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mod p; for a factor of degree k, as above, this is p*. Since each of the »;
in Kronecker’s method is at least 4, the number of steps in the program Y
is always less than the number in X'if p = 2 or 3, and often if p = 5. On the
other hand, the test modulo p may give information of a quite varying
nature. The polynomial may be irreducible mod p, in which case it is
irreducible. Or it may have factors mod p; then each factor must corre-
spond to a factor mod p or a product of factors mod p. An equation of
order 6 cannot have an irreducible factor of order 3 if it decomposes
mod p into three irreducible factors of degree 2. It is also possible that
the factors mod py do not agree with the factors mod ps. A polynomial
of degree 6 which has three irreducible factors of degree 2 (mod p;) and
two irreducible factors of degree 3 (mod p») must itself be irreducible.
Another example occurs on a more global level. It is possible to find the
Galois group of an equation mod p by an obvious exhaustive process,
since in this case we are searching for the set of all automorphisms of a finite
field. This must then be a subgroup of the Galois group over the rationals.
This calculation may reduce the amount of time taken to calculate the
Galois group over the rationals by eliminating possibilities. If the Galois
group mod p is the symmetric group, then the Galois group over the ration-
als must be the symmetric group. If the Galois group mod p contains any
odd permutation (such as, for example, a transposition) then the Galois
group over the rationals cannot be the alternating group or any subgroup
of it. We can calculate roughly how long it will take us to find the Galois
group modulo the next prime p, and compare this with the time estimate
of the calculation of the Galois group over the rationals by other methods.
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An enumeration of knots and links, and some of
their algebraic properties

J. H. ConwAy

Introduction. In this paper, we describe a notation in terms of which it
has been found possible to list (by hand) all knots of 11 crossings or less,
and all links of 10 crossings or less, and we consider some properties
of their algebraic invariants whose discovery was a consequence of
this notation. The enumeration process is eminently suitable for machine
computation, and should then handle knots and links of 12 or 13 crossings
quite readily. Recent attempts at computer enumeration have proved un-
satisfactory mainly because of the lack of a suitable notation, and it is
a remarkable consequence that the knot tables used by modern knot
theorists derive entirely from those prepared last century by Kirkman,
Tait, and Little, which we now describe.

Tait came to the problem via Kelvin’s theory of vortex atoms, although
his interest outlived that theory, which regarded atoms as (roughly) knots
tied in the vortex lines of the ether. His aim was a description of chemistry
in terms of the properties of knots. He made little progress with the enu-
meration problem until the start of a happy collaboration with Kirkman,
who provided lists of polyhedral diagrams which Tait grouped into knot-
equivalence classes to give his tables [9], [10], [11] of alternating knots with
at most 10 crossings. Little’s tables [4], [5], [6] of non-alternating knots to
10 crossings and alternating knots of 10 and 11 crossings were based on
similar information supplied by Kirkman.

Tait’s and Little’s tables overlap in the 120 alternating 10-crossing
knots, and Tait was able to collate his version with Little’s before publi-
cation and so correct its only error. The tables beyond this range are check-
ed here for the first time. Little’s table [6] of non-alternating knots is
complete, but his 1890 table [5] of alternating 11-crossing knots has 1
duplication and 11 omissions. It can be shown that responsibility for these
errors must be shared between Little and Kirkman, but of course Kirk-
man should also receive his share of the praise for this mammoth under-
taking. (Little tells us that the enumeration of the 54 knots of [6] took him
6 years — from 1893 to 1899 — the notation we shall soon describe made
this just one afternoon’s work!)
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Our tables of links, and the list of non-alternating 11-crossing knots,
appear here for the first time, so cannot be collated with any earlier table,
and for this reason the corresponding enumerations have been performed
three times.

The enumeration here described was completed some 9 years ago, and
a survey calculation of knot-polynomials was then made before an envis-
aged computer calculation. However, this survey brought to light cer-
tain algebraic relations between these polynomials which made the com-
puter redundant. But we suspect that our table will find its main use as a
basis for more sophisticated computer calculations with the many alge-
braic knot-invariants. ‘

1. Notation for tangles. This paper is an abbreviated form of a longer
one in which completeness is proved by means of a process for locating
any knot or link within range of the table, but for reasons of space we
only sketch this process here. For the same reasons, we describe our ideas
rather informally, feeling that most readers will find that this helps rather
than hinders their comprehension. Since most of what we say applies to
links of 2 or more components as well as knots, we use “knot” as an inclu-
sive term, reserving “proper knot” for the 1-component case.

In the light of these remarks, we define a tangle as a portion of knot-
diagram from which there emerge just 4 arcs pointing in the compass
directions NW, NE, SW, SE, hoping that Fig. 1 clarifies our meaning.

The. NW arc we call the leading string of the tangle, and the NW-SE
axis its principal diagonal. The typicaltangle ¢ we represent diagrammatic-
ally by a circle containing an L-shaped symbol with the letter ¢ nearby.
The 8 tangles obtained from ¢ by rotations and reflections preserving the
“front” of ¢ are indicated by making the corresponding operations on
the L-shaped symbol, leaving the original letter ¢ outside. The 8 other
tangles obtained by reflecting these in the plane of the paper have the cor-
responding “broken” forms of the L-symbols, with the original letter ¢
appended. Figure 2 shows how we represent the tangles ¢, 1;, ¢,, t;, = t,, —1,
t, being the result of rotation in a “horizontal” or E-W axis, ¢, that of
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rotation in the “vertical’’ or N-S axis, and —¢ that of reflection in the
plane of the paper.

Tangles can also be combined and modified by the operations of Fig. 3,
leading from tangles @ and b to new tangles a+b, (ab), a+, and a—.
Tangles which can be obtained from the particular tangles 0 and o by
these operations we call algebraic. In particular, we have the integral
tangles n=1+1+...+landi=—-n=1+1+...+1, both to n terms.

Ifm, n, p,...,s,t, are integral tangles, the tangle mnp. . .st, abbreviating

cgegogogel

FiG. 2
a b : a b: ga gg
a+b (ab) AN /
a+ a-
F1G. 3

[ ; .

1T

/\/\; > c</
FiG. 4

((...(mn)p...s)t), the brackets being associated to the left, is called a
rational tangle. Figure 1 shows the step-by-step formation of the particular
rational tangles 2 32 and 2 1 1 1 as examples. In the tables, the “comma”
notation (a, b, ..., c) = a0+b0+ . ..+ c0is preferred to the sum notation,
but is only used with 2 or more terms in the bracket. Figure 3 shows that
a0 is the result of reflecting g in a plane through its principal diagonal,
and ab = a0+b. The abbreviation a—b denotes ab (not a+b or (a—)b),
and outermost brackets are often omitted, in addition to those whose
omission is already described above.

The tangles a and b are called equivalent (written a = b) if they are
related by a chain of elementary knot deformations (Fig. 4). The impor-
tance of the class of rational tangles is that we can show that the rational
tangles ijk...Imand npq. . .stare equivalent if and only if the corresponding
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continued fractions m+l 111 t+l 111

— — — and — - =
I+.. . +k+j+i S+...+q+p+n
have the same value, so that there is a natural 1—1 correspondence
between the equivalence classes of rational tangles and the rational

numbers (including « = 1/0). The continued fractions 2+L+l and
H—l l —1— have the same value 8/5, and so the tangles 232 and
1+1+42

2111 of Fig. 1 are equivalent. Using this rule, we can reduce any rational
tangle to a standard form, either one of 0, e, 1, —1, or a form mnp. . .st
in which [m|=2and m, n, ..., s, t have the same sign except that ¢ might
be 0. Bach rational tangle other than 0 and - has a definite sign, namely
the sign of the associated rational number.

2. Notation for knots. An edge-connected 4-valent planar map we shall
call a polyhedron, and a polyhedron is basic if no region has just 2 vertices.
The term region includes the infinite region, which is regarded in the same
light as the others, so that we are really considering maps on the sphere.
We can obtain knot diagrams from polyhedra by substituting tangles for
their vertices as in Fig. 5 — for instance we could always substitute tangles
I or —1. Now let us suppose that a knot diagram K can be obtained by
substituting algebraic tangles for the vertices of some non-basic poly-
hedron P. Then there is a polyhedron Q with fewer vertices than P obtained
by “shrinking” some 2-vertex region of P, and plainly K can be obtained
by substituting algebraic tangles for the vertices of Q, as in Fig. 5. Thus
any knot diagram can be obtained by substituting algebraic tangles for
the vertices of some basic polyhedron P — in fact P and the manner of
substitution are essentially unique, but we do not need this.

@
DT

F1G. 5. Derivation of knots by substitution of tangles into polyhedra.
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Only 8 basic polyhedra are needed in the range of this table (Fig. 6),
although for convenience we have given one of them two distinct names.
The notations (2X3)* = 6%, 2X4)* = 8%, 2X5)* = 10*%, 3X3)* = 9*
extend obviously to (aXb)*.

The knot obtained from the polyhedron P* by substituting tangles
a, b, ..., kin the appropriate places we call P*a. b. ... . k. To save space,
we omit substituents of value 1, telescoping the dots which would have
separated them so as to show how many have been omitted. Thus 8*2:3.4:.5
abbreviates 8%2.1.3.4.1.1.5.1, the final dots being omitted from the abbrevi-

. ation. We also omit the prefixes 1*, 6*, 6** from certain knot names —

the original form is recovered by prefixing 1* if the abbreviation has no
dots, 6** if it has an initial dot, and 6* otherwise. The symbol 10— **#
abbreviates 10***1.1.1.1.1.

3. Some tangle equivalences. Flyping. The reader should now be able
to interpret any knot name taken from our table, but he will not yet appre-
ciate the reasons which make our ragbag of conventions so suspiciously
efficient at naming small knots. Much of this efficiency arises from the
fact that the notation absorbs Tait’s “flyping” operation (Fig. 7), which
replaces 1+¢ by #,+1, or 1+t by 1,4 1. For rational tangles ¢t we have
t=t,=1t,=1t,, and so when g, b, ..., c are all rational, the exact posi-
tions of theterms 1 or 1in (@, b,. . ., ¢) are immaterial, and we can collect
them at the end. Thus (1,3, 1,2)=(3,1,1,2)=(3,2, 1, 1).

Now using another part of our notation, we can also replace a pair
of terms ¢, 1 in such an expression by the single term ¢+, or a pair ¢, T
by t—. Supposing again that q, b,. . ., ¢ are rational, this justifies the equi-
valences

(a,b,c, )= (a,b,c+)=(a,b+,c)=(a+, b, ¢)
and
(a,b,c,1)=(a,b,c—)=(a,b—, ¢)=(a—, b, ¢).

showing that in such expressions the postscripts + and — can be regarded
as floating, rather than being attached to particular terms. We therefore
collect these postscripts on the rightmost term, cancelling + postscripts
with — postscripts. If this process would leave in the bracket only a single
tangle ¢ followed by p +signs and ¢ — signs, we replace the entire express-
ion by cn, where n = p—gq.

Now from the formula x— = x 10and the continued fraction rule, it
follows that we have the equivalences

2— = —2, 3—=-21, 21—= -3, 22=-211,

as particular cases of the equivalences

mn...pql—=—mn...pr and mn...pr— =mn...pql,

for more general rational tangles, which hold whenever r = g+ 1. This
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1*q 6%a.b.cdeft. 6%ab.cdy.

8*a.bcd.ef.g.h. 9%ab.cdefg.hi
10* a.b.cdefghi 10**a.b.cdefghij
10*o.bcdefghy. 11%a.b.c.defg.hijk

Fi1G. 6. The basic polyhedra

X<
T+t ty +1

Fic. 7. Flyping — the equivalence of 1 + # and #, + 1
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leads to a kind of concealed flyping, instanced by:
22,3,2,-D=22,3,-2)=22,-21,2)=(-2113,2),

as illustrated in Fig. 8. Each of these expressions should be translated at
sight into (2 2, 3, 2—) which is regarded as the standard form. The reader
should similarly be able to write down 2 2 3 on seeing any of the flyped
variants shown in Fig. 9.

NS e e )
03§ vdb, g S

Fi1G. 8. Concealed flyping

~G \ \ \ G-
o < AR X
Fi16. 9. Flyping variants of 223

4. Equivalences for knots. The following equivalences refer to the whole
knot diagram rather than its component tangles. If two vertices of a tri-
angular region are substituted 1 and —1, then in all cases within range the
first deformation of Fig. 10 produces a form with fewer vertices in the

R e

F1G. 10. Two knot reductions : .

basic polyhedron. If the substituents x and y of 6** x.a.b.c.d.y are
both 1, then the second deformation of Fig. 10 produces a form with
basic polyhedron 1*. This increases the crossing number by 2, but we
can use the continued fraction rule to reduce it by 2 again should any one
of a, b, ¢, d be a negative rational tangle. If instead x and y are —1
and 1, other reduction processes apply to all cases within range.

In the tables, these and other equivalences have been taken into account,
so that for example no substituent in the form 6**. a.b.c.d is negative
rational (this remark explains our preference for the 6** form rather than
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the 6* form when two opposite vertices are substituted as 1). Unfortu-
nately the use of such equivalences means that the user might at first fail
to locate his knot in our table. He should in these circumstances apply some
reasonable transformation and try again — success comes easily after
a little experience.

These remarks have probably convinced the reader that our notation
has little structural significance, although it might be convenient in prac-
tice. The following remarks show that at least it has some structure. Let
us call the knot 1*¢ a rational knot whenever ¢ is a rational tangle. Then
the double branched covering space of the rational knot obtained from
the rational number p/q is just the lens space with parameters p and g,
and in fact the rational knots are precisely the Viergeflechte, long recog-
nized as an interesting class. More generally, if p and ¢ are the determi-
nants of the knots 1*# and 1*¢0, we call p/q the determinant fraction of the
(arbitrary) tangle ¢. Then the determinant fraction of a+b is (ps+gqr)/gs =
= (p/q)+(r/s) and that of (ab) is (gs+pr)/ps = (p/g)~+(r/s), if those
of a and b are p/q and r/s, which explains the continued fraction process.
Under more restricted circumstances similar identities hold for the frac-
tions obtained from Alexander polynomials, as we shall see later.

5. Orientation and string-labelling. An oriented knot will mean a proper
knot with a preferred orientation (arrowhead) on its string. From any such
knot we can obtain 3 others by simple geometric operations. Reflecting
in a mirror gives us the enantiomorph, or obverse, 71K of K, reversing
string orientation the reverse, K;, of K, and doing both the inverse, 7 K,,
of K. A knot equivalent to its obverse is amphicheiral, one equivalent to its
reverse is reversible, and one equivalent to its inverse is involutory.
(Our notation is more mnemonic than the usual one — the inverse in
our sense is also the inverse in the cobordism group.) For links of more than
one component the situation is more complicated, and we need a con-
vention for labelling and orienting strings. The convention we adopt is
easy to remember and apply, although it leads occasionally to unexpected
labellings.

We orient the leading string of the tangle named ¢ in Fig. 6 so as to
point into that tangle, and label this string r;. We now move along r;
in the direction of its orientation, labelling the other strings rs, rs, ... in
the order of their first crossing with ry, either over or under, and orient
these strings so that their first crossing with r; is positive in the sense of
Fig. 11. If any strings remain, we proceed along r in the direction of its
orientation, labelling the unlabelled strings crossing ry in the same way.
Repeating this process with rs, etc., if necessary, we eventually obtain a
complete system of labels and orientations. This convention tends to
ensure that the homological linking is positive, since the linking number
of two strings is half the sum of the &’s of Fig. 11 over all crossings in
which both those strings appear.
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For the purposes of polynomial calculation, we replace the labels
ry, ra, rs, ... byr, st .... We also need to describe links obtained by
relabelling a given one in various ways. Let = be any function from the
string labels r, s, ¢,... to the symbols r, r=1, 5, s~1, ¢, t=1,.... Then for
any labelled link K we define X, to be the link obtained from K by re-
labelling all the r strings of K as s strings in K, if n(r) = s, and as reverse-
ly oriented s strings in K,, if #(r) = 571, and so on. We define |7| as the
total number of strings whose orientation is reversed in this process, and
IK] to be the total number of strings in K. Note that two distinct strings

can have the same label.

T 1

l‘e =41 | é=~-1
Fi1G. 11. A positive crossing (¢ = + 1) and a negative crossing

In the table, we give only one knot from each enantiomorphic pair,
and only one from each labelling and orientation class. We indicate the
symmetries of proper knots in the column S by writing a for amphicheiral
knots, r for reversible knots, i for involutory knots, f for knots with full
symmetry (all of these properties), and »n for knots for which no symmetry
has been observed. For links of 2 components we give the generators of
the (observed) symmetry group, r and s being the operations of reversing

. the r and s strings respectively, # the operation of transposing these strings,

and g the operation of reflection in a mirror. The column § is left empty
for links of 3 or more components.

6. Polynomials and potentials. Each labelled and oriented knot K has a
potential function Vg = V(r, s,...) which is a rational function with one
variable for each string label appearing in K. We shall see in 2 moment that
Pk 1s just a disguised and normalized form of the Alexander polynomial
Ay, but it is in fact completely defined by the properties given below.
We first have the symmetry properties

Ve(r,s, ...) = Vg(—r1, —s71, . )= (=)ELVg(—r,—s,...),
Vr.s, ...) = (=) -Pe(r), als), ...).
Vag(r, s, ...) = (=)IEI+Lpi(r,s, .. .),

the first of which makes it appropriate to use the abbreviation {f(r, s,. . .)}
for f(r, s,...)+f(—r1, —s~1,...) in our table of potentials and else-
where. If L is obtained from K by deleting a string labelled r in K, then

Ve(l,s,¢, ...) =(s% ... —s~%~2 .. ) Vils,t,...),

where a, b,... are the total homological linking numbers of the deleted
r string of K with the strings labelled s, ¢,... respectively. Finally, if
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K %,L is a product of K and L, obtained by tying each of them sepa-
rately in a string labelled r, then

VK*,L = VK~{V}-|71_.

Our tables list only knots which are prime in the sense of such products,
and the assumption of primality is implicit elsewhere in this paper.
Our potential function is related to the Alexander polynomial Ag
by the identity :
Ag(r®) = {r}-Vk(r)

if K is a proper knot, and by
Ag(r2, s2, ...) = Vi(r, s, ...)

otherwise, but it is important to realize that Ay is defined to within mul-
tiplication by powers of the variables and —1, while Vg is defined abso-
lutely.

The most important and valuable properties of the potential function
are for this reason not shared by the polynomial. Let K, yield K, and
K_ on replacement of the tangle

' ~ ' A
—~, by /; , and /\. , respectively,

the labellings and orientations being significant. Then we have

Vi,= Vk_+{r}-Vx,

called the first identity, which enables us to compute any one of the three
potentials from the other two.
The second identity relates knots Koo, K, ,, K__, defined as above, but

. r N A <
now using the tangles ", /3/35 and >N,
” Vs

r r
or alternatively , F/\' and F’\

The second identity asserts that
Vi, Vi = {rs} Vi,
in the first case, and
Vi, ,+Vik__ = {r72s}-Vi,
in the second case.
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The third identity involves possibly three distinct string labels. If K; yields
K,, K3, and K; on the replacement of

Ve

\//\7\ by &\/) s ’k/f and \/l;

then we have
Ve, +Vk, = Vi, +Vk,

where now the labellings are immaterial.

These identities have many consequences which we cannot explore in
detail here, although we shall give a few examples. Let ¢ be a tangle whose 4
emerging strings are oriented and labelled as in Fig. 12. Define the poly-
nomial fraction of t as the formal fraction

{r}-Vx
{r}-re

where K and L are the knots 1 *¢ and 1*¢0. Then the identities which we
asserted for determinant fractions in Section 4 hold also for polynomial
fractions.

Fi1c. 12

If we consider generalized tangles with 2n emerging arcs instead of 4
(such as, for 2n = 6, those of the third identity), then we can determine
the potential of any knot obtained by joining the emergent arcs of two such
tangles in terms of n! potential functions associated with each tangle sepa-
rately, provided that all the emerging strings have the same label. In the
case n = 2 the 2! potentials are the numerator and denominator of the
polynomial fraction. It becomes natural to think of such tangles as being
—to within a certain equivalence relation—elements of a certain vector
space in which our identities become linear relations, and there are many
natural questions we can ask about this space. However, when the emerg-
ing arcs may have distinct labels, it is not even known whether the dimen-
sion of the tangle space is finite.

We have not found a satisfactory explanation of these identities, although
we have verified them by reference to a “normalized” form of the ‘L-matrix’
definition of the Alexander polynomial, obtained by associating the rows
and columns in a natural way. This normalization is useful in other ways
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—thus our symmetry formulae show that a 2-component link can only be
amphicheiral if its polynomial vanishes identically. It seems plain that
much work remains to be done in this field.

7. Determinants and signature. We define the reduced polynomial Dg(x)
by the equation
DK(X) = {x}' VK(X, X, .. ')s

and the determinant 6 = g as the number Dg(i). Our determinant differs
from the usual one only by a power of i. The potential identities of the last
section yield determinant identities when we put i for each variable.

Murasugi [7] has defined invariants called the signature, oy, and nullity,
ng, and described some of their properties. These invariants depend on the
string orientations of K, but not on its labelling. We shall describe enough
of their properties to enable their calculation to proceed in much the same
way as that of the potential function.

For any knot K we have the identity

ox = 0%+ i%%,
where 0% = |dx|, and the condition
ng =1 if and only if éx = 0,

the first of which determines o, modulo 4 provided ox = 0. But one of
Murasugi’s results is that

| ok, —0k, | + | nx,—nk, | = 1,

whenever K, and K, are related as in the first identity. These two results
determine ox completely in almost all cases, and make its calculation very
swift indeed. Of course it should be remembered that a5 and sy are inte-
gers, and 1 = ng < [K|.

We have the relations

oqx = —0g and Okx,L = 0g+0p,

concerning obverses and products, and if we define 6% as ox— Ag, where A,
is the total linking of X (the sum of the linking numbers of each pair of
distinct strings of K), then the reorienting identity is that o%, like 6%, is an
invariant of the unoriented knot K. In the tables, we give only these residual
invariants, 60 being the numerator of the rational fraction which we give
for rational knots.

8. Slice knots and the cobordism group. A proper knot which can arise
as the central 3-dimensional section of a (possibly knotted) locally flat
2-sphere in 4-space we call a slice knot. A natural application of our tables
is to the discovery of interesting slice knots, since for slice knots there are
simple conditions on the polynomial, signature, and Minkowski units. In
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particular, we might hope to find a slice knot which is not a ribbon knot
[3], since several published proofs that all slice knots are ribbon have been
found to be fallacious.

The slice knots with 10 crossings or less were found to be
<, 42;3113,2312,(3,21,2~),212112, 20:20:20,(3,3,21-),
64,3313,2422,2211112, (41, 3, 2), 21,21, 21+),-22:20,
"2:2:20:20, 10% (32,21, 2—), (22, 211, 2-), (4, 3, 21-),
(3, -1, 2), 3:2:2,

together with the composite knots 3% 3,22 % 22, 5% 3, 32 %3 32. The granny
knot 3 % 3 and the knot -2:2-2-2 0 satisfy the polynomial condition but
not the signature condition, and so are not slice knots.

Now suppose that in the slab of 4-space bounded by two parallel 3-spaces
we have an annulus (S*X7) whose boundary circles lie in the two 3-spaces.
Then the two knots defined by these circles we call cobordant. Cobordism is
an equivalence relation, and the cobordism classes form a group under the
product operation, the unit class being the class of slice knots, and the in-

“verse of any class is the class of inverse knots to the knots of that class.

A search was made for cobordances between knots of at most 10 crossings
and knots of at most 6 crossings, which in addition to the cobordances
between slice knots, found only

323212=3,21, 2222211222, 211, 231, 3, 21=211, 3, 21—,

0 22=3,21,21=3,21, 2+

S5=23412=4,3,21
32 231,3,21 23,321+ 23,21, 2++
I3%3 = .22220,

all of these being to within sign and orientation.

All slice knots given were found to be ribbon knots. However, the pres-
ence of the particular knot 10% = (2X5)* leads us to examine the more
general @ strand b bight Turk’s Head knot ((a—1) x b)*. Andrew Tristram
has proved that if @ and b are odd and coprime this knot obeys all known
algebraic conditions for slice knots, but despite a prolonged attack the only
cases definitely known to be slice are the trivial cases with ¢ or b = 1, and
the cases @ = 3, b = 5,and a = 5, b = 3. Since most of our methods for
proving knots slice would also prove them ribbon, the way is left open for
a conjecture that some of least of these are slice knots which are not ribbon
knots.

9. Notes on the tables. Acknowledgments. The tables (pp. 343-357) list
all proper knots of at most 11 crossings, and all links of at most 10 cross-
ings, with various invariants tabulated over parts of this range. Knots
listed separately are believed to be distinct, and the symmetries listed
under § are believed to be a complete set. (The evidence is very strong—
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each knot has been subjected to a reduction procedure which in every
known case has been shown to yield all forms with minimal crossing
number.) By the same token, all knots listed are believed to be prime.

The columns headed |7, 89, o0 give the invariants of §§ 6 and 7, and for
proper knots the column headed 4 gives a coded form of the polynomial or
equally of the potential, [a+ b+c abbreviating the polynomial a+b(r+r-1)
+¢(r2+r=2%) or the potential (a+b{r2}+c{r4})/{r}. The column “units”
gives the Minkowski units (for definition see [8], but beware errors!)
of K and its obverse, +-p meaning that C, = +1 for both Kand = K, Fp
that C,is — 1 for Kand 1 for — K, and so on. The units have been recom-
puted even in range of the existing tables, since these do not distinguish
between a knot and its obverse. Under “A” we give the linking numbers of
pairs of strings, in the order A, 4., A, Agy Asws Ay but omitting linking
numbers of non-existent strings.

The tables have been collated with the published tables of Tait (T in the
tables), Little" (L), Alexander and Briggs (A&B) [1], and Reidemeister [8],
and with some unpublished polynomial tables computed by Anger [2] and
Seiverson of the Princeton knot theory group. I thank Professor H. F. Trot-
ter for making these available—they have enabled me to correct a number
of (related) errors in the 10 crossing knot polynomials. Much of the mate-
rial of §§ 7 and 8 of this paper arose as the result of some stimulating
conversations with Andrew Tristram, whose assistance I gratefully
acknowledge here.

Note added in proof.

An idea of Professor Trotter has led me to the discovery of an identity
for the Minkowski units like those of the text for the other invariants. In
fact we have, if K = Ko, L = K., that

Co(K)- C(L) = [#x/0L(P)],>
— p—xX ¥ _ (1} x _a_ is th
where [X], = ( - ),andX(p)-( 1)*X whenp ||X,and(P)1st e

Legendre symbol.

t The 11-crossing knot numbered 400 in the table is the knot which appeared twice in
Little’s table, as numbers 141 and 142, and the knots 401-411 are those omitted by
Little.

Enumeration of knots and links 343
Knots to 8 crossings
A&B T/L knot S olunits a0 |
0, 1 = f o+ 1
3, 1 3 r+2 +3 31 [—1+1
4, 1 22 f 0 -5 512 [3—-1
5 2 5 r+4 +5 51 [H—-1+1
5, 1 32 r+2 7 7/3  [-3+2
6, 3 42 r 0 +3 9/4 [5-2
6, 2 312 r+2 +11 11/4  [-3+3-1
65 1 2112  f 0 —-13 13/5  [5-3-+1
7, 7 7 r+6 +7 7/1 [-14+1~1+1
72 6 52 r-+2 +11 11/5 " [-5+3
T3 5 43 r—4 +13 13/4 [3--3+2
75 3 322 r+4 —17 17/7  [5-4+2
74 4 313 r—2 F3-5 15/4 [—7+4
s 2 2212 r+2 +19 197 [-7+5-1
7, 1 21112 r O F3F7 218 [9-5+1
8, 18 62 r 0 —13 13/6 [7-3
8, 15 512 r+4 —17 17/6 [3—3+3—~1
8, 17 44 f 0 +17 17/4 [9-4
8, 16 413 r+2 +19 19/5 [-5+5-2
8, 13 4112 r—2 £23 23/9 [-54+5-3+1
8 11 332 r+2 +£23 23/10 [-7+6-2
841 10 3212 r+2 +3 27/10 [—~9+7-2
8, 12 3113 f 0 +5 25]7 [7-5+3-1
8;3 8 31112 r 0 =29 29/11 [11-7+2
8 6 2312 r 0 +5 25/9 [9-6+2
82 5 2222 f 0 -29 29/12 [13-7+1
84 2 22112 r42 F31 31/12 [—11+8~2
8, 14 3,32 r—4 +3x7 21 [5—4+3-1
80 9 3,21,2 r—2 F3 27 [-7+6-3+1
855 3 21,21,2 r+4 F3F11 33 [11-8+3
17 I .2.2 i 0 -37 37 [11-8+4—1
6 4 .2.20 r+2 =5%7 35  [-94+8—4+1
18 7 8* f 0 =345 45 [13—-10+5-1
19w I 3,3,2— r—-6 +3 3 [1+0-1+1
20 I 3,21,2—- r 0 +3 9 [3-2+1

8y II 21,21,2— r42 F3+5 15 [-5+4-1

CFA 23
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2 string links to 8 crossings

Link A S o units a0 4

0 0 gq,7,5,¢t 0 + 0o/1 0

2 +1 gr,gs,t o + 21 1

4 +2 rs, t +1 + 4/1  {rs)

212 0 rs,t +1 + 8/3 —{r}{s}

6 +3 rs,t +2 F3 6/1 {ris?}+1

33 +3 gr,gs,t 0 +5 10/3  {r*+s?}-1

222 +2 st +1 F3 12/5  {rs}+{r}{s}
412 +1 rs,t +2 F7 14/5  1—{r}{s}{rs}
3112 +1 st 0 +3  18/7 1—{r}{s}{r1s}
232 0 rs,¢ +1 + 16/7  =2{r}{s}

3,2,2 0 rs -3 + 16 {r}{s} {*}
21,2,2 +2 rs +1 =5 20 {r 3 }+2{r¥¥{s}
2 0 rs +1 +£3 24 {ry{s}+{rP{s}
3,2,2— +2 rs -3 + 4 {r 3s}

21,2,2— 0 rs +1 + 8 —{r}{s}

8 +4 rs,t +3 + 8/1  {ris3+rs}

53 +4 rs, t -1 + 16/5  {r}{s}+{rs}{r’s72}
422 +3 rs,t +2 Fl 22/9 {2rs*—r*—s?}+3
323 +4 rs,t +1 F3 24/7 {rs}{r*+s*-1}
3122 +3 rs,t 0 413 26/11 {2r*+2s*+r2-52}-3
242 +2 st +1 +5 20/9  {rs}+2{r}{s}
21212 +1 rs, ¢t +2 F3+5 30/11 1-{r}{s}
211112 +1 rs5¢ +2 417 34/13 1+{r}{s}¥
22,2,2 +1 rs -1 +7 28 {4r~ts—2rs—r-is}
211,2,2 0 rs -1 + 32 —{rP{s}

3,2,2+ +2 rs -3 F7 28 {r3s}—2{r}{s}{r?}
21,2,2+ 0 rs +1 + 32 {r¥¥{s}

.21 0 rs +1 -5 40 {rP{s}—{r}{s}
2:2 +2 rs -1 -3 36 {ris}-4{r} {s}
22,2,2— 0 rs -1 + 8 {r}{s}
211,2,2— +2 rs -1 +3 12 {2r s—r 3%}

Enumeration of knots and links 345

9 crossing knots

A&B T/L knot s o 4

9, 41 9 ro91  [1—1+1-1+1
9, 38 72 ro15/7 [=7+4

9, 40 63 r 19/6 [-3+3-3+2
9, 39 54 ro21/5 [5-5+3

9, 33 522 ro27/5 [-5+5—4+2
9 37 513 r 23/6 [-11+6

9, 34 423 r 319 [-7+6-4+2
9, 31 4212 r 35/13 [—134+9-2
9, 306 4122 r 33/14 [T—-7+5-1

w 28 41112 r 37/14 [15-9+2

9, 26 342 r 29/13 [9—7+3

9, 32 333 r 33/10 [9-8+4

s 25 3222 r 41/17 [13—10+4

95 39 3213 r 37/10 [11—-9+4

9 21 31212 r 41/15 [11-9+5-1
9, 18 31122 r 43/18 [-17+11=2
6 17 311112 r o 47/18 [—13+11—-5+1
9 16 2412 ro31/11 [—11+8-2
9, 15 2322 r 39/16 [—15+10~2
» 14 23112 r 41/16 [17—10+2

9, 12 22122 r 4519 [15-11+4

9, 22 21312 r 39/14 [-94+9-5+1
9, 8 212112 ro49/19 [15—11+5—1
9 2 2111112 r 55/21 [~17+13—5+1
95 24 22,32 r 37 [9-8+5-1

s 13 22,212 r 47 [-17+12-3
9 23 211,3,2 r 43 [—11+10—5+1
9, 4 211,21,2 r 53 [17-12+5~1
9, 36 3,3,3 ro21 [=1347

e 19 3,21,21 ro45  [19-1142
9,6 27 3,3,2+ r 39 [-9+8-5+2
9, 20 3,21,2+ r 45 [13-10+5-1
95 6 21,21,2+ r sl [—15+12~-5+1
95 3 .21.2 n 61 [19-14+6—1
9, 7  .21.20 n 59 [—17+14—6+1
9, 5 222 r 57 [19-14+5

9, 11  .2.20.2 r sl [—15+12=5+1
w 9 2:2:20 r 55 [-21+14-3
a 10 20:20:20 r 49  [19-1243

94 1 8%¥20 r 69 23-16+6—1
96 35 9% r75 [—23+18-7+1
e IV 22,32- ro7 0 [=142-1

w 1 22,21,2- r 17 [T-4+1

9% V  211,32— ro13 [1-2+43-1

s I 211,21,2— r 23 [-9+6-1

96 VI  3,3,21- ro9  [5-2

s VI 21,21,21- ro27 [—1147-1
94 I —20:-20:-20 r 25  [7—6+3

o VI 8%—20 r 27 [=5+6-—4+1
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9 crossing 2 string alternating links, with basic polyhedron 1*

J. H. Conway

link A 14

612 +2 {risp={r} {s} {r's%}
5112 +2  {rs}—{r} {s} {r~Ls)?

432 +1  1-2{r} {s}{rs}

414 0 —{r{strr+s3+1)
4113 0 {r}{s}{r s}

3312 +2  {msYL—={r} {s} {rish
32112 +2  {rs}+{r} {s} A {2+
3132 +1  1=2{r}{s}{r s}

31113 0 (s} ({r+s7-1)

252 0 —3{}{s)

22212 +1  1-={r} {s} {rs}+{r} {sD
221112 +1  1+{} {4 )= (s
52,2 0 {}{sp{{rn+1

41,2,2 +2 {r7ish2{r} {s} {r*}
32,2,2 0 {N{EER-1)

311,2,2 +2 2r3s—r i)+ 4{r} {s}
23,2,2 +2 2r%s—rls}+3{r} {5}
221,2,2 0 2 {s}({r3}—-1)

43,2 3 =1+ ) s} (5
4,21,2 +1  14+{rts~+2{r} {s} {r~s}
31,3,2 +1 0 s =14{r} {s} {rs} {s%}
31,21,2 +3  {rBR 1R s - 1)
3,3,21 +2  {rTSHL-{r} s} {r )
21,21,21 43 14+{r%s"+ {rs}{r} {s}+{r}{s)?
22,2,2+ 0 {r}H{s}@-{"h
211,2,2+ 42 2rls—r73)+-{rH s P - 3)
3,2,2++ 0 {(H{}ery-n
21,2,24++ 42 {rEsp+{} s} G—{r)
G,22,2 +2 {r s} 2{r} {s}{r%}
21L,2)2,2)  +2 s+ s = {0 sh

Enumeration of knots and links

9 crossing 2 string links, otherwise

347

link 2

174

-4 0 {r}{str*—r+1)

31 0 {r}{s}2{r}}—3)

.22 0 {r}{s}3—-2{*

.3.2 +1 1-{}{sHrs} {r2}-1)
3.20 +1 1+ sHrs} Qr—-1)
3:2 0 2 {s}ry-1)
3:20 0 —{{s -1

.21:20 +2  {rs}+2{r}¥{s}

.2.2.20 +1 ({sB=DA+{r} {s} {Irs)

2:2:2 +3  14+{r%4—3{r} {s} {rs}

2:20:20 0 {NM{s)3+{r} {rs?p

8*2 +1 1-{r}{s¥{rs}

5,2,2— +2 {r7%s}

41,2,2— 0 —{r}{s) {r3}

32,2,2— +2 {2r3s—r71s}

311,2,2— 0 —2{r}{s}

23,2,2— 0 -{}{s}

221,2,2— +2 {rs}+2{r%s—rls}

4,3,2— +3 14{r %%}

4,21,2- +1 14+{s}{r %}

31,3,2— +3 14+{st}+{r}{rs%}

31,21,2- +1 {s?}~1—{r}{s}{rs}

3,3,3- +4 {r3s+rs}

3,21,21— -1 {r}{s}{r~'s}-1

3.2)(2,2-) 0 —{r}{s}{r?}

21,2)(2,2-) 0 {r}{s}+{r)*s}

(39 2'—) (2’ 2) +2 {rs}—{r“‘} {s}

21,2-)2,2)  +2 {rs}+{)¥s}

(3’ 2)_(2’ 2) +2 {r5s}

21,2)-(2,2) +2
2:-20:-20 +4

{r} {rish+{r~2s}

{rPs+rs3}
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3 and 4 string links to 9 crossings

Link

2 v

2,2,2 +1+1+1 {rst}—{r} {s}{t}

.1 000 {r} s} {1}

2,2,2— +1+1-1 —{r st}

2,2,2+ +1+1-1 {r} {s}{r}—{r st}

4,2,2 +2+141 {ris){rst} = {r} s} (D — {1}
31,2,2 +2+1+1 {rs}({rst}—{rH{s} {H— {1}
2,2,2+4++ +1+1+1 {rst}—2{r}{s}{e}

2,2 (2,2 +242 0 () sy e} ) (s}

.3 +1 0 0 {rs} {r} {s} {1}

2:20 0+1-1 —{t}—{r} {s} {1} {rs}

4,2,2~ +24+1-1 —{r %%}

31,2,2— +241-1 {e}~{rs}{r s}

2.2(,2-) +2 0 0 —{r} {s} {1}

2,2-,2 +24+2 0 {r s+ {r} {rsH{re)
2,2,2,2 +1+1 0 O+1+1 {rstu—rs~ i u}y—{r}{s} {} {u}
2,2,2,2~ +14+1 0 O+1—1 {rt7 '} {su™2}—{rs™"} {tu}
2,2,2,2— — +141 0 O+1+1 {rstu—rs™Yt 'y

212,2,2 0+1-1 { s)rs™ )+ {sHP— {1}
2111,2,2 0+1-1 —{ry {si{rs 1} 4} s} D - {1}
3,2,2,2 +1+1-1 (A= {r*D{r st} +{r} s} {3 {r?}
21,2,2,2 +1+1+1 {rese)—{r} {1} - {rPis} {1}
4,2,2+ +2+4+1~1 {r} (s} {a} r s} = {r2s%}
31,2,2+ +24+1-1 {rsY{r} s} () = {r s+ {1t}
2,2,24 + + +1+1-1 2{r} {s} {t}—{r~st}
2,2+)2,2 0+2 O —{r} {s} {1} = {r¥{s} (e}
(2,2)1(2,2) 000 {r} {s} {y+ {rPls} {1}

211 +1 0 0 {r¥{sy{r}

21:2 +2+1~1 —{risP{e) - {7

(2,2 000 —{r¥{s} {6}

212,2,2— 0+1+1 {r} {s} {rst7}+{1)
2111,2,2— 0+1+1 {6}~ {r} {s) {rst™1}

3,2,2,2~ +1+1+1 {r3{rst}—{r} (s} P~ {rst}
21,2,2,2— +1+1-1 {r} {r2st}—{rst} = {r} {s} {1}
3,2,2,2—— +14+1-1 —{r} {s e} - {r~3st}
2,24)(2,2-) 000 {r} {s} {1}

2,2+)-(2,2) 0+2 0 —{r} {s} {r*1}

A2,2-) +2 0 0 ~{r¥{} {rs}

.—2,2) 00 0 0

2,2,2,2+ +1+1 © e} {su} —{rs™1} {tu}+

0+1-1

{ris} {£} {u}

Enumeration of knots and links

10 crossing alternating knots. Basic polyhedron 1*

349

T knot S & A
120 82 r 17/8 9-4
119 712 r 23/8 [~3+3-3+3-1
102 64 r 25/6 [13—6
122 613 r 27/77 [-7+7-3
117 49112 r 33/13 [5-5+45-3+1
81 532 r 37/16 [1-T7+4+6-2
78 5212 r 43/16 [—15+11-3
121 514 r 29/6 [5—-5+5-2
101 5113 r 39/11 [-7+7-5+3-1
108 51112 r 45/17 [17-11+3
80 433 r 43/13 [—-13+11-4
24 4312 r 47717 [~11+10—-642
74 4222 r 53/22 [23~13+2
68 42112 r 57/22 [13-12+8-2
106 4132 r 43/19 [-9+9-6+2
79 4123 r 47/14 [—15+12-4
37 4114 f 419 [9-74+5-3+1
67 41122 r 55/23 [—19+14-4
107 41113 r 51/14 [—11+4+11-7+42
77 352 r 35/t6 [—11+9-3
66 3412 r 45/16 [9-9+7-2
76 3313 r 49/13 [13-10+6-2
20 33112 r 59/23 [—15+413-7+2
65 3232 r 5524 [—19+14-4
61 32212 r 65/24 ([17-14+8-2
71 32113 r 61/17 [17—-13+7-2
16 321112 r 71/27 [-19+16-8+2
105 31312 r 53/19 [19—-13+44
62 31222 r 63/26 [—17+15—-7+1
60 312112 r 67/26 [—-25+17—4
21 31132 r-57/25 [21-1444
58 311122 r 69/29 [19-15+8-2
22 311113 f 65/18 [25—16-+4
104 2512 r 37/13 [13-9+3
52 2422 r 49/20 [21—-12+2
51 24112 r 51/20 [-19+13-3
15 2332 f 53/23 [19-13+4
49 23122 r 59/25 [-21+15-4
48 22312 r 6122 [15-13+8-2
11 222112 r 75/29 [-21+17-8+2
41 22121 r 7126 [-21+17-7+1
3 22111 r 81/31 [27-19+7-1
14 21221 f 73/27 [23—-17+7-1
43 21211 r 79/30 [-25+19-7+1:
1 21111 2 f 89/34 [31-21+7-1
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10 crossing alternating knots. Basic polyhedron 1*

T  knot L 4
123 5,3,2 r31 [-5+5-4+3-1
116 5,21,2 r4l [71-7+6-3+1
36 41,3,2 r49 [11-946-3+1
70 41,21,2 r59 [—134+12—8+3
75 32,3,2 r53 [3-114+7-2
18 32,21,2 r 67 [~194+15—7+2
109 311,3,2 r59 [—154+13-742
57 311,21,2 r73 [25-18+6
103 23,3,2 r47 [—11+10~6+2
50 23,21,2 r6l [21—15+5
64 221,3,2 r65 [17-14+8-2
5 221,21,2 r79 [-23+18—8+2
47 22,22,2 r65 [27—16+3
2 22,21,1,2 r75 [-234+18—7+1
39 211,211,2 r 85 [29-20+7-1
118 4,3,3 r33 [7T-6+5-2
115 4,3,21 r45s [9—8+6-3+1
69 4,21,21 r57 [19-14+5
100 31,3,3 r51 [—11410—-6+3—1
23 31,321 r63 [~17+14—7+2
56 31,21,21 r75 [-19+16—9+3
63 22,3,21 n63 [~23+16-4
114 211,3,3 rs7 [21-14+4
2 211,21,21 r87 [—29+21-7+1
53 22,3,2+ r67 [—19+16—7+1
7 22,21,2+ r77 [25—18+7—1
55 211,3,2+ r73 [19-16+9-2
4 211,21,2+ r 83 [-27+20~7+1
72 3,3,21+ r63 [—23+16—4
40 21,21,21+ r 81 [27-19+7-1
73 3,3,2++ r57T [5—12+7-2
19 3,21,2++ r63 [~17+14—7+2
45 21,21,2++ r69 [21-16+7—1
35 (3,2)(3,2) i 61 [15—12+7—-3+1
59 (3,2(21,2) n7l [=17+15-9+3
9 (21,2)(21,2) i75 [27-20+8-1

10 crossing knots
Alternating, basic polyhedron not 1*

Enumeration of knots and links

351

T knot A Vi}

99 4.2 n 63 [—13+12-8+4-1
54 .31.2 n 8 [25—-19+9-2

6 .22.2 n 87 [—-25+20-9+2
113 .4.20 n 57 [11-10+8—-4+1
17 .31.20 n 83 [—-234+19-9+2
46 .22.20 n 81 [23-18+9~2

13 .21.21 i 101 [35-24+8-1

12 .21.210 r 99 [—-33+24—-8+1
95 .3.3.2 n 77 [23-17+8-2

33 .3.2.20 n 73 [17—-1449—-4+1
4 .21.2.20 n 8 [25-20+10-2
111 .3.20.2 n 67 [—17+15-8+2
97 .30.2.2 n 71 [-15+14-9+4-1
8 .210.2.2 n 91 [~27+21-9+2
84 .2.21.2 r 93 [33-22+7-1

86 .2.210.2 r 87 [—33+22-5

92 .2.2.2.20 n 81 [23-18+9-2

31 .2.2.20.20 f 81 [19-16+10—-4+1
112 3:2:2 r 65 [13—-12+9—-4+1
90 21:2:2 r 85 [29-21+7
‘98 3:2:20 n 73 [21-16+8-2

34 30:2:2 r 75 [-214+17—-8+2
32 3:20:20 r 77 [19-154+9—-4+1
83 21:20:20 r 91 [—-29422—-8+1
96 30:2:20 n 75 [—17+15-9+4-1
10 210:2:20 »n 93 [31-22+8-1
110 30:20:20 ~» 63 [—-15+14-8+2
27 2.2.2.2 i 85 [21—-17+10—4+1
89 2.2.2.20 n 8 [-25+20—-8+1
91 2.2.20.2 r 37 [21-174+9-2 )
94 8*3 r 87 [-19+17—11+5-1
30 8*21 r 111 [—-33426—-11+2
93 8*30 r 93 [27-21+410--2

29 8*20.20 i 109 [37-26+9-1

88 8*2:2 r 95 [-21+19-1245-1
25 8*2:20 n 103 [=31+24—10+2
26 8*2:.2 i 97 [23—-19+12-5+1
85 8*2:.20 n 101 [31-23+10-2

82 8*20::20 r 105 [37—-26+8

28 9*20 r 115 [-35+27-11+2
87 9*.20 r 105 [31—-24+11-2

38 10* f 121 [29—-24+15-6+1




-~

Non-alternating

Ve &, UVRLIVURY

L knot a4
61 53,2- r [-1+14+0-1+1
1I 5,21,2—- r [~142-2+1
31 41,3,2~ r [-5+4-2+1
41 41,21,2—- r [7-6+4—1
6V 32,3,2- r [1+1-3+2
111 32,21,2— r 9-6+2
31V 311,3,2— r [5—-4+2
411 311,21,2- r [-11+8-2
3v 23,3,2- r [1-1+1
4111 23,21,2- r [-74+5~1
6V 221,3,2- r [—3+4-4+2
1Iv 221,21,2— r [13-9+3
PAY 22,22,2—- r [—5+4-1
21V 22,211,2— r [11—-6+1
2VI 211,211,2~ r [-7+8-5+1
6l 4,3,3- r [-3+2+0-1+1
311 4,3,21—- r [3-2+1
21 4,21,21- r [5-4+3-1
611 34 3,3~ r [~14+2-3+42
3111 31,3,21- r [-7+6-3+1
2111 31,21,21- r [-13+10-3
51 22,3,3- r [-3+1+1
111 22,21,21-— r [13~-8+2
211 211,3,21- n [~94+7-2
vl (3,2)(3,2-) n [-94+7~-3+1
4VIII .(3,2)(21,2-) n [11-9+5-1
4Vl 21,2)(3,2-) n [7T—6+4-1
31X 21,2)21,2-) =n [-13+10—-4+1
6VIII (3,2)-(3,2) r [-5+4-1-1+1
1Vl 3G,2)—-(21,2) n [3~1-1+1
6VII (21,2)-(21,2) r [7-4+0+1
2VIIL  -3:2:2 r [7-5+3-1
3X —-3:2:20 r [-9+8—4+1
4VIlT —-3:20:20 r [13~11+6—~1
2VvIIT —-30:2:2 r [15—-10+4—1
3VIIT —-30:2:20 r [-114+9-4+1
4V —-30:20:20 r [3—4+4-1
SII 3:-20:-20 r [3—240+1
6VI 21: -20:-20 r [3—-2+4+0+1
2IX -30:-20:-20r [—11+4+9-3
3VI 8*—-30 r [-15+12—-5+1
v 8*2:-20 r [17—-11+43
41v 8%2:.-20 r [-15+10-2

Enumeration of knots and links

10 crossing 2 string links
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21,2,2+++
22,222
211,22,
3G.21)@2,2
(3,2+)(2,2)
21,2+)2,2)
(3,2) 2, 2+)
21,2 2,2+4)
(3,212,2
21,21@2,2
41

311
.23
212
2111
211.2
211.20
3.21
.3.210
4:2
31:2
211:2
22:20
211:20
3:21
3:210
21:21

22,2)(2,2-)
(211,2)(2,2-)
22,2-)@2,2)
211,2-)@2,2)
3,212, 2-)
(3,3-)(2,2)
21,21-)@2,2)
(3,2+) (2, 2-)
21,2+)2,2-)
2,2+)21,2-)
22,2-2,2)
211,2)-2,2
G,21D)-@2,2)
3,2+)-2,2
(21,2+4)—(2,2)
2,2+)-21,2
(2,2-).2
.(2,2-).20
.—(2,2).2
.—(2,2).20
-210:2:2
—-210:20:20

—210:-20:-20

2.-2.-20.20
2,-20.-2.20
8*2.-20
8*20:-20
8*-20:-20
8*20:.-20
9%, -2
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10 crossing links with 3 or more strings Alternating 11 crossing knots. Basic polyhedron 1*

L  knot L knot L knot L knot
3 strings 4 strings 3 strings 111 278 32123 100 24,21,2 84 3,3,21,2
5 92 324 321212 268 231,3,2 357 3,21,3,2
13 83 30 321122 307 231,21,2 225 3,21,21,2
&2, &2 BB 202 60 74 341 3211112 31 213,3,2 220 21,3,21,2
>L22 - sLnn2 e e Tal 23 722 37 31412 131 213.21,2 240 21,21,21,2
32, 22 R e 22,2, 3 713 119 31322 200 2121,3,2 30 53,2+
32122 32022 ey 187 65 135 313112 320 2121,21,2 93 5,21,2+
223,22, 223,20 & it 27 623 311 31232 U3 2112,3,2 249 41,3,2+
221 L2 22112 o 80 6212 138 312122 330 2112,21,2 122 41,21,2+
haz ha2 20 2 6122 208 312113 130 21111,3,2 300 32,3,2+
31.31.2 31.31.2— 10%%% 20 61112 284 31142 345 21111,21,2321 32,21,2+
Sk AL e 250 542 314 311312 17 5,22,2 124 311,3,2+
22022, 2 LI 81 533 338 3112112 14 5211,2 334 311,21,2+
211,22 2anrn2T 3Lz 24 524 134 311132 246 41,22,2 120 23,3,24
212,227 ey 3 2) 105 5222 41 3111212 269 41,211,2 333 23,21,2+
.2, ) 2, 2,2 @ 232 5213 128 3111113 282 32,22,2 319 221,32+
3,2,2,24 (G1,2@22-) 2,2,2-)2,2) 4 515 347 31111112 294 32,211,2 350 221,21,2+
21,2,2,2+ 3,3 2-) 2,2,2-) (2, 2-) 79 5123 32 2612 116 311,222 317 22,22,2+
4,2,2+ + 21,21)2,2-) 2,2,2--)2,2) 34 51212 118 2522 133 311,211,2 348 22,211,2+
31,2,2++ 3,21-)22) 2.2,-2,2 %0 51122 117 25112 126 23,22,2 342 211,211,2+
2,2,2++++ (i,§++2)(22,2—) '(i’i—)}zo 104 511112 293 2432 132 23,211,2 19 4,3,3+
8’12)2()2@2)2) 23,1)2_)£E2)2) '(_’(2‘2;;20 251 443 136 24122 318 221,22,2 91 4,3,21+
G s A o 248 4412 313 23312 328 221.211,2 270 4,21,21+
e »  GLan e 273 4322 335 232112 2 5,3,3 235 31,33+
, , , : 272 43112 127 23132 78 521,21 209 31,321+
@2+4+) (2,2 @22++)-22 103 4232 400 231212 230 41,3,21 129 31,21,21+
2,24+)@,2+) (2,2,2,22-) 275 4223 346 2311112 85 32,3,3 108 22,33+
2,2+)12,2) (2’2)"2’(2’? 233 4214 310 22322 281 32.21,21 325 22,21,21+
(25’2)'2’(2’2) 8?_?2‘82)_) 583 42122 344 222212 107 311,3,21 337 211,3,21+
3 By 04 42113 343 222122 100 23,3,21 340 22,3, 2+ +
32 RS 29 4142 349 2221112 8 221,3,3 353 22,21,2++
3.3 20.-2.-20.20 33 41312 351 2211212 301 221,21,21 339 211,324+
33 .-—2.-20. 35 41213 327 2211122 26 212,33 356 211,21,2++
123 412112 354 22111112 114 212,3,21 77 3,3,3++
313 271 41132 38 21512 287 212.21,21 312 3,21,214+
3:30 297 411212 139 214112 82 2111,3,3 402 3,3,2+++
21:210 51 41114 336 213212 306 2111,3,21 322 3,21,24++
‘;"]2.‘2’0 074 411113 143 2131112 302 2111,21,21140 21,2124 ++
: 137 4111112 352 2122112 18 4,22,3 245 (22,2)(3,2)
323'50 106 362 332 2113112 89 4,22,21 289 (22,2)(21,2)
3.2 252 353 355 21121112 16 4,211,3 280 (211,2)(,2)
3’5)4)2 206 3422 231 42,3,2 102 4211,21 304 211,2(21,2)
220 e 92 3413 247 42,21,2 253 31,22,3 234 (3,21 (3,2
20.2.20. 279 3323 15 411,32 292 31.22.21 266 (3,21)(21,2)
5z, 316 33212 101 411,21,2 277 31,2113 254 (3,2+)3.2)
H 205 33122 36 312,3,2 309 31.210,21 201 (3,24)21,2)
31S 351112 115 312,21,2 99 22,22, 12 @1,24)3,2)
121 3242 276 3111,3.2 326 22,211,21 331 (21,24)21L,2)
323 32222 308 3111,21,2 111 211,211,325 (3, 21(3,2
125 32213 28 24,3, 12 3,3,3,2 9% (3.21(21,2)

238 (21,2)1(21,2)
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Alternating 11 crossing knots. Basic polyhedron not 1*

L L knot L knot knot
75 .41.2 7 .3.20.2.20 53 20.3.2.2 9%2.2
229  .41.20 43 .21.20.2.20 176 2.3.20.20 9%¥2.20
264 .311.2 50 .(3,2).2 196 2.21.20.20 9%2 0.2
98 .311.20 200 .(21,2.2 820.3.20.2 9%2:2
263 .23.2 51 .2.(3,2) 64 20.21.20.2 9%¥2:20
97 .23.20 195 .2.21,2) 167 2.2.2.2.20 9%20:.20
288 .212.2 178 .(3,2).20 157 2.2.2.20.20 9%.2:.2
110 .212.20 204 .(21,2).20 169 2.20.2.2.20 9%.2:.20
305 .2111.2 177 .20.(3,2) 212 8*%22 9%¥:20.20
303 .2111.20 197 .20.21,2) 191 8*211 9%¥20: :20
74 .4.21 73 22:2:2 61 8%4 0 10*2 0
76 .4.210 65 211:2:2 214 8*3190 10%*2
265 .31.21 59 4:2:20 188 8*2110 10¥*2 0
267 .31.210 226 31:2:290 48 8*3.20 10** ;2
285 .22.21 262 211:2:20 190 8*21.20 100**:20
286 .22.210 170 40:2:2 173 8*30.20 11*

58 .4.2.2 71 310:2:2 198 8%*21:2

219 .31.2.2 208 2110:2:2 172 8%¥3:20

256 .211.2.2 206 22:20:290 192 8*%210:2

244 .22.2.20 205 211:20:20 47 8%30:20

261 .211.2.20 242 220:2:20 199 8%¥210:20

11 .4.20.2 257 2110:2:20 193 8*21:.2

228 .31.20.2 9 40:20:20 49 8*3: .20

95 .211.20.2 227 310:20:20 201 8*210:.2

243 .220.2.2 63 2110:20:201748*30:.20

260 .2110.2.2 69 3:21:2 189 8¥210:.20

186 .2.4.2 217 3:21:20 171 8*3::290

54 .2.31. 237 21:21:20 146 8*21::20

213 .2.22. 8 3:210:2 46 8%¥30::20

10 .2.40. 259 21:210:2 403 8*2.2 0.2

184 .2.31 223 30:21:2 154 8%¥2,20.20

72 .2.22 221 3:210:20 166 8%2.20:2

66 .3.21. 87 30:21:20 40 8%2.20:20

224 .3.21. 216 30:210:2 404 8*20.2:2

255 .,21.2 67 30:210:20 405 8%20.2:20

70 .3.21 214 210:210:20 156 8*20.20:20

215 .30.2 194 21.2.2.2 164 8*20.2: .2

258 .210. 56 3.2.2.20 41 8% 20.2:.20

218 .3.2. 181 3.2.20.2 158 8*¥20.20: .2

236 .21. 55 3.20.2.2 165 8%¥2:2:20

222 .3.2. 202 210.2.2.2 162 8%¥2:20:20

68 .3.2 180 30.2.2.20 62 8¥20:20:20

239 .21, 207 210.2.2.20 42 8*2:.20:.2

88 .30. 6 30.2.20.2 152 8%¥2:.2: .20

175 .3.2. 45 210.2.20.2 57 9*3

159 .2 1. 179 30.20.2.2 406 9*2 1

211 .21, 160 210.20.2.2 1859*30

182 .3.2. 203 2.21.2.2 407 9*.3

52 .30. 183 2.3.2.20 408 9*.2 1

210 .21, 20 208 2.,21.20.2 409 9*.30

Enumerartion 0] Knors ana anks

Non-alternating 11 crossing knots

21

42,3,2-
42,212-
411,3,2—
411,21,2—
312,3,2—
312,21,2~
3111,3,2~
3111,21,2—
24,3,2—

2121,21,2—
2112,3,2—
2112,21,2-
21111,3,2-
21111,21,2—
5,22,2—
5,211,2—
41,22,2-
41,211,2-
32,22,2—
32,211,2-
311,22,2—
311,211,2~
23,22,2—
23,211,2—
221,22,2—
221,211,2—

31,211,21~
22,22,21~
22,211,3-
211,211,21—-
3,3,3,2-
3,3,21,2-
3,21,3,2—
3,21,21,2—
21,3,21,2—
21,21,21,2-
3,3,3,2——
3,3,21,2——
3,21,3,2—-—
22,2)(3,2-)
22,2)21,2-)
211,2@3,2-)
211,2)21,2-)
(3,21)3,2-)
G,21Q21,2-)
3,2+)(21,2-)
21,2+)3,2-)

21,2+)21,2-)

22,2-)3,2)
22,2-)21,2)
211,2-)3,2)
(211,2-)(21,2)
(3,3-)G3,2)
(3,3-)21,2)
21,21-)3,2)
21,21-)(21,2)
22,2)-3,2)
22,2)-21,2)
211,2)-3,2)
211,2)-21,2)
(3,21)—-G,2
(B,2D-21,2)
3,2+)-21,2
(21,2+)-3,2)
21,2+H)-(21,2)

.(3,2-).2
(21,2-).2
.2.(3,2-)

.2.21,2-)
.(3,2-).20
(21,2-).20

.20.(3,2-)
.20.221,2-)
.—(3,2).2
.—(21,2).2
.2.-(3,2)
2.-(21,2)
.(3,2).20
.20.-(3,2)
—-22:2:2
-220:2:20
—-22:20:20
—-22:-20:-20

22:-20:-20

-211:2:2
—-2110:2:20
—-211:20:20

-211:-20:-20

-40:2:2
—-4:2:20
—-40:20:20

—-40:-20:-20

—310:2:2
-310:20:20

—310:-20:-20

-2110:2:2
—-211:2:20
—-2110:20:20

2.-21.2.2
2.21.-2.2
2.-3.2.20
2.3.-2.20
20.3.-2.2
2.-3.-20.20
2.—-21.-20.20
20.-3.-20.2
20.—-21.-20.2
2.2.-2.2.20
2.2.-2.20.20
2.20.-2.2.20
8*—-40
8*-310
8*-2110
8%¥-30.20
8*3:-20
8§*-210:2
8%¥-30:20
8*30:-20
8¥-210:20
8*-210:.20
8*%—-30:.20
8%*~210:.20
8*30::-20
8*%3::-20
8*21::-20
8*2.—-20.2
8*2.—-20.20
8*2.20.-20
8%2:2:-20
8%2:20:-20
8%¥2:-20:20

-2110:-20:-208%*20:—20:20

~30:21:2
-30:21:-20
-30:210:2
—210:30:2

8%20:20: —-20

—-210:-30:-20 9*.-21

-210:21:2

—-210:-210:~209%20.-2

8%2:.-20:.2
8%2:.2:.-20
9% —3

9%2. -2

9% 2:.-2

9% —2:.-2
9%¥.20:.-2
10*-20
10**-20
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Computations in knot theory

H. F. TROTTER

1. Computer representation of knots. The commonest way of presenting
a specific knot to the human eye is by a diagram of the type shown in Fig. 1,
which is to be interpreted as the projection of a curve in 3-dimensional

space.
3
2

(a)

Fic. 1

There are obviously many ways of coding the information in such a dia-
gram for a computer. Conway’s notation [2](which I learned of for the first
time at the conference) seems to me much the best both for handwork and
(perhaps with some modification) for computer representation. In some
work done at Kiel [3, 4, 11] under the direction of Prof. G. Weise, one
notation used is based on noting the cyclic order of vertices around the
knot, and another is related to Artin’s notation for braids. The simple nota-
tion described below is what I have actually used for computer input. It
has proved reasonably satisfactory for experimental purposes.

To each vertex of the diagram there correspond two points on the knot,
which we refer to as the upper and lower nodes. Each node has a successor
arrived at by moving along the knot in the direction indicated by the arrows.
Each vertex has one of two possible orientations, as indicated in Fig. .2.
If the vertices are then numbered in an arbitrary order, a complete descrip-

KX

(+) (=)
FiG. 2
CFA 24 359



