1. We consider the null hypothesis $H_0: \mathbf{C}\boldsymbol{\beta} = \boldsymbol{\Gamma}_0$, where \mathbf{C} is an $(r-q) \times (r+1)$ known matrix with rank r-q, $\boldsymbol{\beta}$ is an $(r+1) \times m$ matrix of unknown parameters, and $\boldsymbol{\Gamma}_0$ is an $(r-q) \times m$ known matrix. Show that there always exists an $(r+1) \times m$ matrix $\boldsymbol{\beta}_0$ satisfying $\mathbf{C}\boldsymbol{\beta}_0 = \boldsymbol{\Gamma}_0$ and an $(r+1) \times (q+1)$ full-rank matrix \mathbf{B} satisfying $\mathbf{C}\mathbf{B} = 0$, such that, $\mathbf{C}\boldsymbol{\beta} = \boldsymbol{\Gamma}_0$ if and only if $\boldsymbol{\beta} = \boldsymbol{\beta}_0 + \mathbf{B}\boldsymbol{\theta}$ for some $(q+1) \times m$ matrix $\boldsymbol{\theta}$. In other words,

$$\{oldsymbol{eta} \in \mathbb{R}^{(r+1) imes m} \mid \mathbf{C}oldsymbol{eta} = oldsymbol{\Gamma}_0\} = \{oldsymbol{eta}_0 + \mathbf{B}oldsymbol{ heta} \mid oldsymbol{ heta} \in \mathbb{R}^{(q+1) imes m}\}$$

- 2. Predictions from multivariate multiple regressions Consider the multivariate linear regression model $\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where \mathbf{Y} is an $n \times m$ matrix of responses, \mathbf{Z} is an $n \times (r+1)$ known matrix with rank (r+1), $\boldsymbol{\beta}$ is an $(r+1) \times m$ matrix of parameters, and $\boldsymbol{\varepsilon} = (\boldsymbol{\varepsilon}_1, \ldots, \boldsymbol{\varepsilon}_n)'$ is an $n \times m$ matrix of random errors where $\boldsymbol{\varepsilon}_1, \ldots, \boldsymbol{\varepsilon}_n$ are i.i.d.~ $N_m(0, \boldsymbol{\Sigma})$. Let $\boldsymbol{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$, $\boldsymbol{\Sigma} = \frac{1}{n}(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})$ be the MLE estimator of $\boldsymbol{\beta}$ and $\boldsymbol{\Sigma}$, respectively. We use $\boldsymbol{\beta}'\mathbf{z}_0$ to estimate the response vector \mathbf{Y}_0 at a fixed predictor vector $\mathbf{z}_0 \in \mathbb{R}^{r+1}$.
 - (1) Show that $\hat{\boldsymbol{\beta}}' \mathbf{z}_0 \sim N_m (\boldsymbol{\beta}' \mathbf{z}_0, \mathbf{z}_0' (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{z}_0 \boldsymbol{\Sigma}).$
 - (2) Show that $\hat{\boldsymbol{\beta}}' \mathbf{z}_0$ is independent of $n\hat{\boldsymbol{\Sigma}}$.
 - (3) Let

$$T^{2} = \left(\frac{\hat{\boldsymbol{\beta}}'\mathbf{z}_{0} - \boldsymbol{\beta}'\mathbf{z}_{0}}{\sqrt{\mathbf{z}_{0}'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_{0}}}\right)' \left(\frac{n\hat{\boldsymbol{\Sigma}}}{n-r-1}\right)^{-1} \left(\frac{\hat{\boldsymbol{\beta}}'\mathbf{z}_{0} - \boldsymbol{\beta}'\mathbf{z}_{0}}{\sqrt{\mathbf{z}_{0}'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_{0}}}\right)$$

Show that $T^2 \sim \frac{m(n-r-1)}{n-r-m} F_{m,n-r-m}$.

(4) Show that the prediction error $\mathbf{Y}_0 - \hat{\boldsymbol{\beta}}' \mathbf{z}_0 \sim N_m(0, (1 + \mathbf{z}'_0(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0)\boldsymbol{\Sigma})$ and

$$\left(\frac{\mathbf{Y}_0 - \hat{\boldsymbol{\beta}}' \mathbf{z}_0}{\sqrt{1 + \mathbf{z}_0' (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{z}_0}}\right)' \left(\frac{n\hat{\boldsymbol{\Sigma}}}{n - r - 1}\right)^{-1} \left(\frac{\mathbf{Y}_0 - \hat{\boldsymbol{\beta}}' \mathbf{z}_0}{\sqrt{1 + \mathbf{z}_0' (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{z}_0}}\right) \sim \frac{m(n - r - 1)}{n - r - m} F_{m, n - r - m}$$