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1 Introduction

This article is a supplement to the text of Formal Knot Theory. It can be used
as a companion and guide to the original book, as well as an introduction to
some of the subsequent developments in the the theory of knots. Here is a
table of contents for these Remarks.
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2 The Alexander Polynomial

In this section we give a short description of the Alexander Polynomial as
it was defined by J. W. Alexander in his 1928 paper [1]. Alexander defined
the polynomial as the determinant of a matrix associated with an oriented
link diagram. In his paper he shows that his determinant is well-defined and
invariant under Reidemeister moves up to sign and powers of the variable x.
This method of presentation makes the Alexander polynomial accessible to
anyone who knows basic linear algebra and is willing to learn the basics of
knot and link diagrams.

Later in the paper, Alexander describes how the matrix whose deter-
minant yields the polynomial is related to the fundamental group of the
complement of the knot or link. This relationship is described in slightly
more modern language in Formal Knot Theory Appendix 1, and we shall not
discuss it in this introduction. Suffice it to say that the Alexander matrix
is a presentation of the abelianization of the commutator subgroup of the
fundamental group as a module over the group ring of the integers. Since
Alexander’s time, this relationship with the fundamental group has been
understood very well. For more information about this point of view we
recommend that the reader consult [5, 6, 18, 11]. See also the appendix to
Formal Knot Theory for a derivation of the structure of this module that
corresponds to the algorithm in Alexander’s original paper.

Alexander gave a useful notation for generating the matrix associated to
a diagram. At each crossing two dots are placed just to the left of the un-
dercrossing arc, one before and one after the overcrossing arc at the crossing.
Here one views the crossing so that the undercrossing arc is vertical and the
overcrossing arc is horizontal. See Figure 1.

Four regions meet locally at a given crossing. Letting these be labeled
generically {A, B, C, D}, as shown in Figure 1, Alexander associates the equa-
tion

xA − xB + C − D = 0

to that crossing. Here A, B, C, D proceed cyclically around the crossing,
starting at the top dot. In this way the two regions containing the dots give
rise to the two occurrences of x in the equation. If some of the regions are
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the same at the crossing, then the equation is simplified by that equality.
For example, if A = D then the equation becomes xA − xB + C − A = 0.
Each node in a diagram K gives an equation involving the regions of the
diagram. Alexander associates a matrix MK whose rows correspond to the
nodes of the diagram, and whose columns correspond to the regions of the
diagram. Each nodal equation gives rise to one row of the matrix where
the entry for a given column is the coefficient of that column (understood
as designating a region in the diagram) in the given equation. If R and R′

are adjacent regions, let MK [R, R′] denote the matrix obtained by deleting
the corresponding columns of MK . Finally, define the Alexander polynomial

∆K(x) by the formula

∆K(x)=̇Det(MK [R, R′]).

A

B C

D

xA - xB + C - D = 0

A

B C

D
x

-x 1

-1

Figure 1 - Alexander Labeling.

The notation A=̇B means that A = ±xnB for some integer n. Alexander
proves that his polynomial is well-defined, independent of the choice of adja-
cent regions and invariant under the Reidemeister moves up to =̇. The proof
in Alexander’s paper is elementary and combinatorial. We shall not repeat
it here.
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In Figure 2 we show a the calculation of the Alexander polynomial of the
trefoil knot using this method.

A
B

C

D
E

xA - xD + E - B = 0
xA - xB + E - C = 0
xA - xC + E - D = 0

A    B    C    D    E
x    -1    0    -x    1
x    -x    -1    0    1
x     0    -x    -1   1

0    -x    1
-1    0    1
-x    -1   1

= M[A,B]

∆(x) = Det(M[A,B])  =  x   - x  + 12

Figure 2 - The Alexander Polynomial.

In this figure we show the diagram of the knot, the labelings and the result-
ing full matrix and the square matrix resulting from deleting two columns
corresponding to a choice of adjacent regions. Computing the determinant,
we find that the the Alexander polynomial of the trefoil knot is given by the
equation ∆=̇x2 − x + 1.

4



3 Reformulating the Alexander Polynomial

as a State Summation

Formal Knot Theory is primarily about a reformulation of the Alexander
polynomial as a state summation. This means that we shall give a formula
for the Alexander polynomial that is a sum of evaluations of combinatorial
configurations related to the knot or link diagram. The states are these com-
binatorial configurations. These states are directly related to the expansion
of the determinant that defines the polynomial. Graph-theoretic miracles
occur, and it turns out that one can get a fully normalized version of the
Conway version of the Alexander polynomial by using these states. In this
section we shall show how the states emerge naturally from Alexander’s de-
terminant.

Given a square n × n matrix Mij , we consider the expansion formula for
the determinant of M :

Det(M) = Σσ∈Sn
sgn(σ)M1σ1

· · ·Mnσn
.

Here the sum runs over all permutations of the indices {1, 2, . . . , n} and
sgn(σ) denotes the sign of a given permutation σ. In terms of the matrix,
each product corresponds to a choice by each column of a single row such that
each row is chosen exactly once. The order of rows chosen by the columns
(taken in standard order) gives the permutation whose sign is calculated.

Consider our description of Alexander’s determinant as given in the pre-
vious section. Each crossing is labeled with Alexander’s dots so that we know
that the four local quadrants at a crossing are each labeled with x, −x, 1
or −1. The matrix has one row for each crossing and one column for each
region. Two columns corresponding to adjacent regions A and B are deleted
from the full matrix to form the matrix M [A, B], and we have the Alexander
polynomial ∆K(X)=̇Det(M [A, B]).

In the Alexander determinant expansion the choice of a row by a column
corresponds to a region choosing a node in the link diagram. The only nodes
that a region can choose giving a non-zero term in the determinant are the
nodes in the boundary of the given region. Thus the terms in the expansion
of Det(M [A, B]) are in one-to-one correspondence with decorations of the
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flattened link diagram (i.e. we ignore the over and under crossing structure)
where each region (other than the two deleted regions corresponding to the
two deleted columns in the matrix) labels one of its nodes. We call these
labeled flat diagrams the states of the original link diagram. See Figure 3 for
a list of the states of the trefoil knot. In this figure we show the states and
the corresponding matrix forms with columns choosing rows that correspond
to each state.

** ** **

C D E
1
2
3

C D E
1
2
3

C D E
1
2
3

C

E

D D D

C C

E E

1 1 1
2 2

3 3 3

2

Figure 3 - States with Markers

Figure 4 - A Black Hole
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** **

**

x

x

x
1

1
1

∆   (x) = x^2 - x + 1K

K
-x -x

-x

-1

-1
-1

-1 -1

1
-1

-x
1

1 -x

-x

Figure 5 - State Sum Calculation of Alexander Polynomial

It is useful to have terminology for a flattened link diagram. We call such
a flattened diagram a link universe or just universe for short. Such a diagram
is a graph in the plane with four edges incident to each vertex. The vertex
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carries no information about under or over crossings of curves as in a knot
or link diagram. Thus a universe is a 4-regular planar graph. We say that a
universe is connected if it is connected as a planar graph. On the other hand,
we say that a link diagram has k components if it represents an embedding of
k circles in three dimensional space. One counts the number of components
of a link diagram by walking along the diagram and crossing at each vertex,
counting the number of cycles needed to use all the edges in the diagram.
In the corresponding flattened diagram the operation of crossing at a vertex
means that, at a vertex, one chooses to continue the walk along the unique
edge that is not adjacent to the edge one is traversing. The planar embedding
of the graph defines this adjacency. Thus we can speak of the number of link

components of a universe. This number can be greater than one even when
the universe is connected. Two circles intersecting transversely in two points
form a connected universe with two link components. Note that given a
universe U with n nodes there are 2n possible link diagrams that can be
made from U by choosing a crossing at each node.

At this point we have almost a full combinatorial description of Alexan-
der’s determinant. The only thing missing is the permutation signs. One can
pick up the permutations from the state labeling, but there is a better way.
Call a state marker (label at a node as shown in Figure 3) a black hole if it
labels a quadrant where both oriented segments point toward the node. See
Figure 4 for an illustration of this concept.

Let S be a state of the diagram K. Consider the parity

(−1)b(S)

where b(S) is the number of black holes in the state S. Then it turns out
that up to one global sign ǫ depending on the ordering of nodes and regions,
we have

(−1)b(S) = ǫ sgn(σ(S))

where σ(S) is the permutation of nodes induced by the choice of ordering of
the regions of the state. This gives a purely diagrammatic access to the sign
of a state and allows us to write

∆K(x)=̇ΣS < K|S > (−1)b(S

8



where S runs over all states of the diagram for a given choice of deleted
adjacent regions, and < K|S > denotes the product of the Alexander nodal
labels at the quadrants indicated by the state labels in the state S. We
call < K|S > the product of the vertex weights. Thus we have a precise
reformulation of the Alexander polynomial as a state summation.

In Figure 5 we illustrate the calculation of the Alexander polynomial of
the trefoil knot using this state summation. Here we show the contributions
of each state to a product of terms and in the polynomial we have followed
the state summation by taking into account the number of black holes in
each state. The most mysterious thing about this state sum is the harmony
of signs

(−1)b(S) = ǫ sgn(σ(S)).

We shall explain this harmony in the next section via the Clock Theorem.
In Section 5 we shall reformulate the Alexander nodal weights to obtain the
Conway polynomial.

4 The Clock Theorem

In this section we continue the discussion of the states of a knot or link
universe that we began in the previous section. Consider the relationship of
the two states shown in Figure 6. As the Figure shows, one state is obtained
from the other by exchanging the markers at two nodes so that in the state
S we have a marker at i in region A and a marker at j in region B, while
in state S ′ we have a marker at i in region B and a marker at j in region
A. The prerequisite for this kind of exchange is that the regions A and B
are adjacent with the nodes i and j incident to both regions. Note also that
one can think of this exchange as mediated by rotating each marker in the
same clock direction by ninety degrees. Thus S ′ is obtained from S by one
clockwise rotation. We call such an exchange a clocking move. The Clock
Theorem (See [10]) states that any two states of a connected link universe

are connected by clocking moves.
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Figure 6 - A Clockwise Move

It is easy to see that the parity of the number of black holes in a state
(see the previous section for the definition of a black hole) is changed by
any single clocking move. This means that if S ′ is obtained from S by one
clocking move, then sgn(S ′) = −sgn(S) where sgn(S) = (−1)b(S) as in the
previous section. On the other hand, if we consider the permutation of nodes
σ(S) that is associated to a given state S then it is clear that σ(S ′) and σ(S)
differ by one transposition and therefore sgn(σ(S ′)) = −sgn(σ(S)). This
verifies the predetermined harmony between the permutation signs coming
from Alexander’s determinant and the state signs coming from the black
holes. Thus the state summation model for the Alexander polynomial de-
scribed in the previous section is seen to be founded on the Clock Theorem’s
statement that any two states are connected by a series of clocking moves.

An important combinatorial structure related to a link diagram is the
checkerboard graph. This is a graph derived from a checkerboard shading

of the diagram. A checkerboard shading is a coloring of the regions of the
diagram in two colors so that two adjacent regions receive different colors.
This can always be accomplished. Try this as an exercise.
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D G(D)

Tree

Dual Tree

Jordan Trail 
Derived from 
Maximal Tree

*
*

Marker State 
Derived from
Maximal Tree

Figure 7 - The Checkerboard Graph.

See Figure 7 for an illustration of a checkerboard coloring. We usually refer
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to the two types of colored region as shaded and unshaded.The checkerboard
graph of the diagram is a graph with one node for each shaded region and one
edge for each crossing between two shaded regions. The states admit useful
reformulations. They are in one-to-one correspondence with the maximal
trees in the checkerboard graph of the knot or link. They are also in one-
to-one correspondence with Jordan-Euler trails on the link diagram. For the
definitions of the checkerboard graph and the concept of Jordan-Euler trail,
see pages 13 to 20 of Formal Knot Theory. After reading this, the reader
may enjoy the following exercise:

Exercise. Let K be a connected alternating link diagram. Prove that the
absolute value of ∆K(−1) is equal to the number of maximal trees in the
checkerboard graph of K. (Hint: Show that when x = −1 every state con-
tributes the same sign to the state summation for ∆K(−1).)

Remark. Ten years after the publication of Formal Knot Theory, a planar
graph version of the Clock Theorem was obtained independently by James
Propp [24]. It remains to be seen how his methods reflect on the knot theory
that is associated with this result.

5 Reformulating the State Sum

Recall that four regions meet locally at a given crossing. Letting these be
labeled generically {A, B, C, D}, as shown in Figure 1, Alexander associates
the equation xA− xB + C −D = 0 to that crossing. From this we obtained
the vertex weights for our state sum for the Alexander polynomial. We
now point out that if we change the weights to correspond to the equation
xA+xB+C+D = 0 (that is we remove all the negative signs from Alexander’s
labels), the the polynomial ∆K(x) will only change by a global sign. To see
this examine the effect of the signs in Alexander’s weights on a single clock
move. It is easy to see that the product of these signs does not change when
two states are related by a clock move. Thus the signs in the Alexander
weights only contribute a global sign to the polynomial. We therefore remove
them. See Figure 8.
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A

B C

D
x

1x
1

Figure 8 - New Alexander Labeling.

x x
x1/x

1/x

1/x

1/x
x

A

B C

D

1/xx

x 1/x

Multiply by 1/x.

A

B C

D

1

1x^2

x^2

Replace x
by x^2.

Figure 9 - Changing the Alexander Labeling.
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Having removed the signs from the Alexander weights, we show the new
weights in Figure 8. In Figure 9 we make another change by replacing x by
x2 and then writing the result on the weights that corresponds to multiplying
each local set of weights by 1/x. Using the x2 substitution, the polynomial has
changed by a power of x. Finally, the weights x and 1/x that occur between
oppositely oriented arcs are removed. This again changes the polynomial by
a factor that is a power of x (checked again by using the Clock Theorem).
We end up with the weights in Figure 10 after exchanging x and 1/x. These
weights give us a state sum ΩK(x) with

ΩK(
√

x)=̇∆K(x).

x x1/x 1/x
1 1

1 1

Figure 10 - Conway Polynomial Weights.

In Figure 10 the new weights (shown in a box) are called the Conway
polynomial weights because the state sum now computes the Conway nor-
malized version of the Alexander polynomial. The Conway normalization no
longer has any change of sign or power of the variable under the Reidemeister
moves, and it satisfies a “skein relation” as described below.
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K+ K_ K0

Figure 11 - The Skein Triple.

Let three oriented link diagrams K+, K−, K0 be related by changes at the
site of a single crossing so that K+ has a positive crossing, the crossing is
switched in K− and smoothed in K0 as in Figure 11. Then in Formal Knot
Theory we show that

ΩK+
− ΩK+

= (x − x−1)ΩK0
.

It follows from this identity that ΩK is a polynomial in z = x−x−1. and so we
usually write ΩK(z) rather than ΩK(x). It is also that case that ΩK is strictly
invariant under all the Reidemeister moves: If K and K ′ are equivalent link
diagrams, that ΩK(z) = ΩK ′(z). There is no need to use the equals dot
relation any longer. The state sum for ΩK(z) gives a combinatorial model
for the Conway version [4] of the Alexander polynomial.

There are other ways to model the Conway-Alexander Polynomial. A
method using an orientable spanning surface for the link and a matrix of
linking numbers of curves on this surface (the Seifert matrix) is discussed in
[11].
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** **

**

x

x
x

1
1

1

K

K

1
1

1

1/x
1/x

1/x
1

1 1

x

1/x

x

x

1/x

1/x

Ω   = -1 + x^2 + 1/x^2  
= (x - 1/x)^2 + 1 = z^2  + 1

Figure 12 - Conway Calculation.

In Figure 12 we illustrate the calculation of this state sum for the trefoil
knot. The state summation model for the Conway - Alexander polynomial is
one of the main points of the book Formal Knot Theory. We use this model to
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prove results about alternating and alternative knots. The state summation
gives access to properties of the Alexander polynomial that are difficult to
see from its definition as a determinant. This state summation model paved
the way to discovering the bracket state sum model for the Jones polynomial
[8, 12]. The bracket model was discovered after Formal Knot Theory had
already been published in 1983. In this new edition, we include a paper [13]
on the bracket polynomial so that the reader can see the continuity between
these two state summation models.

6 Coloring Edges and Regions

A well-known [11, 6] way to show that some knots are knotted is the method
of Fox coloring. In this method each arc of the knot diagram is labeled with
an element of Z/NZ for an appropriate modulus N. At each crossing we
require the equation

a + c = 2b

where a, b, c are the labels (colors) from Z/NZ incident to the crossing, and
b is the label of the overcrossing arc, while a and c are the labels of the
undercrossing arcs that meet the crossing. If a knot can be colored non-
trivially, then it is not hard to see that it is knotted by examining how
colorings change under the Reidemeister moves. In fact one sees that each
Reidemeister move induces a unique change in the coloring of a knot or link,
and that for knots, a coloring with more than two colors is preserved (in the
sense of continuing to have more than two colors) under Reidemeister moves
that make only local changes in the diagram and in the coloring.
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A

B C

D

Ax + Bx + C + D = 0

x

x 1

1

If x = -1 then   A+B = C +D

A

B C

D

a

b

c

b = A +B = C + D
a = B+C
c = A +D

b

a + c = 2b

Region Coloring

Fox Edge Coloring
Figure 13 - Coloring Faces and Edges

It is the purpose of this section to relate the edge-coloring method to a
face-coloring method that is very close to the structure of the FKT model of
the Alexander polynomial. To see this relationship, view Figure 13. Here we
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see a labeling of faces incident to a crossing. Suppose that that these faces
are labeled from Z/NZ and that they satisfy the equation

A + B = C + D

where pairs A, B and C, D labels for faces sharing the over-crossing line. Now
associate to each arc at the crossing, the sum of the labels on either side of
it. Thus

a = B + C,

b = A + B = C + D,

c = A + D.

Then we see that

a + c = B + C + A + D = A + B + C + D = 2b.

Thus a labeling of faces satisfying the A + B = C + D rule gives rise to a
Fox coloring of the arcs of the diagram. One can go back and forth this way
between arc colorings and face colorings.

The next observation is to realize that the rule A + B = C + D is none
other than the equation at the crossing that corresponds to the Alexander
polynomial with x = −1. To see this, use the revised Alexander labeling
of Figure 8 and the discussion related to this figure. It is then not hard to
see that if one takes as modulus N = ∆K(−1), then there exist colorings of
the faces of the diagram that satisfy these equations. The absolute value of
∆K(−1) is called the determinant of the knot K, and is often denoted

Det(K) = Abs(∆K(−1)).

The determinant of the knot is itself an invariant of the knot, and any Fox
coloring modulus must divide it.

We have given an exercise (Section 4) to show that Det(K) is equal to
the number of maximal trees in the checkerboard graph of the knot K when
K is alternating. The means that the maximal tree count gives the color
modulus in this case.
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7 The Duality Conjecture

This section is a note to inform the reader that the Duality Conjecture stated
on page 57 of Formal Knot Theory has been proved by Gilmer and Litherland
[7]. Of course with that encouragement, the reader may enjoy finding a proof
for herself without consulting the literature.

8 The Bracket Polynomial and The Jones Poly-

nomial

The bracket model of the Jones polynomial [12] is a state summation model
whose structure is very close to the FKT model of the Alexander polynomial.
Since a paper about the bracket model [13] is included with this reprinting
of Formal Knot Theory, we will only briefly sketch the bracket model here.
One point worth making is that one can re-write the bracket model as a sum-
mation over all the trees in the checkerboard graph [26, 13] or, equivalently,
over all the single cycle states of the diagram. This means that the very same
set of states that yields the Alexander-Conway polynomial can be used to
produce the Jones polynomial. A deeper understanding along these lines of
the relationship of the Clock Theorem to the Jones polynomial is an open
question.

It is an open problem whether there exist classical knots (single compo-
nent loops) that are knotted and yet have unit Jones polynomial. In other
words, it is an open problem whether the Jones polynomial can detect all
knots. There do exist families of links whose linkedness is undetectable by
the Jones polynomial [21, 22].

The bracket polynomial , < K > = < K > (A), assigns to each unoriented
link diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then < K > = < K ′ >.

2. If K ∐O denotes the disjoint union of K with an extra unknotted and
unlinked component O (also called ‘loop’ or ‘simple closed curve’ or
‘Jordan curve’), then

20



< K ∐ O > = δ < K >,

where

δ = −A2 − A−2.

3. < K > satisfies the following formulas

< χ > = A < ≍ > +A−1 <)(>

< χ > = A−1 < ≍ > +A <)(>,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the

straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment.

In computing the bracket, one finds the following behaviour under Rei-
demeister move I:

< γ >= −A3 <⌣>

and

< γ >= −A−3 <⌣>

where γ denotes a curl of positive type as indicated in Figure 14, and γ
indicates a curl of negative type, as also seen in this figure. The type of a
curl is the sign of the crossing when we orient it locally. Our convention of
signs is also given in Figure 14. Note that the type of a curl does not depend
on the orientation we choose. The small arcs on the right hand side of these
formulas indicate the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to an
invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K) < K > (A),

where we chose an orientation for K, and where w(K) is the sum of the
crossing signs of the oriented link K. w(K) is called the writhe of K. The
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convention for crossing signs is shown in Figure 14. The original Jones poly-
nomial, VK(t) [8] is then given by the formula

VK(t) = fK(t−1/4).

or

or

+ -

+ +

- -

Figure 14 - Crossing Signs and Curls

One useful consequence of these formulas is the following switching formula

Aχ− A−1χ = (A2 − A−2)≍.

Note that in these conventions the A-smoothing of χ is ≍, while the A-
smoothing of χ is >< . Properly interpreted, the switching formula above
says that you can switch a crossing and smooth it either way and obtain a
three diagram relation. This is useful since some computations will simplify
quite quickly with the proper choices of switching and smoothing. Remember
that it is necessary to keep track of the diagrams up to regular isotopy (the
equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 15.
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You see in Figure 15, a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence

A−1 < K >= −A4 + A−8 − A−4.

Thus

< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 −A−3 + A−7) = A−4 + A−12 −A−16.

The asymmetry of this polynomial under the interchange of A and A−1 proves
that the trefoil knot is not ambient isotopic to its mirror image.

K U U'

Figure 15 – Trefoil and Two Relatives
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The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

The State Summation. In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be any unoriented link
diagram. Define a state, S, of K to be a choice of smoothing for each crossing
of K. There are two choices for smoothing a given crossing, and thus there are
2N states of a diagram with N crossings. In a state we label each smoothing
with A or A−1 according to the left-right convention discussed in Property 3
(see Figure 14). The label is called a vertex weight of the state. There are
two evaluations related to a state. The first one is the product of the vertex
weights, denoted

< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S||.

Define the state summation, < K >, by the formula

< K > =
∑

S

< K|S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ > = A < ≍ > +A−1 <)(>,

< K ∐ O > = δ < K >,

< O > = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with an
A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the
state summation. Hence this state summation produces the bracket polyno-
mial as we have described it at the beginning of the section.
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Remark. The bracket polynomial provides a connection between knot the-
ory and physics, in that the state summation expression for it exhibits it
as a generalized partition function defined on the knot diagram. Partition
functions are ubiquitous in statistical mechanics, where they express the
summation over all states of the physical system of probability weighting
functions for the individual states. Such physical partition functions contain
large amounts of information about the corresponding physical system. Some
of this information is directly present in the properties of the function, such
as the location of critical points and phase transition. Some of the informa-
tion can be obtained by differentiating the partition function, or performing
other mathematical operations on it. See [14, 16].

8.1 Thistlethwaite’s Example

View Figure 16. Here we have a version of a link L discovered by Morwen
Thistlethwaite [21] in December 2000. We discuss some theory behind this
link in the next subsection. It is a link that is linked but whose linking is
not detectable by the Jones polynomial. One can verify such properties by
using a computer program, or by the algebraic techniques described below.

Figure 16 – Thistlethwaite’s Link
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8.2 Present Status of Links Not Detectable by the
Jones Polynomial

In this section we give a quick review of the status of our work [22] produc-
ing infinite families of distinct links all evaluating as unlinks by the Jones
polynomial.

A tangle (2-tangle) consists in an embedding of two arcs in a three-ball
(and possibly some circles embedded in the interior of the three-ball) such
that the endpoints of the arcs are on the boundary of the three-ball. One
usually depicts the arcs as crossing the boundary transversely so that the
tangle is seen as the embedding in the three-ball augmented by four segments
emanating from the ball, each from the intersection of the arcs with the
boundary. These four segments are the exterior edges of the tangle, and are
used for operations that form new tangles and new knots and links from
given tangles. Two tangles in a given three-ball are said to be topologically

equivalent if there is an ambient isotopy from one to the other in the given
three-ball, fixing the intersections of the tangles with the boundary.

It is customary to illustrate tangles with a diagram that consists in a box
(within which are the arcs of the tangle) and with the exterior edges ema-
nating from the box in the NorthWest (NW), NorthEast (NE), SouthWest
(SW) and SouthEast (SE) directions. Given tangles T and S, one defines the
sum, denoted T +S by placing the diagram for S to the right of the diagram
for T and attaching the NE edge of T to the NW edge of S, and the SE edge
of T to the SW edge of S. The resulting tangle T + S has exterior edges
corresponding to the NW and SW edges of T and the NE and SE edges of
S. There are two ways to create links associated to a tangle T. The numera-

tor TN is obtained, by attaching the (top) NW and NE edges of T together
and attaching the (bottom) SW and SE edges together. The denominator
TD is obtained, by attaching the (left side) NW and SW edges together and
attaching the (right side) NE and SE edges together. We denote by [0] the
tangle with only unknotted arcs (no embedded circles) with one arc connect-
ing, within the three-ball, the (top points) NW intersection point with the
NE intersection point, and the other arc connecting the (bottom points) SW
intersection point with the SE intersection point. A ninety degree turn of
the tangle [0] produces the tangle [∞] with connections between NW and

26



SW and between NE and SE. One then can prove the basic formula for any
tangle T

< T >= αT < [0] > +βT < [∞] >

where αT and βT are well-defined polynomial invariants (of regular isotopy)
of the tangle T. From this formula one can deduce that

< TN >= αT d + βT

and

< TD >= αT + βT d.

We define the bracket vector of T to be the ordered pair (αT , βT ) and
denote it by br(T ), viewing it as a column vector so that br(T )t = (αT , βT )
where vt denotes the transpose of the vector v. With this notation the two
formulas above for the evaluation for numerator and denominator of a tangle
become the single matrix equation

[

< TN >
< TD >

]

=

[

d 1
1 d

]

br(T ).

We then use this formalism to express the bracket polynomial for our
examples. The class of examples that we considered are each denoted by
H(T, U) where T and U are each tangles and H(T, U) is a satellite of the
Hopf link that conforms to the pattern shown in Figure 17, formed by clasping
together the numerators of the tangles T and U. Our method is based on a
transformation H(T, U) −→ H(T, U)ω, whereby the tangles T and U are cut
out and reglued by certain specific homeomorphisms of the tangle boundaries.
This transformation can be specified by a modification described by a specific
rational tangle and its mirror image. Like mutation, the transformation ω
preserves the bracket polynomial. However, it is more effective than mutation
in generating examples, as a trivial link can be transformed to a prime link,
and repeated application yields an infinite sequence of inequivalent links.
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Figure 17 – Hopf Link Satellite H(T,U)
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Figure 18 – The Omega Operations
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H(T,U) H(Tw wU ),

Figure 19 – Applying Omega Operations to an Unlink

Specifically, the transformation H(T, U)ω is given by the formula

H(T, U)ω = H(T ω, U ω̄)

where the tangle operations T ω and U ω̄) are as shown in Figure 18. By direct
calculation, there is a matrix M such that

< H(T, U) >= br(T )tMbr(U)

and there is a matrix Ω such that

br(T ω) = Ωbr(T )

and
br(T ω̄) = Ω−1br(T ).
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One verifies the identity

ΩtMΩ−1 = M

from which it follows that < H(T, U) >ω=< H(T, U) > . This completes
the sketch of our method for obtaining links that whose linking cannot be
seen by the Jones polynomial. Note that the link constructed as H(T ω, U ω̄)
in Figure 19 has the same Jones polynomial as an unlink of two compo-
nents. This shows how the first example found by Thistlethwaite fits into
our construction.

9 From Quantum Topology to Khovanov Ho-

mology

Quantum topology is the study of invariants of topological objects whose
properties emulate partition functions in statistical mechanics, quantum me-
chanics and quantum field theory. The FKT model of the Alexander-Conway
polynomial and the bracket model of the Jones polynomial were the first ex-
amples of such relationships with partition functions. The Jones polynomial
was generalized to a number of other polynomial invariants of links (the
Homflypt and Kauffman polynomials) and to so-called quantum invariants
of colored links and trivalent framed knotted graphs (the colorings corre-
sponding to the irreducible representations of the SU(2)q quantum group).
These colored invariants were used to create the Reshetikhin-Turaev invari-
ants [26, 25] of closed oriented 3-manifolds. Simultaneously, invariants of
three manifolds were discovered by Witten [27] in a quantum-field theoretic
approach to invariants, using functional integrals. It was made clear at the
heuristic level that the functional integral approach and the Reshetikhin-
Turaev approach were equivalent, but radically different approaches to the
same structure. The combination of the two approaches led to the notion
of topological quantum field theories (TQFT’s) [2]. A TQFT is a functor
from a categories of closed surfaces (or higher dimensional manifolds) and
their cobordisms, with appropriate additional structures, to the category of
finite-dimensional vector spaces. This point of view can be used effectively to
capture the properties of the quantum group based invariants and to model
the mathematical essence of the functional integral approach.
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A new approach to invariants emerged in 1999 when Mikhail Khovanov
[17] constructed a homology theory H∗(D) defined through diagrams D rep-
resenting an oriented link L in three-space, so that the polynomial Euler
characteristic χ(H∗(L)) of this theory is a version of the Jones polynomial
of L, and the homology itself carries more topological information than the
Jones polynomial. Khovanov’s construction is an example of categorification.

The Khovanov theory introduces a new concept in quantum topology,
namely that it is possible to transmute state summations to summations of
modules and then to create topological invariants by taking an appropriate
homology or cohomology of these modules. These concepts bring the meth-
ods of algebraic topology into the subject of quantum topology in a fresh
way. They suggest that the direct attempt to produce topological partition
functions for four-dimensional topology may have to undergo a significant de-
tour involving cohomological methods before it achieves success. Khovanov
homology and its generalizations have proved to be a powerful and useful
tool for low dimensional topology.

We end this introduction to Formal Knot Theory with a sketch of the
Khovanov homology, as it is directly related to the bracket polynomial model.
The reader will see that this is indeed a natural outgrowth of the bracket
model.

Consider the two smoothings of a crossing. It is natural to put then to-
gether as the top and the bottom of a bit of smooth saddle surface as shown
in Figure 20. Then there is a topological evolution from one smoothing to
the other going through the critical level in the saddle where two lines cross
one another. The saddle appears as a geometrical/topological transforma-
tion from one smoothing to the other. The question is, how could such a
transformation be imaged in an algebraic or combinatorial structure to make
deeper versions of the bracket polynomial invariant? Khovanov’s beautiful
idea is to regard the transformation from one smoothing to the other as an
ingredient for forming the differential for a chain complex.
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Figure 20 – Saddle Points and Differentials

Specifically, one associates an algebra A to each loop in a bracket poly-
nomial state S for the knot or link K. Then one takes the tensor product
A⊗||S|| where ||S|| is the number of loops in the state S. The n-th level of
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the chain complex C(K) is denoted Cn(K) and is defined to the the direct
sum of the modules A⊗||S|| where S is a state with n sites of type A. The
differential in this complex is designed to take Cn+1(K) to Cn(K). The differ-
ential is built from the two possibilities for resmoothing a site, as illustrated
in Figure 20. In one case two curves become a single curve. In the other
case a single curve is transformed into two curves. We have denoted these
two possibilities by m and ∆ respectively. Since each curve is associated to
a copy of the algebra A, it follows that there should be maps of algebras
m : A⊗A −→ A and ∆ : A −→ A⊗A. Thus the algebra needs a product m
and a coproduct ∆. The differential always goes from a smoothing of type A
to a smoothing of type A−1 when restricted to a given loop, or pair of loops
in a state. Since a resmoothing of a type A state changes it to a type A−1

state, the number of type A states is reduced by one when the differential is
performed. The total differential from Cn+1(K) to Cn(K) is assembled from
a signed summation over all single-site maps as described above. The signs
require ordering choices and we refer the reader to [3] for more information
(where the complex is expressed in cohomology rather than homology).

A key point about this construction is illustrated in Figure 21. In order
that the differential in the complex be well-defined and have the property
that d2 = 0, one needs that different orders of application of it will coincide.
It is easiest to see this necessary compatibility condition by thinking of the
elementary bit of differential as m or ∆, depicted as a bit of saddle surface
beginning with two loops and ending with one loop, or beginning with one
loop and ending with two loops. Then the compatibility corresponds to the
equality of the compositions F = G = H indicated in Figure 21 as

F = ∆ ◦ m,

G = (m ⊗ 1) ◦ (1 ⊗ ∆),

H = (1 ⊗ ∆) ◦ (m ⊗ 1).

These are the conditions for A to be a Frobenius algebra [3]. For an example
of an algebra satisfying these requirements, take A to have basis {1, X} with
1 acting as a multiplicative identity and

X2 = m(X ⊗ X) = 0,

∆(1) = 1 ⊗ X + X ⊗ 1,
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and

∆(X) = X ⊗ X.

This algebra satisfies the requirements and produces an homology theory
that is invariant under the Reidemeister moves (when one takes into account
grading changes that the moves can produce).

∆ m

F G H

Figure 21 – The Frobenius Algebra Conditions

Khovanov homology grows naturally out of the bracket state sum,creating
a new technique for obtaining topological information from the states of the
link diagram.
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9.1 Knot Floer Homology

Finally, we mention the work of Ozsváth and Szabó [23] on Heegard Floer
homology. This is a homology theory associated to knots that categorifies the
Alexander Polynomial. The chain complex for this theory has a basis that
is in one-to-one correspondence with the states in the Formal Knot Theory
model for the Alexander-Conway polynomial. At this writing, there is no
strictly combinatorial description for the differentials in the chain complex
for this homology theory. The theory appears to depend upon more complex
geometry than the Khovanov invariant.
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