Required Part:

0. Read §1f Extrema of Quadratic Forms, §3a Univariate Models, and §3b Sampling Distributions.
1. Let Σ be an $n \times n$ p.d. matrix. The inner product of \mathbb{R}^{n} is defined by $(x, y)=x^{\prime} \Sigma y$. Show that given an arbitrary $n \times n$ matrix A, an orthogonal projector onto $\mathcal{M}(A)$ is

$$
P=A\left(A^{\prime} \Sigma A\right)^{-} A^{\prime} \Sigma .
$$

Hint: See (vi) on page 47.
2. Let A be an $m \times m$ symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ and corresponding orthonormal eigenvectors P_{1}, \ldots, P_{m}. Consider $k(k \leq m)$ mutually orthogonal vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ in \mathbb{R}^{m}. Show that

$$
\sup _{\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}} \sum_{i=1}^{k} \frac{\mathrm{x}_{i}^{\prime} A \mathrm{x}_{i}}{\mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{x}_{\mathrm{i}}}=\sum_{i=1}^{k} \lambda_{i},
$$

where the supremum is attained at $\mathrm{x}_{i}=c P_{i}, i=1, \ldots, k$ for some scalar $c \neq 0$.
Hint: See (iv) on page 63.
3. Let A be an $n \times n$ symmetric matrix and B be an $m \times n$ matrix. Suppose a random vector $Y \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} I_{n}\right)$, where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime}$. Show that $Y^{\prime} A Y$ and $B Y$ are independent if $B A=0$.
Hint: See Problem 1.2 on page 209.
4. Suppose $Y \sim N_{n}\left(X \beta, \sigma^{2} I_{n}\right)$, where $Y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ is a random vector, X is an $n \times m$ matrix with rank r, and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)^{\prime}$ is a vector of parameters. Let $\hat{\beta}=\left(X^{\prime} X\right)^{-} X^{\prime} Y$ which is a solution to $X^{\prime} X \beta=X^{\prime} Y$. Let H be an $m \times k$ matrix, such that, $\mathcal{M}(H)=\mathcal{M}\left(X^{\prime}\right)$. Denote $Z=H^{\prime} \hat{\beta}$ and $R_{0}^{2}=(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})$.
(a) Show that $X=X\left(X^{\prime} X\right)^{-} X^{\prime} X$.
(b) Show that $I-X\left(X^{\prime} X\right)^{-} X^{\prime}$ is idempotent.
(c) Show that Z and R_{0}^{2} are independent.
(d) Show that $Z \sim N_{k}\left(H^{\prime} \beta, \sigma^{2} H^{\prime}\left(X^{\prime} X\right)^{-} H\right)$, and $R_{0}^{2} \sim \sigma^{2} \chi^{2}(n-r)$.

Hint: See Problems 2.1, 2.2, and 2.3 on page 210.

Optional Part:

5. Let A and B be $n \times n$ symmetric matrices. Suppose a random vector $Y \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} I_{n}\right)$, where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime}$. Show that $Y^{\prime} A Y$ and $Y^{\prime} B Y$ are independent if $A B=0$ or $B A=0$.
Hint: See Problem 1.1 on page 209.
