Required Part:

0. Read $\S 1 d$ Convex Sets in Vector Spaces and $\S 1$ I Inequalities.
1. Are these quadratic forms below positive definite? Justify your answer.
(a) $99 x_{1}^{2}-12 x_{1} x_{2}+48 x_{1} x_{3}+130 x_{2}^{2}-60 x_{2} x_{3}+71 x_{3}^{2}$
(b) $\sum_{i=1}^{n} x_{i}^{2}+\sum_{1 \leq i<j \leq n} x_{i} x_{j}$
2. Let A and B be $m \times m$ positive definite matrices such that $A-B$ is nnd. Show that $B^{-1}-A^{-1}$ is nnd too.
3. Let A be an $n \times m$ matrix of rank $r, \lambda_{1}, \ldots, \lambda_{r}$ be the non-zero eigenvalues and P_{1}, \ldots, P_{r} be the eigenvectors of $A^{\prime} A$. Show that

$$
\lambda_{1}^{-1} P_{1} P_{1}^{\prime}+\cdots+\lambda_{r}^{-1} P_{r} P_{r}^{\prime}
$$

is a g-inverse of $A^{\prime} A$.
4. Let Λ be an $m \times m$ pd matrix. The inner product in \mathbb{R}^{m} is defined by $(X, Y)=X^{\prime} \Lambda Y$ and then $\|X\|^{2}=(X, X)$. Let A, B be two $m \times m$ matrices. Show that

$$
\|A X\| \leq\|A X+B Y\| \text { for all } X, Y
$$

if and only if $A^{\prime} \Lambda B=0$.

Optional Part:

5. Let A and B be $n \times m$ matrices. Show that $A A^{\prime}=B B^{\prime}$ if and only if $A=B P$ for some $m \times m$ matrix P satisfying $P P^{\prime}=I$.
