Required Part:

- **0.** Read §1c Eigenvalues and Reduction of Matrices.
- **1.** Show that A^- is a g-inverse if and only if A^-A is idempotent and $R(A^-A) = R(A)$.
- **2.** Let A be an $n \times n$ matrix with a in each diagonal position and b in each off-diagonal position.
 - (a) Show that $|A| = (a-b)^{n-1} [a + (n-1)b].$
 - (b) Find the eigenvalues and eigenvectors of A.
 - (c) When does A have an inverse? Find A^{-1} when it exists.
- **3.** Let G_1 and G_2 be n.n.d. matrices of the same order.
 - (a) Show that $G_1 + G_2$ is n.n.d. too.
 - (b) Show that $\mathcal{M}(G_1) \subset \mathcal{M}(G_1 + G_2)$.
- 4. Show that
 - (a) A symmetric matrix has a symmetric g-inverse.
 - (b) An n.n.d. matrix has an n.n.d. g-inverse.

Optional Part:

5. Let A be an $n \times n$ n.n.d. matrix and B be an $n \times n$ p.d. matrix. Show that there exists a nonsingular matrix N such that NBN' = I and NAN' is diagonal with nonnegative diagonal entries.