## Required Part:

0. Read $\S 8 \mathrm{~b}$ Wishart Distribution and $\S 4$ a Theory of Least Squares (Linear Estimation).

For Problems 1, 2, and 4, we consider a linear model $Y=X \boldsymbol{\beta}+\varepsilon$, where $Y$ is an $n \times 1$ random vector, $X$ is a known $n \times m$ matrix, $\boldsymbol{\beta}$ is an $m \times 1$ vector of unknown parameters, and $\varepsilon$ is an $n \times 1$ random vector of noise with $E(\varepsilon)=0$ and $V(\varepsilon)=\sigma^{2} I_{n}$. All $L, C, D, P, L_{0}$ are column vectors.

1. Recall that a linear function $P^{\prime} \boldsymbol{\beta}$ of $\boldsymbol{\beta}$ is called estimable if there exists a linear function $L^{\prime} Y$ such that $E\left(L^{\prime} Y\right)=P^{\prime} \boldsymbol{\beta}$.
(a) Based on the definition of estimable linear function, show that all estimable linear functions of $\boldsymbol{\beta}$ form a linear space, that is,

* if $C^{\prime} \boldsymbol{\beta}$ and $D^{\prime} \boldsymbol{\beta}$ are estimable, then $(C+D)^{\prime} \boldsymbol{\beta}$ is estimable too;
* if $C^{\prime} \boldsymbol{\beta}$ is estimable and $a$ is a scalar, then $(a C)^{\prime} \boldsymbol{\beta}$ is estimable.
(b) Determine the linear space formed by all estimable linear functions of $\boldsymbol{\beta}$.

2. Consider equation $P=X^{\prime} L$ where both $P$ and $L$ are $n \times 1$ vectors.
(a) Show that if $P=X^{\prime} L$ admits a solution for $L$, then $L^{\prime} Y$ is unbiased for $P^{\prime} \boldsymbol{\beta}$.
(b) Suppose $P=X^{\prime} L$ admits a solution for $L$. Show that there exists a unique solution $L=L_{0} \in \mathcal{M}(X)$.
(c) Show that $V\left(L_{0}^{\prime} Y\right) \leq V\left(L^{\prime} Y\right)$ for any other solution $L$.
3. Consider the linear model $y_{i j}=\beta_{0}+\beta_{i}+\varepsilon_{i j}, i=1,2,3, j=1,2$ with the standard assumptions on $\varepsilon$, that is, $\varepsilon_{i j}$ iid $\sim N\left(0, \sigma^{2}\right)$.
(a) Show that $c_{1} \beta_{1}+c_{2} \beta_{2}+c_{3} \beta_{3}$ is estimable if and only if $c_{1}+c_{2}+c_{3}=0$.
(b) Suppose the observations are $y_{11}=0.1, y_{12}=-0.5, y_{21}=3.2, y_{22}=6.3, y_{31}=4.9$, and $y_{32}=5.9$. Find the normal equations.
(c) For the data in (b), find BLUEs for $\beta_{1}-\beta_{2}, \beta_{1}-\beta_{3}$, and $\beta_{2}-\beta_{3}$.

## Optional Part:

4. Show that in general a linear function $L^{\prime} Y$ has minimum variance as an linear unbiased estimate of $E\left(L^{\prime} Y\right)$ if and only if $\operatorname{cov}\left(L^{\prime} Y, D^{\prime} Y\right)=0$ for all $D$ such that $E\left(D^{\prime} Y\right)=0$.
