Required Part:

0. Read §1c Eigenvalues and Reduction of Matrices.
1. Show that A^{-}is a g-inverse if and only if $A^{-} A$ is idempotent and $R\left(A^{-} A\right)=R(A)$.
2. Let A be an $n \times n$ matrix with a in each diagonal position and b in each off-diagonal position.
(a) Show that $|A|=(a-b)^{n-1}[a+(n-1) b]$.
(b) Find the eigenvalues and eigenvectors of A.
(c) When does A have an inverse? Find A^{-1} when it exists.
3. Let G_{1} and G_{2} be n.n.d. matrices of the same order.
(a) Show that $G_{1}+G_{2}$ is n.n.d. too.
(b) Show that $\mathcal{M}\left(G_{1}\right) \subset \mathcal{M}\left(G_{1}+G_{2}\right)$.
4. Show that
(a) A symmetric matrix has a symmetric g-inverse.
(b) An n.n.d. matrix has an n.n.d. g-inverse.

Optional Part:

5. Let A be an $n \times n$ n.n.d. matrix and B be an $n \times n$ p.d. matrix. Show that there exists a nonsingular matrix N such that $N B N^{\prime}=I$ and $N A N^{\prime}$ is diagonal with nonnegative diagonal entries.
