- **0.** Read §1.6, §1.7, §1.8, §1.9, §3.1, §3.2, §3.3, §3.4, §3.5, §3.6
- **1.** Let X_1, \ldots, X_n be a random sample from the Bernoulli distribution b(1, p), where p is unknown. Let $Y = \sum_{i=1}^n X_i$.
 - (a) Find the distribution of Y.
 - (b) Show that E(Y/n) = p.
 - (c) Determine the variance of Y/n.
- **2.** Let $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ be the sample mean of a random sample X_1, \ldots, X_n from the exponential distribution, $\text{Exp}(\theta)$, with pdf $f(x) = (1/\theta) \exp\{-x/\theta\}, x > 0$.
 - (a) Show that $E(\bar{X}) = \theta$.

The following (b), (c) and (d) are for graduates only.

- (b) Using the mgf technique determine the distribution of \bar{X} . (Hint: See §5.2.3.)
- (c) Use (b) to show that $Y = 2n\bar{X}/\theta$ has a χ^2 distribution with 2n degrees of freedom.
- (d) Based on (c), find a 95% confidence interval for θ if n = 10. (Hint: Find c and d such that $P(c < 2n\bar{X}/\theta < d) = 0.95$ and solve the inequalities for θ .)