Required Part:

0. Read $\S 4 \mathrm{f}$ A General Model for Two-way Data and Variance Components, $\S 4 \mathrm{~g}$ The Theory and Application of statistical Regression.
1. Consider $Y \sim N_{n}\left(X \beta, \sigma^{2} I_{n}\right)$, where X is $n \times m$ with rank $r \leq m<n$. Assume $\sigma^{2}>0$ is known.
(a) Let $c^{\prime} \beta$ be estimable and $b^{\prime} Y$ be an unbiased estimator of $c^{\prime} \beta$, not necessarily the BLUE. Find a $(1-\alpha) \%$ confidence interval $b^{\prime} Y \pm \frac{1}{2} l(b, Y)$ for $c^{\prime} \beta$, that is, specify $l(b, Y)$.
(b) Given $c^{\prime} \beta$, find the unbiased estimator $b_{0}^{\prime} Y$ of $c^{\prime} \beta$ with minimum expected length $E(l(b, Y))$.
Hint: See "Extremum of a Quadratic Form" on page 229.
(c) Consider the class of all normed estimable functions

$$
S=\left\{c^{\prime} \beta \mid c \in \mathcal{M}\left(X^{\prime}\right), c^{\prime} c=1\right\} .
$$

Find the function $c_{0}^{\prime} \beta$ in S which has the smallest minimum expected length confidence interval. That is,

$$
\min _{b: E\left(b^{\prime} Y\right)=c_{0}^{\prime} \beta} E(l(b, Y))=\min _{c^{\prime} \beta \in S} \min _{b: E\left(b^{\prime} Y\right)=c^{\prime} \beta} E(l(b, Y)) .
$$

Hint: Suppose $X^{\prime} X=\lambda_{1} P_{1} P_{1}^{\prime}+\cdots+\lambda_{r} P_{r} P_{r}^{\prime}$, then $c \in \mathcal{M}\left(X^{\prime} X\right)$ if and only if $c=a_{1} P_{1}+\cdots+a_{r} P_{r}$.
2. (One-way ANOVA) Suppose the linear regression model is given by

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}, i=1, \ldots, k ; j=1, \ldots, b,
$$

where $\epsilon_{i j}$'s are iid $\sim N\left(0, \sigma^{2}\right)$. In its matrix form, we write

$$
Y=\left(Y_{11}, \ldots, Y_{1 b}, Y_{21}, \ldots, Y_{2 b}, \ldots, Y_{k b}\right)^{\prime}
$$

as an $n \times 1$ vector of responses, $\beta=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ as a $k \times 1$ vector of parameters, and

$$
\epsilon=\left(\epsilon_{11}, \ldots, \epsilon_{1 b}, \epsilon_{21}, \ldots, \epsilon_{2 b}, \ldots, \epsilon_{k b}\right)^{\prime}
$$

as an $n \times 1$ vector of noises, where $n=k b$.
(a) Find the matrix X in the form of $Y=X \beta+\epsilon$. Determine its rank.
(b) Determine $X^{\prime} X$ and derive the least square estimator $\hat{\beta}$ for β.
(c) Determine $R_{0}^{2}=(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})$ and derive an unbiased estimator s^{2} for σ^{2} based on R_{0}^{2}.
(d) Consider the null hypothesis $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$. Under H_{0}, rewrite the design matrix X into X_{0}. Determine $R_{1}^{2}=\min _{\mu \in \mathbb{R}}\left(Y-X_{0} \mu\right)^{\prime}\left(Y-X_{0} \mu\right)$.
(e) Show that

$$
R_{1}^{2}-R_{0}^{2}=b \sum_{i=1}^{k}\left(\bar{Y}_{i}-\bar{Y}\right)^{2}=b \sum_{i=1}^{k} \bar{Y}_{i}^{2}-n \bar{Y}^{2}
$$

where $\bar{Y}_{i}=\frac{1}{b} \sum_{j=1}^{b} Y_{i j}, i=1, \ldots, k$ and $\bar{Y}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{b} Y_{i j}$.
(f) Rewrite the null hypothesis H_{0} in (d) into $H^{\prime} \beta=0$, where H is a $k \times(k-1)$ matrix such that $\mathcal{M}(H) \subset \mathcal{M}\left(X^{\prime}\right)$. Let $Z=H^{\prime} \hat{\beta}$ with the same $\hat{\beta}$ as in (b). Determine the matrix D such that the dispersion matrix of Z is $\sigma^{2} D$. Show that

$$
Z^{\prime} D^{-1} Z=b \sum_{i=1}^{k}\left(\bar{Y}_{i}-\bar{Y}\right)^{2}=b \sum_{i=1}^{k} \bar{Y}_{i}^{2}-n \bar{Y}^{2}
$$

Note that it is equal to $R_{1}^{2}-R_{0}^{2}$ as in (e). Determine a test statistic F to test H_{0} based on your results.
Hint: You may choose H with columns $(1,-1,0,0, \ldots, 0)^{\prime},(1,0,-1,0, \ldots, 0)^{\prime}$, $\ldots,(1,0,0,0, \ldots, 0,-1)^{\prime}$. Then use the formulas and test statistic derived in §4b.2. You may also need the results of Problem 2 in Hw3.

