Required Part:

- 0. Read §1d Convex Sets in Vector Spaces and §1e Inequalities.
- 1. Are these quadratic forms below positive definite? Justify your answer.
 - (a) $99x_1^2 12x_1x_2 + 48x_1x_3 + 130x_2^2 60x_2x_3 + 71x_3^2$
 - (b) $\sum_{i=1}^{n} x_i^2 + \sum_{1 \le i < j \le n} x_i x_j$
- **2.** Let A and B be $m \times m$ positive definite matrices such that A B is not. Show that $B^{-1} A^{-1}$ is not too.
- **3.** Let A be an $n \times m$ matrix of rank $r, \lambda_1, \ldots, \lambda_r$ be the non-zero eigenvalues and P_1, \ldots, P_r be the eigenvectors of A'A. Show that

$$\lambda_1^{-1}P_1P_1' + \dots + \lambda_r^{-1}P_rP_r'$$

is a *g*-inverse of A'A.

4. Let Λ be an $m \times m$ pd matrix. The inner product in \mathbb{R}^m is defined by $(X, Y) = X' \Lambda Y$ and then $||X||^2 = (X, X)$. Let A, B be two $m \times m$ matrices. Show that

$$||AX|| \le ||AX + BY|| \text{ for all } X, Y$$

if and only if $A'\Lambda B = 0$.

Optional Part:

5. Let A and B be $n \times m$ matrices. Show that AA' = BB' if and only if A = BP for some $m \times m$ matrix P satisfying PP' = I.