
Bios: Creative Organization Beyond Chaos

 Louis H. Kauffman and Hector Sabelli

University of Illinois at Chicago
851 South Morgan St., Chicago, Illinois 60607-7045

e-mail: <kauffman@uic.edu>
a n d

Chicago Center for Creative Development
2400 Lakeview, Chicago, Illinois 60614

e-mail: <hsabelli@rpslmc.edu>

Summary:   Bios is a new type of organization characterized by the continual
generation of novel patterns.  Bios thus provides a new concept regarding
physiological regulation and creative evolution.  Different types of biotic
patterns have been found in physiological and economic time series,  and can
be generated by the process equation A(t+1) = A(t)+  g t sin(A(t))  that models
the diversity of positive and negative interactions to be expected from the
environment. In investigating fundamental process we are looking for
elemental pairs of opposites living in creative dialogue. The process equation
exemplifies this approach and it provides a compass for the investigation.
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1.  Introduct ion
In this paper we report on a mathematical pattern that we call bios, a variant
of chaos identified in heartbeat intervals and also by an equation that we dub
the process equation [Kauffman and Sabelli (1998)], [Sabelli and Kauffman
(1999)].

The process equation generates convergence to π�πππ  , a cascade of bifurcations,
chaos, bios and infinitation, according to the value of the feedback gain g.
When g is a linear or sinusoidal function of time, the bifurcation diagram
generates "lifeforms" that evolve from one fixed point ( the  "egg" in this
organic metaphor) through a cascade of partitions into bios, and end in
infinitation.  In the complex plane, numerical series generated by orthogonal
(sine and cosine are orthogonal) process equations display fractal organic
pa t t e rns .

This paper is organized as follows: Section 2 discusses the process equation and
its relation to chaos and bios.  Section 3 discusses mathematical properties of
the process recursion.  Section 4 discusses the relationship of the process
equation to the circle map studied in the literature of chaos theory. Section 5
discusses variations on the process equation.  Section 6 discusses complement
plots of biotic series. Section 7 is a short remark on process theory. Section 8
summarizes the paper.
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2. The Process Equation
The purpose of this section is to draw attention to a number of remarkable
properties of the recursion

A(t+1) = A(t) + gsin(A(t))

where the A(t) are real numbers. We call this equation the process equation.
We call the value g the gain  of the process equation.

For small gain near zero the recursion tends to the fixed point A=π�πππ  .  As g is
increased there is a series of bifurcations or apparent bifurcations, for as is
evident in Figure 1  there are places where the process changes its character
and appears to have the form of bifurcation without the substance of the
appearance of a new branch. This unifurcation is one of the new phenomena
to which we refer.

As g becomes sufficiently large there is a transition to chaos, analogous to that
in the logistic equation

A(t+1) = gA(t)(1 - A(t)).

However in the process recursion we have the abrupt "walls" apparent in
Figure 1.  These walls are never seen in logistic chaos.

The most startling phenomenon,  however, occurs  at about g=4.605 (near the
Feigenbaum constant) where the process continues (as opposed to the logistic
equation) and  acquires a new character that we call "biotic".

In this biotic phase (g > 4.605) the process has many similarities to biological
time series, particularly to heartbeat data.  Biotic series, but not chaotic series
show the following features that also obtain in heartbeat series:  (1) episodic
patterns ("complexes") separated by relatively patternless transitions; (2)
recurrence rate lower than random.

A detailed picture of the biotic pattern in given in the next sections.

3.  Thinking about the Mathematics of the Process Equation
We study graphic plots related to the process equation in three ways that we
call the dynamic plot , the kinetic plot  and the dynamic seed plot.  In the
dynamic plot the gain is a step function of time, so that we can gather a list of
successive values of the recursion for a fixed value of the gain. In the kinetic
plot the gain increases by a small increment with each time step.  In the
dynamic seed plot, gain is held fixed for periods of time and the same initial
value is entered for the recursion each time the gain is increased.  Each of
these methods reveals different (although related) information about the
structure of the process recursion.  The kinetic and dynamic plots give a very
similar appearance when the gain increment of the kinetic plot is very small.
Nevertheless subtle differences occur in the comparison of these methods.

Strictly speaking, the kinetic plot should be regarded as the plot of a different
process than the dynamic plot. In the kinetic plot the equation of process is



A(t+1) = A(t) + g(t)sin(A(t))

where the gain g(t) is a function of time. We usually take

g(t) = c + t∆∆∆∆

where c is a starting value for the gain and ∆  is a small constant.
The kinetic plot then plots the points (t, A(t)). If ∆  is small in relation to the
size of the increment of t, the kinetic plot will resemble the dynamic plot, but
generates additional phenomena.

We also use c o b w e b   plots (described below) to illustrate and investigate the
process dynamics.

In Figure 1 we show a dynamic plot of the process equation. The vertical axis
plots A(t) for many (200) values of t and a fixed g where g is the value of the
horizontal coordinate.  For a given g this plot shows when A(t) is a fixed point
(or steady asymmetry), periodic point, chaotic or biotic.  By looking back and
forth along the plot the reader can see how the process equation changes as g
changes its value.  This dynamic plot is made by running the process equation,
plotting points for a given value of g, then increasing the value of g (by 0.01)
and running again. This means that the seed value of A for a new value of g is
obtained from the last value of the previous run of the recursion.

Remarkably,  we can experimentally verify that the dynamic plot of the
logistic equation occurs inside the dynamic plot  of the process equation.  View
Figure 1.1.



 Figure 1 -- Process Equation -- Dynamic Plot

In the graph for Figure 1, we have drawn a vertical line at the value where
the gain is equal to π�πππ .  Notice the unifurcation phenomenon at g=π�πππ  .  The period
two points in the full plot suddenly move "upward" together, and it looks like
there could have been a downward branching as well.  It is a computational
fact that this phenomenon occurs at g=π�πππ  . While we have no other proof of this
fact at this time, the following discussion is quite suggestive.





Note that phenomena viewed using large increments in the stepping of the
gain g can occur at different values of the gain than the corresponding
phenomena in the same series with small increments.

Can we understand the reason for the unifurcation?
Why would the process appear to bifurcate but not show a branch of the
bifurcation?  We see the dynamics of this  by using a cobweb plot.  The picture
below (Figure 2)  shows the structure of the cobweb plot for the process
equation in the neighborhood of the unifurcation.

In the case of the unifurcation, we find that it shows up in the cobweb plot as
described below. The cobweb has the advantage of showing visual dynamics of
this part of the process.

 Figure 2 - Unifurcation



Each plot has a constant g.  The plot has a dotted wavy figure that is the graph
of  y=f(x)= x +g sin(x) where x denotes the horizontal axis and y denotes the
vertical axis. We draw lines from

(x,x) to (x,f(x)) and from (x, f(x)) to (f(x), f(x)).

The iterates of the function f(x) appear as the off-diagonal points in the
cobweb.

Returning to the plots in Figure 2,  we illustrate an increasing sequence of
values of g in subfigures A, B, C, D.  We see that at  A the cobweb plot indicates a
period two pattern as indeed one sees in the  plot of the process equation
shown in Figure 1.  As g is increased to D this period two vibration shifts to a
larger value, but remains at period two.  This is the first instance of
unifurcation.  It is clearly (from the cobweb plot) a consequence of the
weaving back and forth between the maximum, minimum and "walls" of the
sine wave pattern in the graph of y=x+gsin(x).

Most importantly note that the basic shift  is a movement where the period
four pattern moves from using the right-hand lower minimum of the graph to
using the left hand upper maximum of the graph. See the bottom two pictures
in Figure 2.

This brings us to a further discussion of the pattern of unifurcation in the
process equation plot as discussed in relation to Figure 1. It is not hard to see
that this pattern has a mathematical "mate" that fits together with it to form a
simulacrum of bifurcation. One way to find the mate is to use a deformed
process equation as in

A(t+1) = A(t) + g sin( A(t) + θ
�
θθθ    ) .

If θ
�
θθθ  is chosen appropriately then we can get a situation where a slight

decrement of θ
�
θθθ  leaves the pattern alone but a slight increment gives the mate.

This pivot point appears to be quite exact.
In Figure 3  we exhibit this phenomenon with θ

�
θθθ  = 2.71795 (down) and θ

�
θθθ  =

2.71796 (up).



 Figure 3 - The Pivot Between UpWalls and DownWalls

In the pivot example shown in Figure 3 we have a new example of sensitivity
to initial conditions where we regard the value of θ

�
θθθ  as an initial condition for

the recursion. (The examples start with x= π�πππ  ) The global configuration of the
process equation plot is affected by infinitesimal changes in this initial
cond i t ion .

Another way to create a mate in the dynamic plot is to use a different initial
condition. We used the initial condition A(0)=0.001 to produce the plot in Figure
3.  If we use A(0) = -0.001 (starting from a small negative value) then the mate
will appear, with the unifurcations going downward rather than upward.   In
the first instance the process converges to the fixed point at A=π�πππ  . In the
second instance the fixed point is A=-π�πππ  . As the gain is increased the  fixed
point becomes unstable and the branching in the dynamic plot begins. Of
course it is the computational error in the computer that allows the
bifurcation to begin. If the computer were mathematically perfect, then the
process would remain at the fixed point!



Now lets turn to the next phenomenon in the dynamic plot of the process
equation.  This is the actual bifurcation to period four at around g=3.5.  Figure 3
shows the cobweb plot for g=3.5.  We see the exact form of the period four and
how it involves a "bounce" among the sides of the little reflection space made
by one maximum and one minimum of the sin function distorted into y = x
+gsin(x) .

Figure 4 - Period Four at g=3.5

Continuing the tour of the full plot, we arrive at the strange "walls" at around
g=3.6.   Here the plot suddenly acquires a larger chaotic component. It goes
from chaos to larger chaos abruptly.  Now look at the cobweb plot in Figure 5.



Figure 5 - The Onset of the Wall

In Figure 5 we see how chaos at g=3.60894 suddenly becomes larger chaos at g=
3.60895. Again this a property of the y=x+gsin(x) reflection space. Finally in
Figures 6 ,7 and 8 we see the cobweb plots that illustrate the transition from
chaos to bios.  In this transition the dynamics that was restricted to a
"reflection space" consisting of one maximum and one minimum of the graph
y=x+gsin(x) suddenly "breaks out" and begins a complex motion in a larger
space.  We will later look at more details of this process.  We call this break out
phase bios .



Figure 6 - PreBiotic Phase

  

Figure 7 - Transition to Biotic Phase



  Figure 8 - Biotic Phase

The next topic we take up is the appearance of the process equation dynamic
seed plot. In the plot below (Figure 9), we use a seed value of A=0.0001 and start
at this value for each choice of g.

Figure 9 -- The Dynamic Seed Plot with Seed = .0001

With the seed near zero we see that zero is an unstable fixed point for the
process from the very beginning. In contrast,  π�πππ   is a  mathematical fixed point
at the beginning and we get the dynamic seed plot with transients as shown in
Figure 10.



 Figure 10 - Seed = π�πππ

In Figure 10 we have drawn a vertical line at g=π�πππ   for comparison with
Figure 1.

More work is needed to understand these phenomena.

Recurrence Plots and Bios
Another feature of the biotic phase stands out in recurrence plots of the time
series. A recurrence plot is obtained from a time series A(t), for the "times"
t=1,2,3,...as follows:  Choose a vector dimension d and associate a vector V(t) to
each time t by the equation

V(t) = (A(t), A(t+1), A(t+2), A(t+3), ..., A(t+d-1)).

The norm of a vector v, denoted ||v||, is the square root of the sum of the
squares of the components of v.  One may compare vectors v and w by taking
the norm of their difference, ||v-w||.  For each pair of vectors V(t), V(t') we
compute ||V(t) -V(t')||.  If this norm of the difference  is less then C for a
chosen criterion   C, plot a point at (t,t') in the Time x Time plane.  The resulting
recurrence plot gives a graphic picture of the self-correlation of the original
time series, and it provides a fertile domain for experimenting with such
patterns of self-correlation.  See Figure 11 for an example of a recurrence plot
for the biotic phase of the process equation. In this figure the total length of
the time series is 300, the vector length is  d = 10  and the criterion for plotting
is C = 20.



 Figure 11-- Process Equation, g=4.9 Recurrence Plot

In Figure 11 we have shown the time series on the right half and the
corresponding recurrence plot on the left half (separated by a vertical line).
A number of results can be seen from these plots.
First of all, there is a concentration into localized complexes as shown in
Figure 11.  These complexes are characteristic of bios, and can be understood
in the process equation as related to the patterns of  repeated visiting to
regions of paired maxima and minima in the graph of y = x + g sin(x).



Figure 11.1 - Heart Data -- Recurrence Plot

In Figure 11.1 we show a recurrence plot of heartbeat interval data using a
similar set of parameters, 300 points in the time series, vectors of dimension 10
and C = 20. It is quite interesting to compare the qualitative and quantitative
features of the heartbeat data with bios. In the case of both Figures 11 and 11.1,
the choice of criterion C is dependent on the range of values of the series.
Different values of C can bring out different aspects of the recurrence.

If one shuffles the time series and makes the recurrence plot again,  the
shuffled plot will have a more uniform distribution of recurrences, without
the concentration into domains that is seen in bios as in Figures 11 and 11.1.

One also sees  that for process equation bios, the shuffled plot has m o r e
recurrences than the unshuffled plot.

In other words the incidence of recurrence is lower in bios than in random.
We take this as an indication that the biotic pattern is exhibiting n o v e l t y .  A
series with low recurrence rate is regarded as having novelty while high
recurrence as in periodic patterns signifies the lack of newness.  This notion
of novelty has two purposes. On the one hand it provides an operational
definition of novelty. On the other hand it gives us a chance to raise the issue
of the nature of novelty in more general contexts.  That discussion will be
taken up in other publications. Let us only note here that these changes with
shuffling are exactly the same as those that happen with the heart.



4.  The Circle Map
A mapping that is related to the process equation can be obtained by taking

A(t+1) = A(t) + g sin( A(t) )  (Mod P)

for an appropriate period P. In the literature this is called the circle map and
has been much studied for P= 2π�πππ .

Remark.  The circle map most commonly studied has the form

A(t+1) = A(t) + 2π�πππ    ΩΩΩΩ    + K sin(A(t) + d).

(See [Froyland (1992)], [Glass and Mackey (1988)].) Many phenomena (such as
the Arnold tongues [Froyland (1992)]) occur even with K=0. Here we relate the
process equation to the circle map in the case where  Ω = 0 .

The phenomena that we have been discussing in relation to the process
equation are not available or are hidden in the circle map. In particular the
biotic phase is not visible in the standard circle map due to the mixing that
occurs from the modulus. Some other process equation features appear
transiently in the beginning of the circle map.  In Figures 12 and 13 we show
the beginnings of the circle map with P=3 in Figure 12 and  P= 2 π�πππ        in Figure 13.
Note the transient cascade in Figure 12 and note that we see the process
equation chaos reproduced at the beginning in Figure 13.  There are other
chaotic bifurcation patterns in both figures that bear a resemblance to the
chaos of the logistic equation, but it is clear that these are actually coming
from the process equation folded into itself from its different appearances
emanating from the fixed points of sin(A) at different multiples of π�πππ .  Of course
these folded appearances of "fake" logistic process should be compared with
the actual logistic process. This will be the subject of another paper.

Figure 12 -- Mod 3 Cascade



Figure 13 -- Mod 2π�πππ  - Process Equation Dynamics in the Circle Map

5. Variations on the Process Equation
There are many variations that one can make on the basic process equation
discussed in this paper. In this section we will mention a few of these and
discuss their properties.

The Sabelli Attractor
A(t+1) = A(t) + B(t) cos(A(t))
B(t+1) =  B(t) + A(t) sin(B(t))

Here are the equations of a self-contained two dimensional process consisting
in two interlocked process equations where the gain of each equation is the
output of the other equation. This mutuality gives rise to a very beautiful
attractor as illustrated in Figure 16.



 Figure 16 - The Sabelli Attractor

Note that the set of points in the Sabelli attractor is invariant under the
mapping of the plane to the plane  given by the equation F(A,B) = (A + B
cos(A), B + A sin(B)).  Note that this strange attractor is produced by the mutual
control of gain in these equations.

Of course the Sabelli attractor has variations of its own, and we leave that
subject to another paper.

Cocreat ing Equat ions
A(t+1) = A(t) + g B(t) Sin(B(t))

 B(t+1) =  B(t) + h A(t) Cos(A(t))

We call this next variation "cocreating equations".  In the cocreating
equations there are two linked process equations, but in each equation the
gain and feedback comes from the other one. For specific values as shown
be low

Initial values A=6.3734761,   B=.00001.
A(t+1) = A(t) + .1 B(t) Sin(B(t))

   B(t+1) =  B(t) + .01 A(t) Cos(A(t))

we get a most extraordinary sequence of events [Sabelli, Kauffman, Patel,
Sugerman, Carlson-Sabelli, Afton, and  Konecki (1997)] as shown in Figures 17,
18 and 19.  In these figures we have shown the results of the organic pattern
that emerges from the recursion at successive levels of magnification.



Figure 17 - First Steps -- From Seed to Smoke



Figure 18 - Stepping Back



Figure 19- Stepping Farther Back

At the very first level we see the stage of the "seed" where there is a slow
transition working its way through a two dimensional oscillatory process that
starts to build a two dimensional chaotic region. Eventually, the process breaks
out into bios in the form of the wandering smokelike path in two dimensions
that continues at many scales above the beginnings of the process. In the
course of these wanderings, forms are painted and it is the production of these
forms that leads us to call these linked equations the cocreators of organic
forms.  The forms that are seen result from the clustering behaviour of this
process. This generation of  forms with similarities at many levels of the
recursion goes beyond bios to a new process closely allied to the organic
nature of our universe.

6. Complement Plots
Let A(t) be any time series.  Plot in the plane the points

( c o s ( A ( t ) ) ,  s i n ( A ( t ) ) .

This is the complement plot.  The complement plot was created to reveal the
coexistence of opposites when only one time series was available. This is
accomplished by composing the single time series with both the sine and the



cosine in this manner.  We obtain patterns that reveal much about many
processes. Mandala - like patterns appear for the heart [Sabelli (1999)].

In Figure 20 we illustrate the complement plot for the process equation with
gain g=4.0. Notice that there is a gap in the circle. This is characteristic of the
complement plot of the process equation prior to the biotic phase.

In Figure 21 we show the complement plot for the process equation with gain
g=4.8. Now the circle has closed.  This contrast between the closed and open
circles can be seen correspondingly in the cobweb plots where the area
between the first minimum and first maximum of the cobweb plot graph is not
filled completely until the onset of bios.

Figure 20 - Process  Complement Plot -- g = 4.0



Figure 21 - Process Complement Plot -- g= 4.8

Figure 22 - Heart Data -- Complement Plot



Figure 23 - The Complete Graph on 23 Vertices

Figure 24 - Process Equation -  Integer Complement Plot g=4.8



In Figure 22 we show the complement plot of heartbeat intervals (these data
have integer values).  Note how the plot produces a set of concentric ring
patterns in a mandala - like form. This plot of heartbeat data is not at all like
the Figure 21 plot of process bios. The source of this discrepancy is the fact
that the bios recursion does not produce a series of integers.  In Figure 24 (at a
different unit scale) we show the result of making an integer complement plot
for the process recursion at g=4.8.  If A(t) denotes the values of the process
recursion, we have then plotted (cos(Int(A(t)), sin(Int(A(t))) for many values
of t, where Int(x) denotes the greatest integer in x. This plot of process bios
does have a pattern similar to the complement plot for heartbeat intervals.

In Figure 23 we illustrate the complement plot obtained by connecting all
possible chords between 23 equally spaced points around a circle. It is worth
comparing this "ideal" circle plot with the results in the other figures. Note
how the heart data selects only some of the concentric rings that appear in an
ideal plot. This selectivity becomes a footprint for the process being studied.

Cardiac biotic series generate a pattern of concentric circles in complement
plots [Sabelli (1999)].  Equation-generated biotic series rounded to integers
generate Mandala patterns similar to those of the heart.  Chaotic series
(process or logistic equation) generate partial circles that reduce to simple
figures when the data is rounded. The process time series turns into a biotic
Mandala when the circle of opposites is closed.  Even after closing the circle;
there remains an asymmetry (see Figure 24).  Sine and cosine are
paradigmatic of complementary opposites.  They co-create the circle, and so we
come full circle to the information space in which this method is based.

7. Process Theory
In taking process as fundamental, the issue of eternal structures and their
properties dissolves into an attention to the temporal movement and structure
of series of events.   Temporality shifts  contradiction into oscillation and
chaos. Time moves  actions into a dialogue of opposites.

In investigating fundamental process we are looking for elemental pairs of
opposites living in creative dialogue.  At the most fundamental level such a
pair is the archetype of distinction where any distinction is seen as a dialogue
between its apparent sides and more fundamentally a dialogue between the
union of these sides, where there is no distinction at all, and the separation of
these sides where the distinction appears.

In the mathematical approach there is single concept of infinity. And yet
there are fundamentally different forms of infinity, such as infinity as
circularity and infinity as a linear progression where one step leads to
another. These two views of infinity are not the same. Yet they are entwined
in process and both partake of the one concept of infinity. This dialogue of the
circular infinity and the linear infinity is the fundamental pattern behind
the process equation where linear infinity is fed back through the circle (the
bipolar feedback) and the circle participates in the linear infinity of the time
series.  (See [Kauffman (1987)] for another viewpoint on circular and linear
i n f i n i t y . )

All fundamental processes partake of these patterns.



8.  Conclusion
In summary, bios is a new type of organization characterized by the continual
generation of novel patterns.  Bios thus provides a new concept regarding
physiological regulation and creative evolution.  Different types of biotic
patterns have been found in physiological and economic time series
[Kauffman and Sabelli (1998)], [Sabelli and Kauffman (1999)], and can be
generated by the process equation A(t+1) = A(t)+  g t sin(A(t))  that models the
diversity of positive and negative interactions to be expected from the
environment [Kauffman and Sabelli (1998)].

Biotic series appear erratic and random, but they are patterned, can be
generated deterministically, and show high correlation between consecutive
members. As chaos, bios displays sensitive dependence on initial  conditions,
fractal structure, and the presence of periodic orbits.  Bios is distinguished
from chaos by its creative features: temporal patterning, novelty, complexity,
diversity, and asymmetry.  Bios is composed of time-limited patterns detected
by recurrence and  wavelet plots similar to those observed for pink noise, in
contrast to stationary random, periodic and chaotic patterns [Kauffman and
Sabelli (1998)].  Biotic series have recurrence rates lower than their
randomized surrogates, an operational definition of novelty  --periodic order
implies recurrence, and most chaotic series (including process chaos) have
the same recurrence as their shuffled copies.  The time series of differences
between consecutive members of a biotic series is chaotic, indicating a
complexity of patterning not observable in random or chaotic series. Likewise
the diversity of time series generated by differencing repeatedly is lower than
for the original series, in contrast to white, pink or Brownian noise with a
random variable step size. Biotic systems expand their phase space volume, in
contrast to conservative systems and to processes that contract it towards
attractors.  In contrast to symmetric random processes, periodic processes and
chaos, bios generates asymmetric statistical distribution, corresponding to
Pasteur's cosmic asymmetry   -- a fundamental feature of natural processes.

The emergence of periodic, chaotic, biotic and organic patterns exemplifies
and instantiates the process theory concept of co-creation of novel, complex
and diverse patterns by the interaction of opposites [Sabelli (1989)], [Sabelli,
Carlson-Sabelli, Patel, Sugerman (1997)], [Sabelli (1998)]. Whereas determined
unpredictability defines chaos, determined novelty defines bios. The dialectic
of complementary opposites determines novelty, and may account for creative
evolution without resorting to random accident or supernatural intervention.
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