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1 Notation

Here we quickly fix our notation. Let A denote Khovanov’s TQFT. We let V be the free, graded
Z-module generated by v+ and v−, which have degrees p(v±) = ±1. The multiplication and
comultiplication induced on V from cobordisms is denoted by m and ∆ where

m(v+ ⊗ v+) = v+ m(v± ⊗ v∓) = v− m(v− ⊗ v−) = 0

∆(v+) = v+ ⊗ v− + v− ⊗ v+ ∆(v−) = v− ⊗ v−

Let L be a link with k crossings and (n+, n−) positive/negative crossings. If v ∈ {0, 1}k we
let Lv denote the smoothing of L, elements x of A(Lv) are said to have homological grading
gr(x) = c1(v)− n−, where c1(v) is the number of 1’s in the coordinates of v. Elements x of A(Lv)
of homogenous p-grading are said to have quantum grading q(x) = p(x) + gr(x) + n+ − n−. The
Khovanov chain complex is denoted by CKhi,j , where the first index is the homological grading
and the second index is the quantum grading. The homology of this complex is denoted by Khi,j .
The graded Euler characteristic is defined to be the Laurent polynomial

Kh(q) =
∑

j

(∑
i

(−1)i rank Khi,j

)
qj

2 A Useful Trick

Before making some computations we first discuss a trick that will be used repeatedly in what is
to come. It basically deals with determining the quotient of free Z-modules by free Z-modules. For
instance, we know that the free module Z modulo the free module 2Z is simple Z/2. We will be
running into much more complicated instances of this in our computations.

Let M be a submodule of Zn, which must be free. Let v1, . . . , vk be a basis for M , and let A
be the matrix whose columns consists of the vectors vi, and add some extra zero columns to make
A and n × n matrix (if needed). Then we claim that Zn/M is isomorphic to Z/(d1) ⊕ · · ·Z/(dn),
where di are the eigenvalues of A.

As an example, suppose we want to mod Z3 by the subspace generated by the vectors (1, 0, 1), (0, 1, 0).
The matrix A is given by

A =

 1 0 0
0 1 0
1 0 0
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The eigenvalues of this can easily be computed to be 2, 1, 0, hence

Z3

〈(1, 0, 1), (0, 1, 0)〉
= Z/(2)⊕ Z/(1)⊕ Z/(0) = Z/2⊕ Z

Most of the messy computations in Khovanov homology can be reduced to solving something
of this form, so this trick will be quite useful for us.

3 The Hopf Link

Let L be the Hopf link with orientation such that both crossings are negative. For each v ∈ {0, 1}2,
let Lv be the resolution of L. Using the usual TQFT we get a chain complex

0 −→ V ⊗ V
d1−→ V ⊕ V

d2−→ V ⊗ V −→ 0

It is easy to see that the differentials are given by

d1(v1 ⊗ v2) = (m(v1 ⊗ v2), m(v1 ⊗ v2)) (3.1)
d2(v1, v2) = ∆(v1)−∆(v2) (3.2)

We want to write these maps in matrix form, so we fix an ordered basis. Let the ordered basis for
the spaces in the chain complex be given by writting:

V ⊗ V = Zv+ ⊗ v+ ⊕ Zv− ⊗ v+ ⊕ Zv+ ⊗ v− ⊕ Zv− ⊗ v−

V ⊕ V = Z2v+ ⊕ Z2v−

Writing our modules this way determines an ordered basis. For example, in V ⊗ V we have the
basis

e1 = v+ ⊗ v+

e2 = v− ⊗ v+

e3 = v+ ⊗ v−

e4 = v− ⊗ v−

whereas in V ⊕ V we have the basis

e1 = (1, 0)v+

e2 = (0, 1)v+

e3 = (1, 0)v−
e4 = (0, 1)v−

By plugging each vector into d1 or d2 we get a matrix representation of these maps. In particular
we can easily compute:

d1 =


1 0 0 0
1 0 0 0
0 1 1 0
0 1 1 0

 d2 =


0 0 0 0
1 −1 0 0
1 −1 0 0
0 0 1 −1
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Now we compute the image and kernels of each of these maps. Clearly the image of d1 is spanned
by the first two columns, which corresponds to (remember our notation for basis vectors in V ⊕ V
above, otherwise things will be confusing):

im d1 = Z(1, 1)v+ ⊕ Z(1, 1)v−

For the kernel, it is easy to see that if (a, b, c, d) is a column vector in the kernel of the matrix of d1,
then a = 0, b = −c, so the kernel is spanned by the column vectors (0, 1,−1, 0) and (0, 0, 0, 1). The
former vector spans the subspace Z(v+ ⊗ v− − v− ⊗ v+) and the latter vector spaces the subspace
Zv− ⊗ v−, so

ker d1 = Z(v+ ⊗ v− − v− ⊗ v+)⊕ Zv− ⊗ v−

Next we look at d2. Clearly the image of d2 is spanned by the first and third columns, which
corresponds to

im d2 = Z(v+ ⊗ v− + v− ⊗ v+)⊕ Zv− ⊗ v−

For the kernel, it is easy to see that if (a, b, c, d) is in the kernel of the matrix of d2, then a = b and
c = d, so the kernel is spanned by the vectors (1, 1, 0, 0) and (0, 0, 1, 1). The former vector spans
the subspace Z(1, 1)v+ and the latter vector spans the subspace Z(1, 1)v−, so

ker d2 = Z(1, 1)v+ ⊕ Z(1, 1)v−

Now we compute the homologies:

Kh−2 = ker d1 = Z(v+ ⊗ v− − v− ⊗ v+)⊕ Zv− ⊗ v−

Kh−1 =
ker d2

im d1
=

Z(1, 1)v+ ⊕ Z(1, 1)v−
Z(1, 1)v+ ⊕ Z(1, 1)v−

= 0

Kh0 =
V ⊗ V

im d2
=

Zv+ ⊗ v+ ⊕ Zv− ⊗ v+ ⊕ Zv+ ⊗ v− ⊕ Zv− ⊗ v−
Z(v+ ⊗ v− + v− ⊗ v+)⊕ Zv− ⊗ v−

= Zv+ ⊗ v+ ⊕
Zv− ⊗ v+ ⊕ Zv+ ⊗ v−
Z(v+ ⊗ v− + v− ⊗ v+)

The quotient in the last line is simply isomorphic to Z since we are essentially taking the quotient
of Z⊕ Z by the diagonal, which is just Z (because there is an obvious surjection Z⊕ Z → Z with
kernel equal to the diagonal). This finishes the computation of the Khovanov homology of the link,
but now we want to determine the quantum gradings. It is easy to see that (where r stands for the
homological grading and q stands for the quantum grading)

Khr,q −2 −1 0
0 Z
−1
−2 Z
−3
−4 Z
−5
−6 Z

The graded Euler characteristic of this homology is

Kh(L)(q) = q−6 + q−4 + q−2 + 1
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This should be (q + q−1) times the Jone’s polynomial of L, so factoring out a (q + q−1) from the
above we get

q−6 + q−4 + q−2 + 1 = q−4(q−2 + 1) + q−2 + 1

= q−5(q−1 + q) + q−1(q−1 + q)

= (q + q−1)(q−5 + q−1)

and q−5 + q−1 is indeed the Jones polynomial (up to some substitution of variable).

4 The Left-Handed Trefoil

Let L be the left handed trefoil (i.e. a trefoil with orientation such that all crossings are negative).
Then our chain complex is

0 −→ V ⊗ V ⊗ V
d1−→ (V ⊗ V )⊕ (V ⊗ V )⊕ (V ⊗ V ) d2−→ V ⊕ V ⊕ V

d3−→ V ⊗ V −→ 0

with differentials given by

d1(v1 ⊗ v2 ⊗ v3) = (m(v1 ⊗ v2)⊗ v3, v1 ⊗m(v2 ⊗ v3), v2 ⊗m(v1 ⊗ v3))
d2(v1 ⊗ v2, v3 ⊗ v4, v5 ⊗ v6) = (m(v3 ⊗ v4)−m(v1 ⊗ v2), m(v5 ⊗ v6)−m(v1 ⊗ v2), m(v5 ⊗ v6)−m(v3 ⊗ v4))

d3(v1, v2, v3) = ∆(v1)−∆(v2) + ∆(v3)

We fix an ordered basis for the chain vector spaces by writting

V ⊗ V ⊗ V = Zv+ ⊗ v+ ⊗ v+ ⊕ Zv− ⊗ v+ ⊗ v+ ⊕ Zv+ ⊗ v− ⊗ v+⊕
Zv+ ⊗ v+ ⊗ v− ⊕ Zv− ⊗ v− ⊗ v+ ⊕ Zv− ⊗ v+ ⊗ v−⊕
Zv+ ⊗ v− ⊗ v− ⊕ Zv− ⊗ v− ⊗ v−

(V ⊗ V )⊕ (V ⊗ V )⊕ (V ⊗ V ) = Z3v+ ⊗ v+ ⊕ Z3v− ⊗ v+ ⊕ Z3v+ ⊗ v− ⊕ Z3v− ⊗ v−
V ⊕ V ⊕ V = Z3v+ ⊕ Z3v−

V ⊗ V = Zv+ ⊗ v+ ⊕ Zv− ⊗ v+ ⊕ Zv+ ⊗ v− ⊕ Zv− ⊗ v−

We now take the matrix representation of d1, d2, d3 with respect to these bases.

d1 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0



d2 =



−1 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 −1 1 0 0 0 0
0 0 0 −1 0 1 −1 0 1 0 0 0
0 0 0 0 −1 1 0 −1 1 0 0 0



d3 =


0 0 0 0 0 0
1 −1 1 0 0 0
1 −1 1 0 0 0
0 0 0 1 −1 1
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We now want to compute the image and kernels of these matrices. It is easy to see that the first 7
columns of d1 are linearly independent, and the subspaces they span are easy to determine, so the
image is (again remember our convention for basis vectors from above, otherwise this notation we
seem weird)

im d1 = Z ((1, 0, 0)v+ ⊗ v+ + (0, 1, 0)v+ ⊗ v+ + (0, 0, 1)v+ ⊗ v+)⊕
Z ((1, 0, 0)v− ⊗ v+ + (0, 1, 0)v− ⊗ v+ + (0, 0, 1)v+ ⊗ v−)⊕
Z ((1, 0, 0)v− ⊗ v+ + (0, 1, 0)v+ ⊗ v− + (0, 0, 1)v− ⊗ v+)⊕
Z ((1, 0, 0)v+ ⊗ v− + (0, 1, 0)v+ ⊗ v− + (0, 0, 1)v+ ⊗ v−)⊕
Z ((0, 1, 0)v− ⊗ v− + (0, 0, 1)v− ⊗ v−)⊕
Z ((1, 0, 0)v− ⊗ v− + (0, 1, 0)v− ⊗ v−)⊕
Z ((1, 0, 0)v− ⊗ v− + (0, 0, 1)v− ⊗ v−)⊕

(4.1)

The kernel of d2 is easy to compute, indeed only the vectors of the form (0, 0, 0, 0, 0, 0, 0, h) are in
the kernel, so

ker d1 = Zv− ⊗ v− ⊗ v−

Next we compute the image of d2. It is easy to see that only the 1st, 2nd, 4th and 5th columns are
linearly independent, and they span the subspace

im d2 =Z ((1, 0, 0)v+ + (0, 1, 0)v+)⊕ Z ((1, 0, 0)v+ − (0, 0, 1)v+)
Z ((1, 0, 0)v− + (0, 1, 0)v−)⊕ Z ((1, 0, 0)v− − (0, 0, 1)v−)

Computing the kernel is a bit messy, but we can use a number of methods (row reducing, Mathe-
matica, etc.), and so we just state the spanning vectors of the kernel:

1
1
1
0
0
0
0
0
0
0
0
0



,



0
0
0
1
1
1
0
0
0
0
0
0



,



0
0
0
−1

0
0
1
0
0
0
0
0



,



0
0
0
0
−1

0
0
1
0
0
0
0



,



0
0
0
1
1
0
0
0
1
0
0
0



,



0
0
0
0
0
0
0
0
0
1
0
0



,



0
0
0
0
0
0
0
0
0
0
1
0



,



0
0
0
0
0
0
0
0
0
0
0
1


These vectors span the following space

ker d2 = Z ((1, 0, 0)v+ ⊗ v+ + (0, 1, 0)v+ ⊗ v+ + (0, 0, 1)v+ ⊗ v+)⊕
Z ((1, 0, 0)v− ⊗ v+ + (0, 1, 0)v− ⊗ v+ + (0, 0, 1)v− ⊗ v+)⊕
Z (−(1, 0, 0)v− ⊗ v+ + (1, 0, 0)v+ ⊗ v−)⊕
Z (−(0, 1, 0)v− ⊗ v+ + (0, 1, 0)v+ ⊗ v−)⊕
Z ((1, 0, 0)v− ⊗ v+ + (0, 1, 0)v− ⊗ v+ + (0, 0, 1)v+ ⊗ v−)⊕
Z(1, 0, 0)v− ⊗ v−⊕
Z(0, 1, 0)v− ⊗ v−⊕
Z(0, 0, 1)v− ⊗ v−

(4.2)
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Finally we need to find the image and kernel of d3, which thankfully is easier than the previous
matrices. It is clear from inspection that only the 1st and 4th columns of d3 are linear independent,
and so they span the image

im d3 = Z(v− ⊗ v+ + v+ ⊗ v−)⊕ Zv− ⊗ v−

We can compute the kernel to be spanned by the vectors

1
1
0
0
0
0

 ,



−1
0
1
0
0
0

 ,



0
0
0
1
1
0

 ,



0
0
0
−1

0
1


These vector span the space

ker d3 =Z ((1, 0, 0)v+ + (0, 1, 0)v+)⊕ Z (−(1, 0, 0)v+ + (0, 0, 1)v+)
Z ((1, 0, 0)v− + (0, 1, 0)v−)⊕ Z (−(1, 0, 0)v− + (0, 0, 1)v−)

We now take quotients to compute the homology. The first homology group (meaning the one with
the lowest homological degree) is easy enough to compute:

H−3 = ker d1 = Zv− ⊗ v− ⊗ v−

The next group is more complicated to compute, mainly because a look back at ker d2 and im d1

shows that they are quite complicated. However, we see that there is a Z3v+⊗v+ term in ker d2 and
im d1, so those terms cancel when taking the quotient. Also, it is clear that the last three summands
of ker d2 in (4.2) make up all of Z3v− ⊗ v− in (V ⊗ V )3, whereas the last three summands of im d1

in (4.1) span the subspace of Z3 generated by (0, 1, 1), (1, 1, 0) and (1, 0, 1). By our useful trick
mentioned earlier, we have that the quotient of Z3 by the subspace generated by (0, 1, 1), (1, 1, 0)
and (1, 0, 1) is isomorphic to Z/d1⊕Z/d2⊕Z/d3, where d1, d2, d3 are the eigenvalues of the matrix
formed by those vectors. So we have

Z3

〈(0, 1, 1), (1, 1, 0), (1, 0, 1)〉
= Z/2

Now we have to worry about the stuff left over in ker d2 and im d1. This boils down to finding the
the following quotient

〈


1
1
0
0
0
1

 ,



1
1
1
0
0
0

 ,



−1
0
0
1
0
0

 ,



0
−1

0
0
1
0


〉

〈


1
1
0
0
0
1

 ,



1
0
1
0
1
0

 ,



0
0
0
1
1
1


〉
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We can’t apply our trick in this form though. To make this nicer we can just change the basis: let
v1, v2, v3, v4 be the vectors in the numerator (in order), then the bottom vectors can be expressed
as v1, v2 + v4, v1 + v3 + v4 respectively. Therefore determining the above quotient has become
equivalent to find

〈


1
0
0
0
0
0

 ,



0
1
0
0
0
0

 ,



0
0
1
0
0
0

 ,



0
0
0
1
0
0


〉

〈


1
0
0
0
0
0

 ,



0
1
0
1
0
0

 ,



1
0
1
1
0
0


〉

The bottom two rows on these vectors is zero, so this is equivalent to determining

〈
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


〉

〈
1
0
0
0

 ,


0
1
0
1

 ,


1
0
1
1


〉 =

Z4

〈(1, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 1)〉

Applying our trick shows that this is isomorphic to Z. Compiling all of this information we have
determined the next homology group

H−2 = Z⊕ Z/2

The next group is easier to compute. An easy inspection shows that ker d3 = im d2, so we have

H−1 =
ker d3

im d2
= 0

The last group is also pretty easy compute as it is reminiscent of the last homology group in the
Hopf link.

H0 =
V ⊗ V

im d3
=

Zv+ ⊗ v+ ⊕ Zv− ⊗ v+ ⊕ Zv+ ⊗ v− ⊕ Zv− ⊗ v−
Z(v− ⊗ v+ + v+ ⊗ v−)⊕ Zv− ⊗ v−

=Zv+ ⊗ v+ ⊕
Zv− ⊗ v+ ⊕ Zv+ ⊗ v−
Z(v− ⊗ v+ + v+ ⊗ v−)
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The last quotient is isomorphic to Z since it is Z ⊕ Z modulo the diagonal subgroup. Computing
the quantum gradings we get the following table:

Khr,q −3 −2 −1 0
−1 Z
−2
−3 Z
−4
−5 Z
−6
−7 Z/2
−8
−9 Z
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