Required Part:

- **0.** Read §1f Extrema of Quadratic Forms, §3a Univariate Models, and §3b Sampling Distributions.
- **1.** Let Σ be an $n \times n$ p.d. matrix. The inner product of \mathbb{R}^n is defined by $(x, y) = x' \Sigma y$. Show that given an arbitrary $n \times n$ matrix A, an orthogonal projector onto $\mathcal{M}(A)$ is

$$P = A(A'\Sigma A)^{-}A'\Sigma.$$

Hint: See (vi) on page 47.

2. Let A be an $m \times m$ symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ and corresponding orthonormal eigenvectors P_1, \ldots, P_m . Consider $k \ (k \leq m)$ mutually orthogonal vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$ in \mathbb{R}^m . Show that

$$\sup_{\mathbf{x}_1,\dots,\mathbf{x}_k} \sum_{i=1}^k \frac{\mathbf{x}'_i A \mathbf{x}_i}{\mathbf{x}'_i \mathbf{x}_i} = \sum_{i=1}^k \lambda_i,$$

where the supremum is attained at $x_i = cP_i$, i = 1, ..., k for some scalar $c \neq 0$. *Hint:* See (iv) on page 63.

3. Let A be an $n \times n$ symmetric matrix and B be an $m \times n$ matrix. Suppose a random vector $Y \sim N_n(\boldsymbol{\mu}, \sigma^2 I_n)$, where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)'$. Show that Y'AY and BY are independent if BA = 0.

Hint: See Problem 1.2 on page 209.

- 4. Suppose $Y \sim N_n(X\beta, \sigma^2 I_n)$, where $Y = (y_1, \ldots, y_n)'$ is a random vector, X is an $n \times m$ matrix with rank r, and $\beta = (\beta_1, \ldots, \beta_m)'$ is a vector of parameters. Let $\hat{\beta} = (X'X)^- X'Y$ which is a solution to $X'X\beta = X'Y$. Let H be an $m \times k$ matrix, such that, $\mathcal{M}(H) = \mathcal{M}(X')$. Denote $Z = H'\hat{\beta}$ and $R_0^2 = (Y X\hat{\beta})'(Y X\hat{\beta})$.
 - (a) Show that $X = X(X'X)^{-}X'X$.
 - (b) Show that $I X(X'X)^{-}X'$ is idempotent.
 - (c) Show that Z and R_0^2 are independent.
 - (d) Show that $Z \sim N_k(H'\beta, \sigma^2 H'(X'X)^-H)$, and $R_0^2 \sim \sigma^2 \chi^2(n-r)$.

Hint: See Problems 2.1, 2.2, and 2.3 on page 210.

Optional Part:

5. Let A and B be $n \times n$ symmetric matrices. Suppose a random vector $Y \sim N_n(\boldsymbol{\mu}, \sigma^2 I_n)$, where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)'$. Show that Y'AY and Y'BY are independent if AB = 0 or BA = 0.

Hint: See Problem 1.1 on page 209.