Required Part:

1. Exercise 5.1 on pages 261.
2. Exercise 5.9 (a) (c) (e) on page 262.

For your reference, the sample mean \bar{x} is:

$$
\begin{array}{llllll}
95.52 & 164.38 & 55.69 & 93.39 & 17.98 & 31.13
\end{array}
$$

Covariance matrix \mathbf{S} :

3266.46	1343.97	731.54	1175.50	162.68	238.37
1343.97	721.91	324.25	537.35	80.17	117.73
731.54	324.25	179.28	281.17	39.15	56.80
1175.50	537.35	281.17	474.98	63.73	94.85
162.68	80.17	39.15	63.73	9.95	13.88
238.37	117.73	56.80	94.85	13.88	21.26

3. Exercise 5.13 on page 263.

Optional Part (no need to hand in):

4. Suppose $V \sim \chi_{n}^{2}$, and $U \sim \operatorname{Beta}\left(\frac{k}{2}, \frac{n-k}{2}\right)$ with $k<n$. If U and V are independent, show that
(i) $U V \sim \chi_{k}^{2},(1-U) V \sim \chi_{n-k}^{2}$.
(ii) $U V$ and $(1-U) V$ are independent.
5. Suppose $S \sim W_{n}(\Sigma)$, the Wishart distribution with n degrees of freedom and $p \times p$ positive definite matrix Σ. Rewrite

$$
S=\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{12}^{\prime} & S_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{11} & 0 \\
0 & \Sigma_{22}
\end{array}\right)
$$

where both S_{11} and Σ_{11} are $r \times r$ matrices. Show that

$$
\frac{|S|}{\left|S_{11}\right| \cdot\left|S_{22}\right|}
$$

is distributed as a product of independent beta random variables.

