Required Part:

1. Exercise 4.5 (a) (b) on page 201.
2. Exercise 4.13 on pages 203-204.
3. Suppose Y_{1}, \ldots, Y_{n} is a random sample from $N_{p}(W \beta, \Sigma)$, where W is a known $p \times k$ matrix of rank k, Σ is a known $p \times p$ matrix of rank p, and β is an unknown $k \times 1$ vector. Find the MLE of β.

Optional Part (no need to hand in):
4. If $Y \sim N_{p}(\mu, \Sigma)$, then derive the moment generating function of $(Y-\mu)^{\prime} A(Y-\mu)$ for a symmetric matrix A.
5. Suppose $S \sim W_{n-1}(\cdot \mid \Sigma), S^{-1}=\left(s^{i j}\right)_{p \times p}, \Sigma^{-1}=\left(\sigma^{i j}\right)_{p \times p}$. Show that

$$
\frac{\sigma^{11}}{s^{11}} \sim \chi^{2}(n-p)
$$

