1. We consider the null hypothesis $H_{0}: \mathbf{C} \boldsymbol{\beta}=\boldsymbol{\Gamma}_{0}$, where \mathbf{C} is an $(r-q) \times(r+1)$ known matrix with rank $r-q, \boldsymbol{\beta}$ is an $(r+1) \times m$ matrix of unknown parameters, and $\boldsymbol{\Gamma}_{0}$ is an $(r-q) \times m$ known matrix. Show that there always exists an $(r+1) \times m$ matrix $\boldsymbol{\beta}_{0}$ satisfying $\mathbf{C} \boldsymbol{\beta}_{0}=\boldsymbol{\Gamma}_{0}$ and an $(r+1) \times(q+1)$ full-rank matrix \mathbf{B} satisfying $\mathbf{C B}=0$, such that, $\mathbf{C} \boldsymbol{\beta}=\boldsymbol{\Gamma}_{0}$ if and only if $\boldsymbol{\beta}=\boldsymbol{\beta}_{0}+\mathbf{B} \boldsymbol{\theta}$ for some $(q+1) \times m$ matrix $\boldsymbol{\theta}$. In other words,

$$
\left\{\boldsymbol{\beta} \in \mathbb{R}^{(r+1) \times m} \mid \mathbf{C} \boldsymbol{\beta}=\boldsymbol{\Gamma}_{0}\right\}=\left\{\boldsymbol{\beta}_{0}+\mathbf{B} \boldsymbol{\theta} \mid \boldsymbol{\theta} \in \mathbb{R}^{(q+1) \times m}\right\}
$$

2. Predictions from multivariate multiple regressions Consider the multivariate linear regression model $\mathbf{Y}=\mathbf{Z} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where \mathbf{Y} is an $n \times m$ matrix of responses, \mathbf{Z} is an $n \times(r+1)$ known matrix with rank $(r+1), \boldsymbol{\beta}$ is an $(r+1) \times m$ matrix of parameters, and $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \boldsymbol{\varepsilon}_{n}\right)^{\prime}$ is an $n \times m$ matrix of random errors where $\boldsymbol{\varepsilon}_{1}, \ldots, \boldsymbol{\varepsilon}_{n}$ are i.i.d. $\sim N_{m}(0, \boldsymbol{\Sigma})$. Let $\hat{\boldsymbol{\beta}}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{Y}, \hat{\boldsymbol{\Sigma}}=\frac{1}{n}(\mathbf{Y}-\mathbf{Z} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{Z} \hat{\boldsymbol{\beta}})$ be the MLE estimator of $\boldsymbol{\beta}$ and $\boldsymbol{\Sigma}$, respectively. We use $\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0}$ to estimate the response vector \mathbf{Y}_{0} at a fixed predictor vector $\mathbf{z}_{0} \in \mathbb{R}^{r+1}$.
(1) Show that $\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0} \sim N_{m}\left(\boldsymbol{\beta}^{\prime} \mathbf{z}_{0}, \mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0} \boldsymbol{\Sigma}\right)$.
(2) Show that $\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0}$ is independent of $n \hat{\boldsymbol{\Sigma}}$.
(3) Let

$$
T^{2}=\left(\frac{\hat{\boldsymbol{\beta}}_{\mathbf{z}_{0}}^{\prime}-\boldsymbol{\beta}^{\prime} \mathbf{z}_{0}}{\sqrt{\mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0}}}\right)^{\prime}\left(\frac{n \hat{\boldsymbol{\Sigma}}}{n-r-1}\right)^{-1}\left(\frac{\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0}-\boldsymbol{\beta}^{\prime} \mathbf{z}_{0}}{\sqrt{\mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0}}}\right)
$$

Show that $T^{2} \sim \frac{m(n-r-1)}{n-r-m} F_{m, n-r-m}$.
(4) Show that the prediction error $\mathbf{Y}_{0}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0} \sim N_{m}\left(0,\left(1+\mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0}\right) \boldsymbol{\Sigma}\right)$ and

$$
\left(\frac{\mathbf{Y}_{0}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0}}{\sqrt{1+\mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0}}}\right)^{\prime}\left(\frac{n \hat{\mathbf{\Sigma}}}{n-r-1}\right)^{-1}\left(\frac{\mathbf{Y}_{0}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{z}_{0}}{\sqrt{1+\mathbf{z}_{0}^{\prime}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{z}_{0}}}\right) \sim \frac{m(n-r-1)}{n-r-m} F_{m, n-r-m}
$$

