Required Part:

- **0.** Read §4f A General Model for Two-way Data and Variance Components, §4g The Theory and Application of statistical Regression.
- 1. Consider $Y \sim N_n(X\beta, \sigma^2 I_n)$, where X is $n \times m$ with rank $r \leq m < n$. Assume $\sigma^2 > 0$ is known.
 - (a) Let $c'\beta$ be estimable and b'Y be an unbiased estimator of $c'\beta$, not necessarily the BLUE. Find a $(1-\alpha)\%$ confidence interval $b'Y \pm \frac{1}{2}l(b,Y)$ for $c'\beta$, that is, specify l(b,Y).
 - (b) Given c'β, find the unbiased estimator b'₀Y of c'β with minimum expected length E(l(b,Y)).
 Hint: See "Extremum of a Quadratic Form" on page 229.
 - (c) Consider the class of all normed estimable functions

$$S = \{ c'\beta \mid c \in \mathcal{M}(X'), c'c = 1 \}.$$

Find the function $c'_0\beta$ in S which has the smallest minimum expected length confidence interval. That is,

$$\min_{b:E(b'Y)=c'_0\beta} E(l(b,Y)) = \min_{c'\beta\in S} \min_{b:E(b'Y)=c'\beta} E(l(b,Y)).$$

Hint: Suppose $X'X = \lambda_1 P_1 P'_1 + \cdots + \lambda_r P_r P'_r$, then $c \in \mathcal{M}(X'X)$ if and only if $c = a_1 P_1 + \cdots + a_r P_r$.

2. (One-way ANOVA) Suppose the linear regression model is given by

$$Y_{ij} = \mu_i + \epsilon_{ij}, \ i = 1, \dots, k; \ j = 1, \dots, b,$$

where ϵ_{ij} 's are iid ~ $N(0, \sigma^2)$. In its matrix form, we write

$$Y = (Y_{11}, \dots, Y_{1b}, Y_{21}, \dots, Y_{2b}, \dots, Y_{kb})'$$

as an $n \times 1$ vector of responses, $\beta = (\mu_1, \ldots, \mu_k)'$ as a $k \times 1$ vector of parameters, and

$$\epsilon = (\epsilon_{11}, \ldots, \epsilon_{1b}, \epsilon_{21}, \ldots, \epsilon_{2b}, \ldots, \epsilon_{kb})'$$

as an $n \times 1$ vector of noises, where n = kb.

- (a) Find the matrix X in the form of $Y = X\beta + \epsilon$. Determine its rank.
- (b) Determine X'X and derive the least square estimator $\hat{\beta}$ for β .
- (c) Determine $R_0^2 = (Y X\hat{\beta})'(Y X\hat{\beta})$ and derive an unbiased estimator s^2 for σ^2 based on R_0^2 .

- (d) Consider the null hypothesis $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$. Under H_0 , rewrite the design matrix X into X_0 . Determine $R_1^2 = \min_{\mu \in \mathbb{R}} (Y X_0 \mu)' (Y X_0 \mu)$.
- (e) Show that

$$R_1^2 - R_0^2 = b \sum_{i=1}^k \left(\bar{Y}_i - \bar{Y} \right)^2 = b \sum_{i=1}^k \bar{Y}_i^2 - n\bar{Y}^2,$$

where $\bar{Y}_i = \frac{1}{b} \sum_{j=1}^{b} Y_{ij}, i = 1, \dots, k$ and $\bar{Y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{b} Y_{ij}$.

(f) Rewrite the null hypothesis H_0 in (d) into $H'\beta = 0$, where H is a $k \times (k-1)$ matrix such that $\mathcal{M}(H) \subset \mathcal{M}(X')$. Let $Z = H'\hat{\beta}$ with the same $\hat{\beta}$ as in (b). Determine the matrix D such that the dispersion matrix of Z is $\sigma^2 D$. Show that

$$Z'D^{-1}Z = b\sum_{i=1}^{k} \left(\bar{Y}_i - \bar{Y}\right)^2 = b\sum_{i=1}^{k} \bar{Y}_i^2 - n\bar{Y}^2.$$

Note that it is equal to $R_1^2 - R_0^2$ as in (e). Determine a test statistic F to test H_0 based on your results.

Hint: You may choose H with columns (1, -1, 0, 0, ..., 0)', (1, 0, -1, 0, ..., 0)', ..., (1, 0, 0, 0, ..., 0, -1)'. Then use the formulas and test statistic derived in §4b.2. You may also need the results of Problem 2 in Hw3.