1. Read Sections 7.10 .3 and 7.11 in the ESL textbook by yourself.
2. Consider the simulation study described in Section 7.10.2 in the ESL textbook. There are $N=50$ samples with 25 labeled as " 1 " and 25 labeled as " 2 ", denoted by Y as the response. There are $p=5000$ covariates X_{1}, \ldots, X_{5000} simulated i.i.d. from standard normal distribution, which are also independent of Y.
(1) Do 50 times simulations as follows (called Wrong Procedure): 1°) Find the top 100 predictors $X_{(1)}, \ldots, X_{(100)}$ out of X_{1}, \ldots, X_{5000} in terms of absolute sample correlation with $Y ; 2^{\circ}$) Use 5 -fold cross-validation to estimate the error rate of 1-nearest neighbor classifier with the selected 100 predictors (Hint: You may use R function knn in package class). Find the average cross-validation error rate.
(2) Do 50 times simulations as follows (called Correct Procedure): 1°) Divide the $N=50$ samples into $K=5$ cross-validation folds equally and randomly; 2°) For each fold $k=1, \ldots, K$, find the top 100 predictors $X_{(1)}, \ldots, X_{(100)}$ out of X_{1}, \ldots, X_{5000} in terms of absolute sample correlation with Y, using all the samples except those in fold k; then employ 1-nearest neighbor classifier with all samples except those in fold k (training data) to predict the responses in fold k (testing data), using $X_{(1)}, \ldots, X_{(100)}$ only and recording the testing error rate; 3°) Find the average cross-validation error rate.
(3) The expected error rate of any classifier is 50%. Are your average cross-validation error rates obtained in (1) and (2) close to 50% ? If not, why?
