], [49]) are

E
(
Z(x1)

2Z(x2)
2 · · ·Z(xn)2

)
= per1/2[C](X),

cum
(
Z(x1)

2, Z(x2)
2, . . . , Z(xn)2

)
= cyp[C](X)/2,

where X = (x1, x2, . . . , xn)T , and [C](X) is the n by n matrix (C(xi, xj))ij .

Proposition 5.1 ([56]) The cumulant generating function of (Z(x1)
2, . . . , Z(xn)2)

is

CX(t1, t2, . . . , tn) = −1

2
log |In − diag(t1, t2, . . . , tn) · [C](X)| . (5.1)
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Proof Recall three facts in matrix theory (for example, see [6]). Let A be any n

by n matrix, and let ‖ · ‖ be a normalized submultiplicative norm (that is, ‖In‖ = 1,

‖AB‖ ≤ ‖A‖ · ‖B‖), then

1) log |eA| = tr(A), where eA =
∑∞

k=0 Ak/k!;

2) log(In − A) = −∑∞
i=1 Ai/i is well defined, if ‖A‖ < 1;

3) elog(In−A) = In − A, if ‖A‖ < 1.

Thus, log |In−A| = log |elog(In−A)| = tr(log(In−A)) = −∑∞
k=1 tr(Ak)/k, if ‖A‖ < 1.

Let A = diag(t1, t2, . . . , tn) · [C](X) = (tiCij), where Cij = C(xi, xj). If maxi |ti|

is small enough such that ‖diag(t1, . . . , tn)‖ < ‖[C](X)‖−1, then ‖A‖ < 1. The right

hand of (5.1) is

−1

2
log |In − diag(t1, t2, . . . , tn) · [C](X)| = −1

2
log |In − A| = 1

2

∞∑

k=1
tr(Ak)/k,

where tr(Ak) =
∑

i1,...,ik
ti1 · · · tikCi1,i2Ci2,i3 · · ·Cik,i1 . The left hand of (5.1) is

CX(t1, t2, . . . , tn)

=
∞∑

k=1

1

k!

∑

i1,...,ik

ti1 · · · tikcum(Z(xi1)
2, . . . , Z(xik

)2)

=
1

2

∞∑

k=1

1

k!

∑

i1,...,ik

ti1 · · · tikcyp[C](xi1 , . . . , xik
)

=
1

2

∞∑

k=1

1

k!

∑

i1,...,ik

ti1 · · · tik
∑

σ∈Sk,#σ=1
Ci1,iσ(1)

Ciσ(1),iσ2(1)
· · ·Ci

σk−1(1)
,i1
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=
1

2

∞∑

k=1

1

k!

∑

σ∈Sk,#σ=1

∑

i1,...,ik

ti1 · · · tikCi1,iσ(1)
Ciσ(1),iσ2(1)

· · ·Ci
σk−1(1)

,i1

=
1

2

∞∑

k=1

1

k!
· (k − 1)!

∑

i1,...,ik

ti1 · · · tikCi1,i2 · · ·Cik,i1

=
1

2

∞∑

k=1

1

k
tr(Ak)

Thus, (5.1) is true, if ‖diag(t1, . . . , tn)‖ < ‖[C](X)‖−1. #

Corollary 5.1 The moment generating function of (Z(x1)
2, . . . , Z(xn)2) is

MX(t1, t2, . . . , tn) = |In − diag(t1, t2, . . . , tn) · [C](X)|−1
2 , (5.2)

if ‖diag(t1, . . . , tn)‖ < ‖[C](X)‖−1.

Note that Corollary 5.1 is a special case of the theorem proved by D. Vere-Jones

([56]).

5.3 Density Function

The permanent process on X is a Cox process with the intensity function

Λ(x) =
k∑

r=1
Z2

r (x),

where Z1, . . . , Zk are independent and identically distributed Gaussian random fields

on X with zero mean and covariance function C/2. So C is symmetric and positive
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definite. For many applications, X = Rd.

Typically, a spatial point pattern {x1, . . . , xn} is observed within a compact subset

S, or a bounded window, in X . If C is also bounded on S, it has the spectral

representation ([23]):

C(x, x′) =
∞∑

r=0
λrer(x)er(x

′), ∀x, x′ ∈ S,

where {λr}r and {er}r are the eigenvalues and the normalized eigenfunctions of C

respectively. In other words,

∫

S
C(x, x′)er(x)dx = λrer(x

′), ∀x′ ∈ S,

∫

S
er(x)es(x)dx = δrs.

Due to the symmetry of C, {er}r forms an orthonormal basis of L2(S). Because C is

positive definite, λr ≥ 0. If we write λ̃r = λr/(1+λr), we can define a new covariance

function

K(x, x′) =
∞∑

r=0
λ̃rer(x)er(x

′).

McCullagh and Møller ([36]) obtained the marginal density of the permanent

process

f(X) = e|S|−αDperα[K](X),
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where X = (x1, x2, . . . , xn)T , α = k/2, D =
∑∞

r=0 log(1 + λr) = −∑∞
r=0 log(1− λ̃r).

Unlike general Cox processes, the permanent process has its density function in

explicit form. The flexibility in choosing k (or α) and C makes the permanent process

potentially useful.

5.4 Numerical Computation

Consider a specific case. Let S = [0, T ]× [0, T ] ⊆ R2,

C(x,x′) = σ2 exp{−‖x− x′‖2/τ2} = C(x, x′) · C(y, y′), (5.3)

where x = (x, y)T , x′ = (x′, y′)T , C(x, x′) = σ exp{−(x − x′)2/τ2}. Given the

observations X = (x1, . . . ,xn) ⊆ S, where xi = (xi, yi)
T , i = 1, 2, . . . , n, we want to

calculate the log likelihood

l(α, σ, τ) = log perα[K](X) + |S| − αD.

5.4.1 Proposed Algorithm

We propose an algorithm to calculate l(α, σ, τ) as follows:

1◦ Find the eigenvalues and eigenfunctions of C on [0, T ].

Fix a large enough integer m. Divide [0, T ] equally into m subintervals. Let

ai = (i− 1/2)T/m, i = 1, 2, . . . , m be the centers of the subintervals.
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If λr and er are the eigenvalue and eigenfunction of C respectively, then

m∑

j=1
C(ai, aj)er(aj)

·
=

m

T
λr · er(ai).

Calculate the eigenvalue λrm/T and the eigenvector er(a) of C(a, aT ), where

a = (a1, . . . , am)T . Standardize er(a).

2◦ Estimate er(xi), er(yi), i = 1, 2, . . . , n based on linear interpolation or extrapo-

lation.

3◦ Estimate D using

D
·
=

m∑

r,s=1
log(1 + λrλs).

4◦ Estimate K using

K(xi,xj)
·
=

m∑

r,s=1
λrλs · er(xi)es(yi) · er(xj)es(yj).

5◦ Estimate the log likelihood using

l(α, σ, τ) = log(perα[K](X)) + |S| − αD.
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5.4.2 Numerical Illustration

In this section, we use a numerical example to illustrate how to calculate the log

likelihood given the observations. Furthermore, we can get the maximum likelihood

estimate (MLE) for the parameters.

Let S = [0, 2π] × [0, 2π]. Thus |S| = 4π2. We simulate n = 20 data points

uniformly in S, which can be found in Figure 5.1(a). We assume the permanent model

with covariance function described in (5.3). For illustrative purpose, we assume α = 1

to simplify the calculation. Then the purpose is to calculate the log likelihood l(σ, τ)

and the MLE for (σ, τ).
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Figure 5.1: Simulated Data Set and Contour Plot for Log-Likelihood

Based on the algorithm described in Section 5.4.1, we calculate the log likelihood

l(σ, τ) for different combinations of the parameters. For this particular case, m = 300

is used as the number of subintervals. Figure 5.1(b) shows the contour plot for l(σ, τ).

Note that there are more than one local maximum. After further exploration, we get
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the MLE

σ̂ = 0.71, τ̂ = 0.38 .



CHAPTER 6

CLASSIFICATION MODELS

In this chapter, an exchangeable cluster process based on the permanent process is

constructed for classification problems. In the corresponding classification model,

only 2-3 parameters need to be estimated, regardless of the number of classes or the

dimension of the feature space.

6.1 Remarks on the Literature

In the literature, there are two kinds of classification problems, supervised or unsu-

pervised (see [25], [42] for a good review). Given observations with information on

measured features and class labels, the aim of supervised classification is to classify a

new unit u on the basis of its measured features x(u) ∈ X , the feature space. In this

chapter, we focus on supervised classification problems.

If the inference based on the classification model provides a probability distribu-

tion on the set of class labels, the model is called stochastic classification model ([38]).

Besides, if the set of classes is pre-determined and fixed, the classification model is

called closed. Otherwise, if the model permits a new unit to be assigned to a class

that has not been observed, it is called open classification model.

96
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The modern theory on supervised classification problems begins with Fisher’s

discriminant model ([22], [47]). Logistic regression model was proposed first in 1960s

(see [48] for a good review). Most stochastic classification models used in the literature

assume that the class labels Yi’s are independent. Many efforts are made to estimate

the functions fr such that

log(pr(Y (u) = r|X)) = fr(X(u)).

To get good estimate for fr, we need either stronger assumption to narrow the candi-

date set, or large sample size to gather enough information. As the number of classes

or the dimension of feature space increases drastically, the mission becomes hopeless.

The approach proposed in this chapter is quite different. The goal is to construct

a classification model with no more than 4-5 parameters regardless of the number

of classes or the dimension of the feature space. Besides, we assume exchangeable

components instead of independent ones.

6.2 A Marked Point Process

Let X be a general Poisson process in the feature space X with intensity function

λ(x) with respect to some baseline measure µ on X . Then for each measurable set

A ⊂ X , X(A), which is the number of events occurred in A, follows the usual Poisson

distribution with parameter
∫
A λ(x)µ(dx). In addition, for any two non-overlapping
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subsets A and A′ of X , the event counts X(A) and X(A′) are independent. More

details about Poisson process could be found in [32].

If the Poisson process X is driven by a random intensity function Λ(x), it is known

as a Cox process, or a doubly stochastic Poisson process ([32], [17]). As mentioned

in Section 5.3, the permanent process is a special kind of the Cox process, whose

marginal density function can be written in explicit form.

Let µ be a non-random baseline measure in X . Given a random non-negative

intensity function Λ(x), the expected number of events following the associated Cox

process in an infinitesimal ball dx centered at x is E(Λ(x))µ(dx). Furthermore, the ex-

pected number of ordered pairs of distinct events in dx dx′ is E(Λ(x)Λ(x′)µ(dx)µ(dx′).

In general, for x = (x1, . . . , xn) ∈ Xn, we call

m(n)(x) = E(Λ(x1) · · ·Λ(xn)) (6.1)

the nth order product density at x. It indicates how likely we can get the observations

{x1, . . . , xn}.

Suppose X(1), . . . ,X(k) are k independent Cox processes on X driven by indepen-

dent random intensity functions Λ1(x), . . . , Λk(x) with respect to the same baseline

measure µ. The marked process can be presented by (X, y). Here, X = ∪X(r)

is the superposition process, which is still a Cox process with intensity function

Λ•(x) =
∑

r Λr(x), and y is the list of labels indicating which Cox process the obser-
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vation belongs to. Then the conditional distribution of y given the observed feature

vectors x ∈ Xn is

pn(y|x) =

∏
r mr(x

(r))

m•(x)
, (6.2)

where x(r) are observations labelled r, mr and m• are corresponding to the product

density functions (6.1) for the rth Cox process and the superposition Cox process

respectively. For the empty set, we define mr(∅) = 1, which permits a class having

not been observed yet. In other words, the model is an open classification model.

Besides, the conditional distribution remains invariant if we change the order of the

paired observations (x1, y1), . . . , (xn, yn). Here xi and yi are observed feature vector

and class label respectively. So we only assume the observations are exchangeable.

For prediction purpose, we are interested in classifying a new unit u′ based on its

observed feature variables x′. The the conditional probability assigning u to class r

can be derived directly from (6.2). That is,

pn+1(y(u′) = r|data) ∝ mr(x
(r) ∪ {x′})/mr(x

(r)). (6.3)

Specifically, the probability that u′ is assigned to a class r which has not been observed

is proportional to E(Λ(x′)).
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6.3 Permanent Cluster Process

Suppose each component process X(r) in Section 6.2 is a permanent process with

parameter αr and covariance function C/2. In other words, X(r) is driven by the

random intensity function

Λr(x) = Z
(r)
1 (x)2 + · · ·Z(r)

2αr
(x)2,

where Z
(r)
1 , . . . , Z

(r)
2αr

are i.i.d. copies of the Gaussian random field Z with mean 0

and covariance function C/2.

McCullagh and Møller ([36], Theorem 1) proved

E(Λr(x1) · · ·Λr(xn)) = perαr [C](x1, . . . , xn),

for any x1, . . . , xn ∈ X . In other words, the product density for process r is mr(x) =

perαr [K](x). Besides, the superposition process X of the k independent permanent

processes is still a permanent process ([36]). The parameters of X are α• =
∑

r αr and

C/2. So the product density for X is m•(x) = perα• [C](x). By (6.2), the conditional

distribution of the labels y given feature observations x is

pn(y|x) =
perα1

[C](x(1)) · · · perαk
[C](x(k))

perα• [C](x)
. (6.4)

For a new unit u′ with observed features x′, the conditional probability of class r
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following (6.3) is proportional to the permanent ratio

pn+1(y(u′) = r|data) ∝ perαr [C](x(r), x′)/perαr [C](x(r)). (6.5)

We define perα[C](∅) ≡ 1. For a class r which has not been observed, x(r) is empty,

then (6.5) yields pn+1(y(u′) = r|data) ∝ αrC(x′, x′).

Same as in Section 6.2, both (6.4) and (6.5) keep invariant if we change the

order of observations (xi, yi)i=1,...,n . So we only need to assume the observations

are exchangeable. Besides, the classification model based on the permanent cluster

process is open. Because the model allows a new unit to be assigned to a class r

which has not been observed yet.



CHAPTER 7

PERMANENT RATIO APPROXIMATION

In this chapter, we propose analytic approximations for the ratio of two α-permanents.

It’s valid for large α, but also reasonably accurate for α as small as 1.

7.1 Cyclic Approximations for Permanent Ratio

To make the permanent model applicable, we need to calculate the permanent ratio

R(t;x) =
perα[K]({t} ∪ x)

perα[K](x)
, (7.1)

where K is the given covariance function. Unfortunately, exact computation of per-

manents is a NP-hard problem. The best of approximation algorithms ([8]) runs at

an unappealing rate O(n7 log4 n). For these reasons we propose an analytic approxi-

mation as follows.

The α-permanent of the matrix [K](t, x1 . . . , xn) is a sum over (n + 1)! terms. In

a subset consisting of n! terms, the index t occurs in a cycle of length 1, giving rise

to the partial sum

αK(t, t)perα[K](x) .
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The index t may also occur in a cycle of length two such as (t, x1) or (t, x2) and so on.

There are n! permutations in which t occurs in a 2-cycle, giving rise to the additional

sum

n∑

i=1
αK(t, xi)K(xi, t)perα[K](x−i) ,

where x−i is the set of n − 1 points with the ith element removed. Similarly, the

index t may occur in a 3-cycle such as (t, xi, xj) or (t, xj , xi), giving rise to the sum

∑

i 6=j

αK(t, xi)K(xi, xj)K(xj , t)perα[K](x−i−j) .

In the cycle expansion of the permanent of order n + 1, there are n! terms in which t

occurs in a 1-cycle, n! terms in which t occurs in a 2-cycle, n! terms in which t occurs

in a 3-cycle, and so on up to cycles of length n+1. Therefore, we obtain the following

finite expansion by cycles for (7.1):

Rn(t;x) = αK(t, t) + α
∑

i

1

Rn−1(xi;x−i)

(
|K(t, xi)|2 +

∑

j 6=i

1

Rn−2(xj ;x−i−j)

(
K(t, xi)K(xi, xj)K(xj , t) +

∑

k 6=i,j

1

Rn−3(xk;x−i−j−k)

(
K(t, xi)K(xi, xj)K(xj , xk)K(xk, t) + · · ·

)))

This cycle expansion suggests a recursive approximation in which R0
n(t;x) = αK(t, t)
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is the uni-cycle approximation;

R1
n(t;x) = αK(t, t) + α

∑

i

|K(t, xi)|2/R0
n−1(xi;x−i)

= αK(t, t) +
∑

i

|K(t, xi)|2/K(xi, xi)

is the two-cycle approximation,

R2
n(t;x) = αK(t, t)+α

∑

i

1

R1
n−1(xi;x−i)

(
|K(t, xi)|2+

∑

j 6=i

K(t, xi)K(xi, xj)K(xj , t)

R0
n−2(xj ;x−i−j)

)

is the three-cycle approximation, and so on. The four-cycle approximation is

αK(t, t) + α
∑

i

1

R2
n−1(xi;x−i)

(
|K(t, xi)|2 +

∑

j 6=i

1

R1
n−2(xj ;x−i−j)

×
(
K(t, xi)K(xi, xj)K(xj , t) +

∑

k 6=i,j

K(t, xi)K(xi, xj)K(xj , xk)K(xk, t)

R0
n−3(xk;x−i−j−k)

))
.

Up to order four, this sequence is easy to compute, even for fairly large values of n. It

is an asymptotic approximation for large α, so the accuracy improves as α increases.

Some specific cases are list as follows:

(i) K(x, y) = δxyf(x).

Here f is some positive non-random function on X , and δxy = 1 if x = y and 0

otherwise. If t, x1, . . . , xn are pairwise different, then

R(t;x) = R0(t;x) = R1(t;x) = · · · ≡ αf(t).
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(ii) K(x, y) ≡ c for some constant c. Then

R0(t;x) ≡ cα,

R(t;x) = R1(t;x) = R2(t;x) = · · · ≡ c(α + n).

(iii) K is a projection of rank ν on X . That is,

∫

X
K(x, x)µ(dx) = ν,

∫

X
K(x, t)K(t, y)µ(dt) = K(x, y).

Then the two-cycle approximation determines a probability density in the sense

that it is non-negative and integrates to one:

(n + αν)−1
∫

X
R1

n(t; x) µ(dt) = (n + αν)−1
(
αν +

∑

i

∫ |K(t, xi)|2
K(xi, xi)

µ(dt)
)

= (n + αν)−1(αν +
∑

i

K(xi, xi)

K(xi, xi)
)

= 1.

A similar argument shows that the three-cycle and four-cycle approximations

also integrate to one, but it is not clear whether they are non-negative.
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7.2 Accuracy of the Cyclic Approximations

For n < 20, the accuracy of the approximation can be checked directly by comparison

with the exact computation. Our experience is that the 3-cycle approximation is

adequate in this range, and the four-cycle approximation usually has negligible error.

For larger values, say n > 50, the accuracy can be checked by examining special cases

in which the permanent can be calculated exactly in reasonable time. Examples

include tri-diagonal and similar banded matrices, and the constant matrix, and in

each of these cases the approximation is essentially exact. For more general matrices,

the accuracy can be gauged to some extent from an examination of the sequence of

approximations.

Figure 7.1: Approximations of perα[K](t,x)/perα[K](x)
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Figure 7.1 shows the approximated values of (7.1) for a sample of 100 x-values in
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(−π, π), plotted as a function of t in the same range. For this example, α = 1, and

K = exp(−(x−x′)2/τ2) with τ = 1. In the central peak, the lowest curve is the first-

order approximation, and the next three curves are successive approximations up to

order 4. The highest curve is an extrapolation based on the third and fourth approxi-

mations. The shape of these relative intensity functions depends fairly strongly on the

value of τ , but only slightly on α. In all cases, the difference between the second and

third-order approximations is considerably smaller than the difference between the

first and second. For α = τ = 1, the third-order approximation is approximately 6%

larger than the second in the central peak, while the second-order approximation is

approximately 18% larger than the first. The points for this example were generated

from the symmetric triangular distribution on (−π, π).



CHAPTER 8

SIMULATION STUDY

In this chapter, two examples are simulated to illustrate how the permanent classifi-

cation model works. Only 2-3 parameters need to be estimated for those cases. The

model performs well even if the classes occupy non-convex regions or disconnected

regions in the feature space.

8.1 Chequerboard Pattern

The first artificial example has two classes in a 3 × 3 chequer-board layout labelling

as follows

1 2 1
2 1 2
1 2 1

We assume the two-class permanent model (6.4) with α1 = α2, K(x, x′) =

exp(−‖x − x′‖/τ2). The training data consists of 90 units, with 10 feature val-

ues uniformly distributed in each small square as shown in Figure 8.1(a). We choose

parameters (α, τ) to maximize

n∑

i=1
log p(Yi = yi|x,y−i; α, τ),

108
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where y−i is the class list with unit i removed. The permanent ratios are calculated

based on the four-cycle approximation.

Figure 8.1: Chequerboard Pattern – Part I
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Figure 8.1(b) suggests α̂ = 0.5 and τ̂ = 0.47. Nevertheless, there is little difference

if we choose α = 1 or α = 1.5 with corresponding τ . In other words, the classification

inference is not sensitive to α.

Figure 8.2 provides the contour plot based on the probability that a new point

is assigned to class 1. For the parameter values chosen, the range of predictive

probabilities depends to a moderate extent on the configuration of x-values in the

training sample, but the extremes are seldom below 0.1 or above 0.9 for a configuration

of 90 points with 10 in each small square. The range of predictive probabilities

decreases as τ increases, but the 50% contour line (the solid line in Figure 8.2) is little

affected, so the classification is fairly stable. Given that the correct classification is
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Figure 8.2: Chequerboard Pattern – Part II
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determined by the chequerboard rule, the error rate for the permanent model using

this particular training configuration is about 9%. This error rate is a little misleading

because most of those errors occur near an internal boundary where the predictive

probability is close to 0.5 .

8.2 Latin Square Pattern

The second example has three classes in a 3×3 Latin-squre layout labelling as follows

1 2 3
3 1 2
2 3 1

As in Section 8.1, the training data consists of 90 units, with 10 feature values

uniformly distributed in each small square as shown in Figure 8.3 . We assume the
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Figure 8.3: Latin Square Pattern
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three-class permanent model (6.4) with α1 = α2 = α3 = α and K(x, x′) = exp(−‖x−

x′‖/τ2). Different combinations of parameters (α, τ) are chosen to illustrate how the

classification inference varies with α. The permanent ratios are calculated based

on the four-cycle approximation. As we can see from Figure 8.3, the boundaries

separating different class regions are fairly stable.
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Probabilités de Saint-Flour XIII, New York: Springer.

[3] Aldous, D. (1996). Probability Distributions on Cladograms. In Random Dis-
crete Structures, eds. D. Aldous and R. Premantle, New York: Springer-Verlag,
1-18.

[4] Andrews, G. E. (1976). The Theory of Partitions. Reading, MA: Addison-
Wesley.

[5] Antoniak, C. E. (1974). Mixtures of Dirichlet Processes with Applications to
Bayesian Nonparamatric Problems. The Annals of Statistics, 2, 1152-1174.

[6] Bernstein, D. S. (2005). Matrix Mathematics: Theory, Facts, and Formulas with
Application to Linear Systems Theory, Princeton University Press.

[7] Berry, D. A. (1988). Multiple Comparisons, Multiple Tests, and Data Dredging:
A Bayesian Perspective. In Bayesian Statistics 3, eds. J. M. Bernardo, M. H.
DeGroot, D. V. Lindley and A. F. M. Smith, Oxford University Press, 79-94.
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