Required Part:

0. Read $\S 4$ h The General Problem of Least Squares with Two Sets of Parameters.
1. Consider a linear model

$$
Y=X \beta+\epsilon \sim N_{n}\left(X \beta, \sigma^{2} I_{n}\right)
$$

where X is $n \times m$ with $R(X)=r<m \leq n$.
(a) Let $W=\left\{z \in \mathbb{R}^{n} \mid E\left(z^{\prime} Y\right)=0\right.$ for all $\left.\beta\right\}$. Show that W is a linear subspace with dimension $n-r$.
(b) Let $\left\{z_{1}, \ldots, z_{n-r}\right\}$ be an orthonormal basis for W. Show that

$$
R_{0}^{2}=\min _{\beta}(Y-X \beta)^{\prime}(Y-X \beta)=\sum_{i=1}^{n-r}\left(z_{i}^{\prime} Y\right)^{2}
$$

(c) Use the result in (b) to construct an unbiased estimator for σ^{2} as a function of $z_{1}^{\prime} Y, \ldots, z_{n-r}^{\prime} Y$.
(d) Suppose $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ with $E\left(Y_{1}\right)=E\left(Y_{2}\right)$. Let

$$
p^{\prime} \hat{\beta}=b_{1} Y_{1}+b_{2} Y_{2}+\cdots+b_{n} Y_{n}
$$

is the BLUE of an estimable function $p^{\prime} \beta$, show that $b_{1}=b_{2}$.
2. Consider a linear model

$$
Y=X \beta+\epsilon \sim N_{n}\left(X \beta, \sigma^{2} \Sigma\right)
$$

where X is $n \times m$ and Σ is $n \times n$. Suppose $R(\Sigma)=k<n$.
(a) Show that there are $n-k$ linearly independent vectors w_{1}, \ldots, w_{n-k} in \mathbb{R}^{n} such that

$$
P\left(w_{i}^{\prime} Y=w_{i}^{\prime} X \beta\right)=1 \text { for each } i=1, \ldots, n-k
$$

(b) Show that there exists an $n \times k$ matrix H of rank k such that

$$
Z=H^{\prime} Y \sim N_{k}\left(H^{\prime} X \beta, \sigma^{2} I_{k}\right)
$$

3. Let $\left\{Y_{i j}, i=1, \ldots, p ; j=1, \ldots, q\right\}$ be independent random variables such that $E\left(Y_{i j}\right)=0$ and $V\left(Y_{i j}\right)=\sigma^{2}$. Show that

$$
E\left[\sum_{i=1}^{p} \sum_{j=1}^{q}\left(Y_{i j}-\bar{Y}_{\bullet \bullet}-\bar{Y}_{\bullet j}+\bar{Y}_{\bullet \bullet}\right)^{2}\right]=(p-1)(q-1) \sigma^{2},
$$

where $\bar{Y}_{\bullet \bullet}=\sum_{j=1}^{q} Y_{i j} / q, \bar{Y}_{\bullet j}=\sum_{i=1}^{p} Y_{i j} / p, \bar{Y}_{\bullet \bullet}=\sum_{i=1}^{p} \sum_{j=1}^{q} Y_{i j} /(p q)$.

