Required Part:

- 0. Read §5a Minimum Variance Unbiased Estimation.
- 1. Suppose Y and Z are univariate random variables such that

$$Y \mid Z = z \sim N(\mu + z, \sigma^2), Z \sim N(0, \lambda^2).$$

Find the unconditional distribution of Y.

- **2.** Suppose Y_1, \ldots, Y_n are n univariate random variables and Z is another random variable such that,
 - (i) Given Z, the random variables Y_1, \ldots, Y_n are independent;
 - (ii) $Y_i \mid Z = z \sim N(\mu_i + z, \sigma^2)$.

Suppose $Z \sim N(0, \lambda^2)$. Find the unconditional joint distribution of Y_1, \dots, Y_n .

- **3.** Suppose an experiment produces observations $\{Y_{ij}, i = 1, ..., v; j = 1, ..., b\}$ which is a collection of vb univariate random variables. Suppose $\beta_1, ..., \beta_b$ are b univariate random variables that are not observed.
 - (i) For each j = 1, ..., b, given β_j , the observations $Y_{1j}, ..., Y_{vj}$ are independent, and $Y_{ij} \mid \beta_j \sim N(\tau_i + \beta_j, \sigma^2)$.
 - (ii) β_1, \ldots, β_b are iid $\sim N(0, \sigma_\beta^2)$.
 - (iii) Let $Y_j = (Y_{1j}, \dots, Y_{vj})'$. Y_1, \dots, Y_b are independent random vectors.
 - (iv) $\tau_1, \ldots, \tau_v, \sigma^2 > 0, \sigma_{\beta}^2 > 0$ are unknown parameters (constants).

Then

(a) Find the likelihood of $\tau_1, \ldots, \tau_v, \sigma^2, \sigma_\beta^2$, based on the observations

$$\{Y_{ij}, i = 1, \dots, v; j = 1, \dots, b\}$$
.

- (b) Find the maximum likelihood estimators for τ_1, \ldots, τ_v .
- (c) Find the maximum likelihood estimators for σ^2 and σ^2_{β} .