Required Part:

0. Read §8b Wishart Distribution and §4a Theory of Least Squares (Linear Estimation).

For Problems 1, 2, and 4, we consider a linear model $Y = X\beta + \varepsilon$, where Y is an $n \times 1$ random vector, X is a known $n \times m$ matrix, β is an $m \times 1$ vector of unknown parameters, and ε is an $n \times 1$ random vector of noise with $E(\varepsilon) = 0$ and $V(\varepsilon) = \sigma^2 I_n$. All L, C, D, P, L_0 are column vectors.

- 1. Recall that a linear function $P'\beta$ of β is called *estimable* if there exists a linear function L'Y such that $E(L'Y) = P'\beta$.
 - (a) Based on the definition of estimable linear function, show that all estimable linear functions of β form a linear space, that is,
 - * if $C'\beta$ and $D'\beta$ are estimable, then $(C+D)'\beta$ is estimable too;
 - * if $C'\beta$ is estimable and a is a scalar, then $(aC)'\beta$ is estimable.
 - (b) Determine the linear space formed by all estimable linear functions of β .
- **2.** Consider equation P = X'L where both P and L are $n \times 1$ vectors.
 - (a) Show that if P = X'L admits a solution for L, then L'Y is unbiased for $P'\beta$.
 - (b) Suppose P = X'L admits a solution for L. Show that there exists a unique solution $L = L_0 \in \mathcal{M}(X)$.
 - (c) Show that $V(L'_0Y) \leq V(L'Y)$ for any other solution L.
- **3.** Consider the linear model $y_{ij} = \beta_0 + \beta_i + \varepsilon_{ij}$, i = 1, 2, 3, j = 1, 2 with the standard assumptions on ε , that is, ε_{ij} iid $\sim N(0, \sigma^2)$.
 - (a) Show that $c_1\beta_1 + c_2\beta_2 + c_3\beta_3$ is estimable if and only if $c_1 + c_2 + c_3 = 0$.
 - (b) Suppose the observations are $y_{11} = 0.1$, $y_{12} = -0.5$, $y_{21} = 3.2$, $y_{22} = 6.3$, $y_{31} = 4.9$, and $y_{32} = 5.9$. Find the normal equations.
 - (c) For the data in (b), find BLUEs for $\beta_1 \beta_2$, $\beta_1 \beta_3$, and $\beta_2 \beta_3$.

Optional Part:

4. Show that in general a linear function L'Y has minimum variance as an linear unbiased estimate of E(L'Y) if and only if cov(L'Y, D'Y) = 0 for all D such that E(D'Y) = 0.