Required Part:

- 0. Read §4h The General Problem of Least Squares with Two Sets of Parameters.
- **1.** Consider a linear model

$$Y = X\beta + \epsilon \sim N_n(X\beta, \ \sigma^2 I_n),$$

where X is $n \times m$ with $R(X) = r < m \le n$.

- (a) Let $W = \{z \in \mathbb{R}^n \mid E(z'Y) = 0 \text{ for all } \beta\}$. Show that W is a linear subspace with dimension n r.
- (b) Let $\{z_1, \ldots, z_{n-r}\}$ be an orthonormal basis for W. Show that

$$R_0^2 = \min_{\beta} (Y - X\beta)'(Y - X\beta) = \sum_{i=1}^{n-r} (z_i'Y)^2.$$

- (c) Use the result in (b) to construct an unbiased estimator for σ^2 as a function of $z'_1Y, \ldots, z'_{n-r}Y$.
- (d) Suppose $Y = (Y_1, ..., Y_n)'$ with $E(Y_1) = E(Y_2)$. Let

$$p'\hat{\beta} = b_1Y_1 + b_2Y_2 + \dots + b_nY_n$$

is the BLUE of an estimable function $p'\beta$, show that $b_1 = b_2$.

2. Consider a linear model

$$Y = X\beta + \epsilon \sim N_n(X\beta, \ \sigma^2 \Sigma),$$

where X is $n \times m$ and Σ is $n \times n$. Suppose $R(\Sigma) = k < n$.

(a) Show that there are n-k linearly independent vectors w_1, \ldots, w_{n-k} in \mathbb{R}^n such that

$$P(w'_i Y = w'_i X \beta) = 1 \text{ for each } i = 1, \dots, n-k.$$

(b) Show that there exists an $n \times k$ matrix H of rank k such that

$$Z = H'Y \sim N_k(H'X\beta, \ \sigma^2 I_k).$$

3. Let $\{Y_{ij}, i = 1, ..., p; j = 1, ..., q\}$ be independent random variables such that $E(Y_{ij}) = 0$ and $V(Y_{ij}) = \sigma^2$. Show that

$$E\left[\sum_{i=1}^{p}\sum_{j=1}^{q}\left(Y_{ij}-\bar{Y}_{i\bullet}-\bar{Y}_{\bullet j}+\bar{Y}_{\bullet \bullet}\right)^{2}\right]=(p-1)(q-1)\sigma^{2},$$

where $\bar{Y}_{i\bullet} = \sum_{j=1}^{q} Y_{ij}/q$, $\bar{Y}_{\bullet j} = \sum_{i=1}^{p} Y_{ij}/p$, $\bar{Y}_{\bullet \bullet} = \sum_{i=1}^{p} \sum_{j=1}^{q} Y_{ij}/(pq)$.