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INVARIANTS OF GRAPHS IN THREE-SPACE 

LOUIS H. KAUFFMAN 

ABSTRACT.By associating a collection of knots and links to a graph in three- 
dimensional space, we obtain computable invariants of the embedding type of 
the graph. Two types of isotopy are considered: topological and rigid-vertex 
isotopy. Rigid-vertex graphs are a category mixing topological flexibility with 
mechanical rigidity. Both categories constitute steps toward models for chemical 
and biological networks. We discuss chirality in both rigid and topological 
contexts. 

This paper introduces methods for producing topological invariants of graphs 
embedded in three-dimensional space. For this study, two types of graphs are 
considered: graphs with rigid vertices and graphs with nonrigid vertices. Our 
methods are strongest for graphs with rigid vertices. 

The primary method in either case is to associate a collection of knots and 
links to thegraph such that, for the appropriate notion of isotopy, this collection 
(the isotopy class of the collection) is an invariant of the isotopy type of the graph. 
One may proceed purely geometrically, or apply knot theoretic invariants to the 
collection. 

This method is simple and powerful. By not opting too early for the extra 
structure of a polynomial invariant, we can often directly use the topology to 
create a minimal solution. 

Nevertheless, it turns out to be particularly fruitful to use the new polynomial 
invariants of Jones and others (see [3, 5, 6, 7, 9, 10, 131). Also, by combining 
knot theoretic invariants, we [lo] have produced nontrivial graph-polynomial 
invariants in the case of 4-valent rigid vertex graphs. The latter invariants gener- 
alize the known two-variable polynomial invariants of knots and links (Homfly 
and Kauffman polynomials). These generalizations are joint work of the author 
and Pierre Vogel [lo]. I shall show here ($4) how these polynomials are related 
to the point of view involving a collection of links associated with the graph. 

The paper is organized as follows: 
In $2 we define ambient isotopy for nonrigid (topological) vertices and prove 

that piecewise linear ambient isotopy is generated diagrammatically by a set 
of moves (Figure 1) that generalize the Reidemeister moves). $2 then shows 
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how to obtain first-order invariants of these topological graph moves. $ 3  works 
with rigid vertices and discusses the use of link polynomials in the category 
of rigid vertex four-valent graphs. Diagram-moves are given for rigid vertex 
isotopy. $4 discusses the relationship between the methods of this paper and 
other approaches that would produce direct polynomial invariants of links. 

A similar invariant for rigid vertex graphs has been independently obtained 
by Ken Millett and David Jonish. We thank them for bringing this work to our 
attention. Work on this paper has been motivated by the possible application of 
these methods to problems in chemistry and molecular biology. We thank Jon 
Simon, Dennis Roseman, Keith Wolcott, David Walba, and DeWitt Sumners 
for stimulating conversations. Thanks go also to Cameron Gordon and John 
Conway for their beautiful paper [2] showing that every embedding of the com- 
plete graph on seven vertices contains a knot. This result and their technique 
form the inspiration for the present paper. 

This work was partially supported by ONR Grant No. N0014-84-K-0 and 
NSF Grant No. DMS-870 1772. 

Here I discuss (piecewise linear) ambient isotopy for graphs embedded in 
three-space. 

A-graph is a one-dimensional complex consisting of finitely many (zero- 
dimensional) vertices and finitely many (one-dimensional) edges and loops. Each 
edge is homeomorphic to a closed line segment, and its ends form two distinct 
vertices in the graph. A loop is obtained by identifying the two endpoints of a 
segment; the point of identification is a vertex of the graph. We speak of edges 
in referring to either edges or loops. It is assumed that a graph is connected 
unless stated otherwise. 

Embeddings of a graph are taken to be tame (equivalently, piecewise linear). 
In Theorem 2.1 I prove that ambient isotopy of embeddings for a graph in space 
is generated by a set of local moves that generalize the Reidemeister moves [15 
and 161 for diagrams of knots. (These moves for graphs were first announced 
in [7].) Figure 1 illustrates the moves. Note that we have added to the usual list 
of Reidemeister moves two moves involving a vertex (moves IV and V). Move 
IV allows an edge to slide under or over a bundle of strands at a vertex. Move 
V allows any two adjacent (in the planar diagram) strands at a vertex to twist 
around one another. This is the basic topological vertex move-two strands at 
the vertex can twist without affecting the other strands. 

With respect to these moves it is assumed that the embedding of the graph is 
presented as a planar diagram where each vertex neighborhood is a collection of 
rays emanating from the vertex. Crossings are transverse double points (as in 
knot and link diagrams) occurring between interior points of the edges. Such a 
diagram always exists via point projection from a representative in the ambient 
isotopy class of the graph. 
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FIGURE1. Reidemeister moves for graphs (topological 
vertex-valence four shown) 

Theorem 2.1. Piecewise linear (pl) ambient isotopy of embedded graphs is gen- 
erated by the moves shown in Figure 1 .  That is, if two embedded graphs are 
ambient isotopic, then any two diagrams of them are related by a finite sequence 
of the moves of Figure 1 .  

Remark. The moves allow us to conceptualize the graph as an entity whose ab- 
stract graphical structure is invariant under the isotopy. For working with the 
graph as a piecewise linear complex, I assume that the embeddings of its edges 
are piecewise linear in Euclidean three-space. This means that a given embed- 
ding of G is specified by the image of a finite set of points (the selected points, 
I(G)) consisting in the vertices of G plus certain interior points of the edges 
of G) .  Two such points along an edge are said to be adjacent if there are no 
other selected points between them. The embedding is produced by extending 
straight line segments between adjacent selected points. It is assumed that the 
embedded interiors of all such segments are disjoint from one another and that 
the set of selected points I (G)  is mapped one-to-one into three-space. It is 
sometimes useful to think of the set of selected points as giving a structure to 
G as a piecewise linear graph in three-space whose vertices are these selected 
points, and whose edges are all straight segments in space. This graphical struc- 
ture is not invariant under ambient isotopy. In fact it follows from [4] that, just 
as in the case of pl embeddings of knots and links, that two pl graph embeddings 
are combinatorially isotopic (in the sense of Reidemeister [15]-to be explained 
below) if and only if one can be transformed into the other by an orientation 
preserving piecewise linear mapping of R~ onto itself. Combinatorial isotopy 
is generated by elementary combinatorial isotopies as illustrated in Figure 2. In 
an elementary isotopy a triangle is embedded piecewise linearly in R~ SO that 
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FIGURE2. Elementary combinatorial isotopy 

FIGURE3. Reidemeister moves are elementary combi- 
natorial isotopies 

its interior is disjoint from the graph embedding, and so that the triangle shares 
either one or two edges with the embedded graph (in the sense of the piecewise 
linear edges generated by the selected points). In an elementary combinatorial 
isotopy the shared edges of the triangle are replaced by the unshared edges. The 
result is a new pl embedding of the same graph with a different set of selected 
points. 

The paper [4] was the first to prove that pl ambient isotopy and combinatorial 
isotopy are equivalent for pl links in three-dimensional space. This provides the 
appropriate context for Reidemeister's theory of moves. Reidemeister showed 
how combinatorial isotopy implicates the diagrammatic equivalence of knots 
and links generated by the three Reidemeister moves [15]. The technique of [4] 
shows that Reidemeister's notion of combinatorial equivalence was identical 
to piecewise linear ambient isotopy. These techniques go directly over for the 
extension to embeddings of graphs. Thus in order to prove Theorem 2.1 it will 
sufice for us to show that the generalized Reidemeister moves of Figure 1 can 
generate combinatorial isotopy (via triangle moves) for pl embedded graphs. 

A historical remark is in order here. At the time when Reidemeister wrote 
his book [15] the different equivalence relations and piecewise linear techniques 
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FIGURE4. Examples of triangle in relation to graph 
projection 

FIGURE5. Local replacements at a topological vertex 
(illustrated for valence three) 

had not been fully sorted out. Reidemeister took combinatorial isotopy as the 
fundamental equivalence relation, and proved all his results on this basis. The 
intervening years have shown that his intuition was correct in this matter (for 
the theories of tame knots, links and graphs). 
Proof of Theorem 2.1. In order to prove that the extended Reidemeister moves 
of Figure 1 suffice to generate combinatorial isotopy it is first necessary to for- 
malize them to their corresponding piecewise linear versions as shown in Figure 
3. Then the proof follows via an enumeration of all cases of a triangle (for the 
elementary move) in general projected position with respect to the piecewise 
linear diagram. Figure 3 in fact shows that each of the extended Reidemeis- 
ter moves is an elementary combinatorial isotopy. Figure 4 shows examples of 
cases in the enumeration. Note that we can subdivide the triangle if so needed, 
and that elementary moves that do not change the crossing structure of the di- 
agram are not included in the list of extended Reidemeister moves. I leave the 
full enumeration indicated in Figure 4 for the reader. This completes the proof 
of Theorem 2.1. 

A jirst graph invariant. This invariant is a formalization of the notion of 
"all knots and links in the graph". A collection T(G) of knots and links to the 
graph G will be associated. These are obtained as follows: At each vertex make 
a local replacement of the type indicated in Figure 5. 

This replacement leaves two edges connected and unplugs all the other edges 
at this vertex, leaving them as free ends. Since any two edges can be left con- 
nected at a vertex there are N ( N  - 1)/2 choices available for the replacement 
at a vertex of degree N . 
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FIGURE7. Braiding at a vertex permutes the replace- 
ments 

Having chosen a replacement at each vertex of the graph, let r (G)  denote 
the link formed by the closed curves formed by this process. (Eliminate the 
unkotted arcs.) 

Then T ( G ) is the collection of links r ( G )  for all possible replacement choices. 
See Figure 6 for examples of the formation of T ( G ). 

Theorem 2.2. Let G be any graph embedded in three-dimensional space, and 
presented diagrammatical1.v. Then the collection of knots and links T ( G )  , taken 
u p  to ambient isotopy, is a topological invariant of G. 

Proof. Examine each of the elementary moves, and note that, up to ambient 
isotopy, the elements of the collection T ( G )  are simply permuted by the moves. 
(Compare Figure 7.) 
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FIGURE8. J. Simon's graph 

Examples. Here I refer to the examples shown in Figure 6. The handcuff graph 
H 2  is not ambient isotopic to the planar H 1  because T(H2)  contains a non- 
trivial link. The theta graph G2 is not planar because T(G2) contains a trefoil 
knot. These same techniques show that the graph G of Figure 8 is not planar, 
but they do not show (since the figure eight knot is archiral) that G is not am- 
bient isotopic to its minor image. In the case of G ,  this has been shown by 
Wylbur Whitten using a more subtle approach using branched coverings. This 
is a case where the branched covering techniques (compare [17 and 201) are 
definitely superior to simply looking at a list of associated knots and links. 

The problem of constructing good invariants in the general case is quite dif- 
ficult, due to the generation of arbitrary braiding at a vertex via the extended 
move number V. 

It is of-interest to imagine physical situations in which the relation of combi- 
natorial equivalence for graphs is relevant (compare [171). For example, imagine 
that each vertex is replaced by a ball and that the edges incident to the vertex 
are strings attached to the surface of the ball by magnets that are free to move 
over the surface. Then it is clear that the braiding at the vertex corresponds 
to configurational movements of the magnets on the surface. If, instead, the 
vertex is replaced by a disk to which the strings are rigidly attached, we shall 
have the case of the rigid vertex as described in the next section. 

The main point of this section has been to point out that there are Reide- 
meister moves for embedded graphs, just as for knots, and to point out that 
these moves are justified on the same basis as the case of knots and links. 
This reformulates the general problem of the classification of piecewise linear 
graph embeddings to the study of a diagrammatic formal system whose equiva- 
lence relation is generated by the extended Reidemeister moves. This system is 
particularly important not only because it is very challenging to produce good 
combinatorial invariants, but also because it distills the problem of pl graph 
embedding into a managable formalism, just as do the diagrams and moves of 
the theory of knots. 

111. RIGIDVERTICES 

I now specialize to 4-valent graphs with rigid vertices. 
Physically, the concept of rigid vertex corresponds to a network whose ver- 

tices are rigid disks each having (four) flexible tubes or strings emanating from 



704 L. H. KAUFFMAN 

it. Since the disk is rigid, it turns as a whole when rotated by 180 degrees, and 
it twists the strings in pairs as shown in Figure 9. 

In terms of diagrammatic moves, the concept of rigid vertex involves the 
replacement of move V of Figure 1 by the move V * shown in Figure 9. 

The rigidity of the vertex forces double braiding when the vertex is turned 
by 180 degrees. Also the second move (with a three strand twist) under V * can 
be accomplished up to ambient isotopy by the first (paired twist). Thus we only 
need consider one extra braiding move. 

We define rigid vertex equivalence (just called equivalence in this section) to 
be the equivalence relation generated by the moves I, 11,111, IV, V * . A 4-valent 
rigid vertex graph will be referred to as an RV4 graph. 

FIGURE9. Braiding move for rigid vertex (corresponds 
to 180 twist) 

Remark. One needs a repeat, in this context, of the discussion of '$2, where 
combinatorial equivalence generated by extended Reidemeister moves is seen 
to generate pl ambient isotopy of embedded graphs. In the case of rigid vertices 
of arbitrary valence this is done by replacing each vertex by a polygon so that 
each graph-vertex strand (corresponding to an edge that emanates from this 
vertex of the graph) emanates from one of the vertices of the polygon. Then 
the resulting complex is allowed to undergo pl ambient isotopy, except that 
the polygons must be moved rigidly (i.e. by an orientation preserving orthogo- 
nal transformation or a length preserving affine transformation of three-space). 
Such ambient isotopies can be generated by combinatorial isotopies that in- 
volve no triangle expansions or contractions on the polygonal vertices-along 
with rotations of the polygons. (As a polygon rotates the pl strands attached 
to it undergo sequences of combinatorial isotopies.) At the diagrammatic level, 
the rotations of the polygons reduce to 180 degree turns of the polygons that 
turn their attached strings as in move V * . With this scheme, the arguments of 
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FIGURE 10. Rigid vertex connection replacements 

FIGURE 10 ' . Oriented rigid vertex replacements 

$2extend to show that pl ambient isotopy of rigid vertex graphs is generated by 
the moves of Figure 9. There are other approaches to the concept of the rigid 
vertex. I have suggested regarding it as an actually rigid macroscopic object, 
hence replacing the graph by a cell complex with extra structure. The paper 
[I] is a good introduction to topological properties of embedded cell complexes 
in relation to graph-embeddings. In particular, Boyle gives geometric proofs 
of chirality for Mobius ladders shown chiral in [17] by branched covering tech- 
niques. His methods are likely to be of use in further articulation of the concept 
of a rigid vertex. 

Remark. One of the interesting aspects of RV4 graphs under equivalence is that 
one can actually build simple physical models for them-just as one can form 
models for knots and links from rope or string. As the above remarks show, 
rigid vertex isotopy is a mixture of mechanical (geometrical) and topological 
elements. It is relatively easy to produce models-by attaching flexible strings 
or tubes to rigid disks or balls. The rigid isotopy is closely related to motions 
of networks in space that are a mixture of the mechanical and the topological. 

Unoriented invariants of rigid vertex isotopy. We shall associate a collection 
of knots and links to each RV4 graph. The collection associated to a graph G 
will be denoted C(G) . 

An element of C(G) is obtained by making a connection at each vertex, 
replacing the vertex locally by a configuration that connects the four edges in 
pairs. There are four ways to do this, as illustrated in Figure 10. 
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Theorem 3.1. For an RV4 graph G the ambient isotopy class of C ( G )  is an 
invariant of the rigid equivalence class of the graph G. 


Proof. Observe the effect of the type V * move as shown in Figure 10. This 

proves invariance for type V * . Invariance under the other moves is trivial. 


This theorem is-quite powerful in analyzing RV4 graphs. Just as in the 
topological case, any invariants of knots and links can be applied to the elements 
of the collection C ( G ). In this case we can use this information to decide subtle 
chirality questions in the rigid vertex context. 

Theorem 3.2. Let G be a 4-valent rigid graph embedded in three-space. Let 
C(G)  denote the collection of link diagrams associated with the diagram G. Call 
an element K of C(G)  singularly chiral if it is chiral, and no other element of 
C(G)  is ambient isotopic (link-theoretic ambient isotopy) to the mirror image of 
K. If any element of C(G)  is singularly chiral, then the graph G is chiral in the 
rigid vertex category. 


Proof. This result follows at once, since the list ~ ( d ) 
for the mirror image 
diagram d consists in the mirror images of all elements of the list C ( G ). 
Example. This example continues the discussion of the graph G of Figure 8. 
Looking at it from the rigid vertex point of view we see from Figure 11 that G 
is certainly not RV4 planar. Furthermore, it is not RV4 equivalent to its mirror 
image. For if G where achiral, then the individual knots and links in C ( G )  
(being distinct) would each be achiral. We then check that this is not the case 
by using our results for the Jones polynomial of alternating knots. 

Remark. It is the purpose of this example to show how the new polynomial 
invariants can be used in this context. Thus, while chirality can be verified in 
this case by other techniques, the bracket version of the Jones polynomial [6] 
provides a particularly elementary way to proceed. Furthermore, the technique 
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is quite general, and allows the use of the computer programs that calculate 
these polynomials. 

In the case at hand, we know from [6] that if K is achiral alternating then 
3w (K) = W -B where w (K) is the twist number of K and W and B are the 
numbers of white and black regions in a shading where all crossings are shaded 
as shown in Figure 12. Choosing K1 in C(G) ,we find as shown in Figure 12 
that this equation is not satisfied. Hence K I  is chiral. Hence G is RV4 chiral. 
(The twist number is the sum of the crossing signs, as illustrated in Figure 12.) 

As a second example, consider the graph d shown in Figure 13. d is 
obtained from G of Figure I I by switching two crossings. To prove G not 
RV4 equivalent to d it suffices to show that ~ 2 '(Figure 13) is not ambient 
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isotopic to K2 (Figure I I). It follows from the theorems about alternating 
knots in [6, 14 and 191 that a nonalternating diagram sharing the same (reduced) 
underlying planar shadow as an alternating knot cannot be ambient isotopic to 
the alternating knot. Therefore K2 and K2' are distinct. Hence G and d 
are not RV4 equivalent. 

To verify that G' is RV4 chiral, it is sufficient to know the chirality of K2' . 
As shown in Figure 13, the knot K2' is ambient isotopic to an alternating knot 
K' , and the same check as above (using white and black region counts) shows 
that K' is chiral. 

One final example: The rigid vertex graph shown in Figure 14 is chiral (as 
our technique easily shows). As a topological vertex graph it is achiral. This 
underlines the differences between these two categories. 

Oriented invariants of rigid vertex isotopy. Everything that we have said in 
the unoriented case goes over with obvious modification to the oriented case. 
View Figure 10'. This illustrates the replacements for an oriented rigid vertex. 
The same arguments as before show that the associated set of oriented links 
C(G) for an oriented graph G is an ambient isotopy invariant of G. I will not 
go into further details in this case. 

IV. POLYNOMIALINVARIANTS OF EMBEDDED GRAPHS 

There are now a number of methods available for creating polynomial in- 
variants of rigid vertex graph-embeddings [lo, 12 and 211. I shall restrict my 
comments here to the case of 4-valent vertices. 

In this case of RV4 graphs, the approach explained in the present paper may 
be just as powerful as the available polynomial invariants. 

The reason for this is very simple. The polynomial invariants are constructed 
by adding up link polynomials of the elements of C(G) (the list of links as- 
sociated with the graph G),  multiplied by appropriate coefficients. If the link 
polynomials applied to the individual elements of C(G) do not detect chirality 
for any element of C(G) , then in order for the resulting summation polynomial 
to detect chirality, an asymmetry in the polynomial will have to arise from some 
subtlety in the summation. 

This leads to the problems: 

1. 	Give an example of an RV4 chiral graph whose chirality is not detected 
from the list of associated links C(G). 
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2. 	 Give an example of an RV4 chiral graph whose chirality is not detected 
by the list of associated links C(G), but so that its chirality is detected 
by a graph-polynomial. 

Since I do not know an example for question number I, I do not yet know 
examples for either of these questions. Both questions underscore the rather 
remarkable character of the rigid vertex category-that much information can 
be gained at very little cost by simply looking at all the knots and links in the 
graph. 

For the reader unfamiliar with graph-polynomials, here is a description of the 
Kauffman-Vogel polynomial in the unoriented (Dubrovnik) case. This polyno- 
mial generalizes the graph polynomial of Yamada [21] for the RV4 case (un- 
oriented). It is a three variable generalization of the two-variable Kauffman 
(Dubrovnik) polynomial [9]. The polynomial satisfies the equations: 

where the small diagrams stand for larger diagrams that are identical except for 
the indicated differences. This polynomial is a polynomial in the three variables 
A ,  B and a .  With Z = A - B , we see that 

Thus [K] specializes to the regular isotopy (see [7 or 8 or 91) version of the 
Dubrovnik polynomial (see [9 or 101) in the case where K has no graphical 
vertices. (For a = 1 , the Dubrovnik polynomial is a trivial invariant. A cor-
responding substitution in the Kauffman polynomial yields the Q-polynomial 
of Brandt, Lickorish, Millett and Ho. See [9 and 131.) 
[qis defined for graphs by expanding away the graphical vertices via the 

formulas (rewritten from above): 

It is not hard to see that the well-definedness of the Dubrovnik polynomial 
implies that this graph-polynomial is a well-defined invariant of rigid-vertex 
isotopy up to multiplication of the entire polynomial by powers of a .  

The polynomial for a minor image is obtained by interchanging A and B 
and replacing a by ( 1l a )  . 
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While the Kauffman-Vogel generalizations of the known two-variable poly- 
nomials for links may not do more for RV4 graphs than the general method 
of this paper, these generalizations and the corresponding methods of Yamada, 
Millett and Jonish shed light on the relationship of rigid vertex equivalence and 
the meaning of the new polynomial invariants. 

Furthermore, an unknown variation on these themes could very well lead to 
new information. The possibility for new invariants in this domain is very real. 
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