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AN INVARIANT OF REGULAR ISOTOPY

LOUIS H. KAUFFMAN

ABSTRACT. This paper studies a two-variable Laurent polynomial invariant
of regular isotopy for classical unoriented knots and links. This invariant is
denoted L, foralink K, and it satisfies the axioms:

1. Regularly isotopic links receive the same polynomial.

2. Lg=1.

3. LT =al, L—F =a"'L,

I +Ixg =dl= +Idc )

Small diagrams indicate otherwise identical parts of larger diagrams.
Regular isotopy is the equivalence relation generated by the Reidemeister

moves of type II and type III. Invariants of ambient isotopy are obtained from
L by writhe-normalization.

I. INTRODUCTION

In this paper I introduce a two variable Laurent polynomial invariant of knots
and links in three-dimensional space. The primary version of this invariant, de-
noted L, , is a regular isotopy invariant of unoriented knots and links. Regular
isotopy will be explained below.

Associated to L, are two normalized polynomials F, , for K oriented,
and U, for K unoriented. These are each ambient isotopy invariants of X .
Each is obtained from L, by multiplying it by a normalizing factor. Since
Fy is an invariant for oriented knots and links, it may be compared with the
original Jones Vj-polynomial [13] and with the homfly polynomial P, [10].
In fact, F; has the Jones polynomial V, as a special case (see §3). Fy is
distinct from both the Jones and the homfly polynomials. The F-polynomial
is good at distinguishing knots and links from their mirror images. In this
regard, it appears to do somewhat better than the homfly polynomial. The
Fy polynomial was announced in [24 and 19] and has become known as the
Kauffman polynomial [16, 31, 37, 40, 45].

Our approach to these invariants is based upon the theorem [41] stating that
two knot or link diagrams represent ambient isotopic embeddings in three-space
if and only if the diagrams are related by a sequence of the three Reidemeister
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418 L. H. KAUFFMAN

moves (denoted I, II, and III as in Figure 1) plus topological deformations of the
diagram (that do not change the graphical structure of the crossings). Invariance
is proved by examining the polynomial behaviour under these moves.

A knot is an embedding of a single circle into three-space, while a link is an
embedding of a collection of circles. The number of circles for a link embedding
is referred to as the number of components of the link. A knot is a link of one
component.

A link diagram may be regarded as the shadow of a projection of the link into
the plane. It is assumed that the singularities of the shadow are ordinary double
points produced by transversally intersecting line segments. Each intersection
is drawn to indicate over and under-crossing lines. The most common form
of this convention is to indicate the under-crossing line by breaking it at the
intersection.

Regular isotopy is the equivalence relation on diagrams generated by the
Reidemeister moves of types 11 and I11. There are a number of motivations for
this formal definition. First of all, I choose the word regular because a regular
isotopy projects to a regular homotopy of the underlying plane curves. Secondly,
an embedded band (circle x unit interval) is susceptible to ambient isotopies that
correspond to the moves II and III on the core of the band. Thus regular isotopy
of the core can be used in describing the knot theory of embeddings of bands
(or of framed links). Through this correspondence, the L-polynomial can be
regarded -as an ambient isotopy invariant of embedded bands (see §5), or as a
regular isotopy invariant of link diagrams.

The paper is organized as follows: §2 defines L and F and U, and gives
examples. We give a short exposition of Morwen Thistlethwaite’s proof using _
L, that the twist number (the writhe) of a reduced alternating projection is
an invariant of ambient isotopy. This solves an old conjecture [33, 43]. §3
discusses the relationship with the original Jones polynomial. §4 discusses the
braid monoid [4, 20, 22, 33, 48] in relation to our invariant. We show that two
loop-free elements of the braid monoid are regularly isotopic if and only if they
are related by a sequence of specific types of algebraic moves. This generalizes
known results for the Artin braid group, and provides a diagrammatic context
for the Birman-Wenzel algebra [4]. §6 gives our proof of the well-definedness
and invariance of the L-polynomial. Finally, §7 discusses a useful reformu-
lation of L that we have called the Dubrovnik polynomial D, and a special
case of D having a state expansion analogous to the bracket model of the
Jones polynomial. This section also mentions extensions of the L-polynomial
to polynomial invariants of embedded graphs in three-space.

I'am happy to take this opportunity to thank Massimo Ferri of the Univer-
sita di Bologna, Mario Rasetti of the Politecnico di Torino and Jon Simon of
the University of Iowa for their hospitality during various stages of this work.
Research for this paper was partially supported by ONR Grant #N0014084-K-
0099 and NSF Grant #DMS-8701772.
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II. BASIC RESULTS

In this section we will use regular isotopy as the equivalence relation generated
by the Reidemeister moves of type II and III (plus topological equivalence of
the underlying planar shadow). See Figure 1. The reader is referred to §5 for a
discussion of regular isotopy in relation to embedded bands and framed links.

L9 «DC
Ambient Isotopy 9 - Regular Isotopy

N /
Ill/x/\‘_\\/x/

| /\”\\ < \\/\/

FiGuRrE 1. Reidemeister moves

A word about this equivalence relation (regular isotopy) is in order. First,
we denote regular isotopy by =~ and ambient isotopy by ~. (4 =~ B means
A is regularly isotopic to B.) Second, the approach via diagrammatic moves
goes back to Reidemeister and to his book Knotentheorie [41] where he showed
that two knot diagrams are combinatorially isotopic if and only if one diagram
can be obtained from the other by a sequence of the three move types of Figure
1. The notion of combinatorial isotopy (that Reidemeister used) is a special
case of modern piecewise linear isotopy—and in fact generates piecewise linear
isotopy for curves and graphs embedded in three-dimensional space. This fact
was first proved in [11]. For a modern account of the equivalence of the dia-
grammatic relation generated by the Reidemeister moves and piecewise linear
or differentiable isotopy for space curves, see [5].

Knot theory as the study of the formal diagrammatic system generated by
the link diagrams and the Reidemeister moves is a long-standing approach to
the subject. Alexander’s original paper on his polynomial invariant of knots
and links [1] used the Reidemeister moves. The remarkable fact about the new
polynomial invariants (the Jones polynomial and generalizations) is that they
depend crucially upon this diagrammatic approach.

There are a number of reasons for singling out Reidemeister moves II and
III as a separate equivalence relation. The first Reidemeister move (I) is of a
different character.

In Figure 2 I illustrate a regular isotopy that carries a curl through a crossing.
This means that (by doing a few more moves of types II and III) potential type
I moves can be relocated along a given component of the diagram. Thus a curl
that apparently obstructs a type II or III move can be slid out of the way. This
remark, in itself, does not show that one can do away with the type I move in the



420 L. H. KAUFFMAN

theory of knots and links. This cannot be done. However, it is possible to work
strictly with regular isotopy after normalizing the diagram in an appropriate
way. (See {46] and §5 of this paper.)

— |
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l

H{C

|
bﬁ;\"‘
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FIGURE 2

The simplest invariant of regular isotopy for oriented links K is the twist
number (or writhe), w(K). This is the sum of the signs of all the crossings:

w(K) =Y e(p)

p

where the crossing signs are +1 or —1 as indicated in Figure 2. Note that the
twist number changes by adding +1 or —1 under type I moves.

7~
e I

e=+1 e=-1

FIGURE 3. Crossing signs

The writhe can be used to normalize a regular isotopy invariant, producing
a corresponding invariant of ambient isotopy:

Lemma 2.1. Let # be aring, and a an invertible element of % . Suppose that
R(K) € & is a regular isotopy invariant of oriented link diagrams K satisfying

R(9") = aR(—>),

R(-@*) = a 'R(—>).
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Then S(K) = a_w(K)R(K ) is an invariant of ambient isotopy, where w(K)
denotes the writhe of K .
Note. Here and elsewhere in this paper, small diagrams stand for parts of larger
diagrams. A collection of small diagrams occuring in a single equation all share

the same larger diagram. (The large diagram is only changed as indicated by
the small diagrams.)

Proof. Since w(K) is a regular isotopy invariant, so is a~"®) . Hence S(K),
being the product of two regular isotopy invariants is itself a regular isotopy
invariant. Therefore it is only necessary to check the invariance of S(K) under
type I moves. Since

w(D?) =1+ w(>)
and
w(-6?) =-1+u(—>),
this follows at once from the definition of S(KX).

In light of this lemma we make the following axiomatic definition of a 2-
variable Laurent polynomial L, = Ly (a, z) € # = Z]a, a”! , Z, z_l] :
Definition 2.2. Axioms for L, .

0. If K -is an unoriented link diagram, then L, € Z[a,a , z, z_l] =
Z (the Laurent polynomials over the integers with commuting, independent
variables a and z).

1. If K and K’ are regularly isotopic diagrams, then Ly=Lg in #.

2. The following identity holds for all quadruplets of diagrams that are
identical everywhere except at the small diagrams indicated below:

1

L;\/ +L7\ =z(L>_< +L)( )

3.
L‘b" ZGL,
L-.6— =a 'L,
L o) =1.

In §6 we will prove

Theorem 2.3. The axioms of Definition 2.2 describe uniquely a well-defined Lau-

rent polynomial invariant of regular isotopy, L , for unoriented link diagrams
K.

By axiom 3, the restriction Q. (z) = L (1, z) € Z[z, z"] is an invariant of
ambient isotopy. This is the polynomial Q of Brandt, Lickorish, and Millett
[6] and Ho [12]. Thus our polynomial is a two-variable generalization of the
Q-polynomial.
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Definition 2.4. Define a polynomial F, € # =Z]a, a’l, z, z'l] for oriented

link diagrams K via the equation F, = a_w(K)LK where L, is defined on
oriented link diagrams by forgetting the orientation.

1

Proposition 2.5. The polynomial F.(a, z) € Z[a,a , z, z_l] is an ambient
K

isotopy invariant of oriented links K .

Proof. This follows at once from Lemma 2.1 (R, = L., Sy = Fy) and
Theorem 2.3.

Remark. When speaking of regular isotopy I shall take care to speak of dia-
grams. When speaking of ambient isotopy, one can speak of links as embeddings
of circles in three-dimensional space. Nevertheless, Fy is calculated through
the use of diagrams. It is an open problem to give a definition of F, that is
not diagram dependent.

Definition 2.5.1. The mirror image of a diagram K, denoted K!, is that dia-
gram obtained from K by reversing all of the crossings of K. (Hence it is the
mirror image obtained by reflection in the plane of projection.) Orientations on
K are not changed under this mirror imaging. A link K is said to be achiral if
it is ambient isotopic to its mirror image K !. When this is not the case, then
K is chiral.

In practice it is necessary to distinguish between chirality with or without
orientation. For example the knot 8,, is known to be ambient isotopic to its
mirror image with reversed orientation, but it is chiral in the oriented case.

Lemma 2.6. Let K be an (oriented) link and K! its mirror image. Then the
polynomials L, and F, undergo replacement of a by a~' when K is replaced
by K!.

1 1

Ly(a,z)=Lg(a ', z), Fy(a, z)=Fgla , z).

Proof. K! is obtained from K by reversing all crossings. This has the effect of
interchanging a and a”' in Axiom 4 of Definition 2.2 (and w(K!) = —w(K)).
Hence any calculation of L, (F,) will result in an identical calculation of
L, (Fy) with a replaced by a”'. This completes the proof.

Remark. The upshot of this lemma is that if Fy(a, z) # F, K(a_1

i1s not ambient isotopic to its mirror image.

Figure 4 illustrates the calculation of L, for the first few knots and links
directly from the axioms. Note that the unlink consisting of two simple closed
curves receives the value d = z~ ' (a+a_1)+1 . In this case L and F coincide.
The value of F,. for the right-handed trefoil of Figure 4 is

, z) then K

F,.= (a_2 + a_4)z2 + (a_3 + a_s)z + (—2a_2 —a!

).

Since F.(a, z) # FT(a_1 , Z), this shows that F detects the chirality of the
trefoil knot.
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L8 +L8 =z(Lg +L8 ),

(1) al o +a”'Lg =z2(6+Lo ),6=LQ

é6=(a+a D271 -1,

LGQ +L@ =z(L@ +L<39 )

(2) A+6=z(a+a‘1),z\=L@,

A=—(a+a )z 41+ (a+at)e,

% +LON =z(L@> +L§> ),

(3) ‘ r+a=z(A+a'2),T=L@D,

T=(-2a- a‘l) +(1+ a‘2)z+ (a+a71)z2

FIGURE 4

Remark. Note that in inductive calculations such as those indicated in Figure
4, the evaluations involving the variable a occur at the bottom of the tree of
evaluations. By an evaluation tree I mean a tree of knots and links obtained
by switching (S) and elimination (E and e) as illustrated in Figure 5. The
operation of switching a crossing is denoted S (S(>¢) =><) and the operations
that eliminate a crossing are denoted E(E(>X)=>) and e(e(><),=>¢. Our
method (in §6) for seeing that L, is well defined involves a specific choice of
evaluation tree. (This is also called a skein decomposition.)

Definition 2.7. A diagram is split if it is displayed as the disjoint union of two
diagrams. We write K = K' U K" where K’ and K" denote the two sub-
diagrams. A diagram K is a connected sum if it is displayed as two disjoint
diagrams connected by parallel embedded arcs (up to planar isotopy) as in Fig-
ure 6. By cutting these arcs and resplicing them, a split link K = K’ UK" is
obtained. We write K = K'#K" for the connected sum.

Lemma 2.8. The following formulas hold for the polynomials L and F with
respect to disjoint union and connected sum:

Lyyg =LgLygs Lgg = dLgLy:,
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Frygr = FxFyr s Fyop = dFgFyo,

where d =z '(a+a ') —1.

FIGURE 5. An evaluation tree for the trefoil

& &g &&H

Z % Z 7
b A =

Z

\

Kl KII KI#KII

FIGURE 6

The proof is by straightforward induction and is omitted.

Figure 7 lists the values of L and the corresponding twist numbers for the
first few knots. (A table for L up to 9 crossings may be found in [19].) Note
that, in this figure, the highest degree term (for the variable z in L) has the
form k(a + a_')z"—1 where n is the number of crossings of the knot, and &
is a positive integer. This is not always the case as shown by the knot 8,, of
Figure 8 (whose leading term in L is (1 + a"z)zé) . However, 8, is also the
first nonalternating knot.
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+
3:: @ lw = 3|
+ L=(a+a_l)22+(1—f-a_z)zl+(~2a—a_l)z0
411 3 IU):OI
< ES> L=(@+a Y2 +@ +2+a %7’
AN t(—a—a Nz + (-’ -1-a7%2°
51: I’LU=5I
+ _ _
L=(a+a Hz*+(1+a %7
+ _ -
+ (—4a—3a '+a 3)22
"+

+(=2-a*+a Yz +Ba+2a7"H2°

w= -3
L= (a+a—l)z4+ (a2 +2+a %7’

+(=2a- a '+ a_3)z2

1

+(=2a"-2)z' +(@a+a ' —aH)Z°

w= -2

L=(@+a Yz +@ +2+a %z

3 4, 2

)22+ (-3a" —4+a”
4, 0

+(-3a-2a"+a"

)z

+(a+2a V' +@+1-a7Y)z

L=(a+a Y2 +(@ +3+ 247 %)z

+(=2a+2a )2 +(=3a"-6-2a"+a Yz
+(=a'=a '+ (2a2 +2+a5H2°

2

|lw = 0| 6, is achiral]

L=(a+a )2’ +@2d" +4+2a7%)z"
+(@+a+a ' +a )z’
+(=3a*-6-3a"%z7’

+ (—a3 —2a-2a"" - a_3)zl

2)20

+(@ +3+a”

FIGURE 7
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8.5
]w 0 |8,4is achirall
x (3a+3a Nz' +(6a° + 12+ 6a7%)2°
(4a +3a+3a +4a*3)z5
+@ -9a"-20-9a"+a %z
y +(~4a’ - 9a—9a~ l—4a HZ?
+(3a +6+3a D +@+a )z
+(@+3+a D)2
8!

A\ ~0

/ (1+a 2)26+(a+a“‘)25+( 6—6a2z*
'\/ —5a—5a~ )z +(10+10a ara
-2, .0

= +(5a+5a )z + (- a’—5-"5a )z

FIGURE 8. 8,y is the first nonalternating knot

=
%/ S % / Isthmus

N A
N

N ¢ N DA XK
DA SN
S
\\ A

FIGURE 9. Splicing preserves alternation

That is, 8,, admits no projection (diagram) that is alternating (in the sense
that the weave alternates in the pattern under-over-under-over —--- as one
travels along any strand).

Thistlethwaite [45] proved that the top term of L has the form
k(a + a_')z”—1 for reduced alternating projections. A projection is reduced
if it has no isthmus as in Figure 9. From this follows the theorem.
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w=+10 w=+8

FiGURE 10. The Perko pair. Ambient isotopic, reduced
projections with different writhe

Theorem 2.9. The writhe (twist number) w(K) is an ambient isotopy invari-
ant for reduced alternating projections K. Hence any reduced alternating link of
nonzero writhe is chiral.

Proof. Let K be reduced and alternating. Then, by [45], we have

1\ _n

Ly=k(a+a ')z '+ g(a, 2)

where g has z-degree less than n — 1, and k > 0. Hence
F, = a_w(K)LK =k(a' " 4 g7 T EN L g7 W, 2.

This shows that 1—w(K) is an ambient isotopy invariant of K, since F, isan
ambient isotopy invariant. Therefore, w(K) is an invariant of ambient isotopy
for K reduced and alternating.

Since w(K!) = —w(K) when K! is the mirror image of K (Definition 2.2),
the second part of the theorem follows from the invariance of w(K). This
completes the proof.

The invariance of the writhe was first conjectured by Tait, Little, and Kirk-
man [43, 33, 28] in their original compilations of the knot tables. These pio-
neers thought, however, that the writhe was an ambient isotopy invariant for
all reduced projections. Their intuition was on target for alternating diagrams.

It has been known for some time that there are reduced nonalternating pro-
jections of the same knot, so that the projections differ in writhe. Figure 10
illustrates the “Perko pair”, two ten crossing knots of writhe 10 and 8 respec-
tively, that are ambient isotopic.

The key to the induction in Thistlethwaite’s theorem is that:

1. At least one of the crossing elimination diagrams obtained from a reduced
alternating diagram is itself a reduced diagram.

2. Each crossing elimination from an alternating link diagram yields an al-
ternating diagram.
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These facts can be understood from the splicing diagram of Figure 9. One
then uses 1 and 2 to show, inductively, that the top term of L, , for a reduced
alternating diagram, inherits the form T =k(a+a~')z""".

To return to chirality, there are many achiral alternating knots and links of
zero writhe. I conjectured [22] that a reduced alternating achiral projection
has isomorphic graph and dual graph. The graph of a projection is the graph
associated with the shaded regions in a checkerboard coloring of the diagram.
Figure 11 illustrates this phenomenon for the case of the achiral knot 6,. In
this figure, the graph and dual graph are G and G", respectively. The truth of
this conjecture would have settled completely the matter of chirality for reduced
alternating knots up to the problem: determine when a plane graph is isomorphic
with its dual graph (the dual graph is obtained by making regions into vertices,
and creating edges where regions share an edge of the original).

") T
( ¥

I,' ’r’ )

d-//’ *

Q6 £6

3

FIGURE 11

K. Murasugi has observed to the author that this conjecture is false. It seems
that the graph and dual graph, while not in general isomorphic, are related by
flyping moves. I therefore now conjecture that (under the same hypotheses) the
cycle matroids of the graph and dual graph are isomorphic.

Finally, the knot projection shown in Figure 12 is reduced alternating and of
zero writhe. However its L-polynomial shows that it is chiral. This is the first
instance of chirality detected by F and not by the homfly polynomial P [10].
So far, F detects chirality whenver the homfly polynomial detects chirality. F
does better in many cases.

As expected, F does not always detect chirality. There is a small literature
of calculations and examples. For example, Kanenobu and Sakuma point out
[16] that the pair of knots K and K’ of Figure 13 share the same polynomial
(Fy = Fy/) while K is achiral but K' is chiral. It is easy to see that F =
F, because K' is a mutant of K (for mutants see e.g., [29]) and the same
arguments for invariance under mutation that apply to the homfly and Conway
polynomials also apply to F'.

The polynomial U, . Finally, I mention the normalized version of L, for un-
oriented knots and links. Given an unoriented link K define the self-writhe
s(K) to be the sum of the crossing signs of self-crossings of components of K
for any orientation of K . Itis easy to see that s(K) is well defined, independent
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K =10,

w(K)=0

First knot where chirality is detected by F , but not by P, (the Homfly poly-
nomial).

Fo=a""L,=L, (wK)=0)

Ly=(@+a ")z +(2d +5+3a7%)z

8

+(a +a '+ 3077z

+(2d* - 5a° —20— 11a > +2a"%z°

+(a - 3 —Sa—1la”' —9a > +a )2
+(=5a* +94° +37+ 182> — 504~ *z"
+(=3d° —d’+12a+21a”" +8a = 3a7)z
+ (2" - 11a®—27-13a " + a_4)z2

+(2a - Ta- 9~ =32 +a)z'
0

3

+(4a° +9+4a %)z
(Ky= — A +24"° — 447 164° - 74" +9

R Y N R
FIGURE 12

of orientation, and that it is an invariant of regular isotopy. The polynomial
Uy is defined by the formula Uy = a*or « and is an ambient isotopy invari-
ant of unoriented links. U, and Fy differ by a power of a involving linking
numbers of the components of K . I leave the exact relationship as an exercise

for the reader. I am indebted to Cameron Gordon for pointing out to me this
use of the self-writhe.

III. THE JONES POLYNOMIAL

In this section we show that the original Jones V-polynomial [13] is a special
case of two-variable polynomial F .
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acniral chiral

Fx = Fyr
FIGURE 13

Recall that the V-polynomial is determined by the following properties:

L. ror an oriented link K, V,.(¢) € Z[¢, t_l] is an ambient isotopy invariant
of XK.

2. T =1.

3. 17 'Wg — thha = (VI- 1V V=,

The V-polynomial, as originally defined by Jones, involves the trace of a
representation of the Artin braid group to a von Neumann algebra. The three
properties shown above are a consequence of this definition, and they can be
used as a starting point both for defining and computing the polynomial. In
[20] I show how to give an alternative construction of the V'-polynomial, in the
spirit of direct recursion and regular isotopy. It is this “bracket” model that we
shall use, to show that V}. is a special case of F .

Before going into the details, it must be remarked that the V' -polynomial was
the first polynomial invariant of knots and links capable of detecting chirality.

The bracket polynomial [20], denoted (K), is defined for unoriented knots
and links K as a regular isotopy invariant. The defining relations are:

) <,\’> =A<:>+B<D c>.
(<) =5(=)+4(9).

(OUK) =d(K), (0)=1

These two statements make (K) an element of the ring Z[4, B, d] (com-
muting independent variables 4, B and d). With no restriction on 4, B and
d the polynomial (K) is well defined on link-diagrams. The recursive defini-
tion can be reexpressed as a direct summation over states S of the diagram K .
A state S is a diagram obtained from K by eliminating each crossing K by a
splice of type A (=) or a splice of type B (=<=>(). Thus S consists of a
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number (|S|) of disjoint simple closed curves in the plane. Let i,(S) denote
the number of A-splices used to obtain S, and i4(S) the number of B-splices
to obtain S. Then, as in [20], we have the formula

<K> — ZAi"(S)BiB(S)dlsl—l
S

where the sum is taken over all 2" states of the diagram K (with n crossings).
In this form (K) is not invariant under Reidemeister moves, however the
following formula [20] shows what is needed to create a regular isotopy invari-

ant:
<Di_ > = AB<D C_> +(ABd+ A% + B’)<X >

By setting B = A~' and d = A — 47, (K) becomes an invariant of
the Reidemeister II move. Another observation [20] then shows that (K) 1is
also invariant under the move of type III. Thus (K) is an invariant of regular
isotopy.

Along with this, it is easy to calculate that () = (—A3)(f*) and ¢g) =
(—A_3)(r~). Thus the associated invariant of ambient isotopy for (K) (via
Lemma 2.1) is the Laurent polynomial defined by the formula

fio(d) = (-4 ®K)

where w(K) is the writhe of K and (K) is defined for oriented links by
forgetting the orientation.

With this background, it is easy to delineate the relationship between the
Jones V-polynomial and the polynomial F .

Proposition 3.1. The Jones polynomial is (up to a change of variable) the ambient
isotopy invariant associated with the bracket polynomial. In particular, V,(t) =

fK(t_1/4) where f, = (—=A%)""®NK) is defined as above.

See [20 or 22] for a proof of Proposition 3.1. Here is the idea: Given that

(5Q) =4(=)+2(0)
<><> B(;(> + A<3 C>.

Multiply the first equation by B~ ', the second by A~", subtract and obtain

(+)

B"<,\/> - A"<X> =(A/B - B/A)<;<>.

Write the corresponding equation for f, by multiplying by the appropriate
writhe terms and observe that the form of identity 3 for the Jones polynomial
emerges after the substitution 4 = A (with B = A_') .
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Proposition 3.2. (K) is a special case of Ly and f, is a special case of F .
In particular, for Ly (a, z) and F,(a, z) we have

(K)(A) = Lp(—A>, A+ 4™

fi(A) = F(-4>, A+ 47"

)
).

Hence V(1) = FK(—t_:’/4 W +tl/4) , giving the Jones polynomial as a special
case of the F-polynomial.

Proof. Adding the equations () for the bracket, we obtain

(5<)+ (<) =wrn((=)+ )

This equation, plus the fact that (for B = A~ ,d= —AZ—A_Z) (K) multiplies
by (—A3) under a positive curl, shows that (K) = LK(—A3 , A+A_') . The rest
of the proposition follows at once from the remarks preceding it.

Remark. In [31] Lickorish has given a different proof that the Jones polynomial
is a special case of the polynomial F K-

In fact, the construction of the bracket polynomial is intimately related to
the original construction of the Jones polynomial via von Neumann algebras,
and also to the Potts model in statistical physics. We shall not treat the Potts
model here. See [23]. As for the relation with braids and algebras, this will
be the subject of the remainder of this section, and of the next section of the
paper.

If b is a braid, let (b) denote the value of the bracket on the corresponding
closed braid b obtained by identifying input strands with output strands as’
shown in Figure 14.

X
K ;
A

FIGURE 14

|

(b)

[=%

ef

Then (b) = (b) and we can write the latter as a sum over the states of the
closed braid diagram. These states are obtained, as described at the beginning
of this section, by splicing out crossings from the diagram, b(E) . As illustrated
in Figure 15, one form of splice (vertical) will replace a braid generator by an
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identity braid, while the other (horizontal) will replace a braid generator by a
“hook”. The hook is characterized by a connection between two top adjacent
input stands, and two bottom adjacent output strands, as in the form X .

X1 101, eI
av

T o
‘/\H A, TAL- S DU | PR D2
0"

n-t

6 enevaiggg Sor Bn

o I e 0 R [
h h -
Qenerators For Dn

U e ”U UU':. U
N N I Hﬂ
e L, ST

= DCDC

FIGURE 15. Diagram monoid relations

These hooks have an algebraic structure if multiplied like braids. Figure 15
shows the formal results of such multiplication. Each hook is an n-strand planar
tangle with two paired arcs (shown as nearly touching at their corresponding
maximal and minima). The remaining arcs (not at input/outputs i or i+1 for
the hook #,) proceed downward from top to bottom of the tangle, connecting
the jth input with the jth output (j # i, i+ 1) without intersecting one
another.

In this discussion all tangles will be considered up to regular isotopy relative
to the top and bottom of the tangle.

With this terminology we see that the A-split of o, is /4, and the B-split of

o, is 1. Conversely, the B-split of al._l is 1 while the A4-split of o, Vis & .

1§
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FIGURE 16

We have
(@)= (-1 X ey

= AN X B VI ey,
(0:) = A{os) + B(1),
and similarly,

(07') = A(1) + B(h,).

Note that the value of the bracket on the identity braid is d"~' where n is the
number of braid strands. For example,

(M) =(m)=( ‘ )= d.

The states of b are therefore in one-to-one correspondence with certain prod-
ucts of hooks in this diagram algebra. Since simple closed curves can appear
in the braid states (for example on squaring h; as shown in Figure 15) before
closure (the closure of b is ), it is natural to allow one more element & cor-
responding to such a curve. All such curves can be moved out of the location
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of the tangle via regular isotopy as in

= 6h.
A N

Thus we collect them and write §° for s curves, and H = 6°H' where H' is
a loop-free tangle (for a given product of hooks H).

A very similar structure was invented by R. Brauer in a 1937 paper [7] on
representations of groups.

Definition 3.3. The (diagrammatic) Braid Monoid BM, is the monoid formed
by products of the generators of the Artin n-strand braid group, the hooks for
n-strands, and the simple closed curve d—under standard tangle multiplication.
Two elements of the monoid are equivalent if they are regularly isotopic relative
to the endpoints of the tangle.

A complete set of relations for the braid monoid will be determined in the
next section.

In the remainder of the paper we shall refer to the submonoid DM, C BM,
that is generated by the hooks and the simple closed curve d as the diagram
monoid. As remarked above, members of the diagram monoid correspond to
states of elements of the braid group. Thus the bracket is computed as a sum
of evaluations of elements of the diagram monoid.

Definition 3.4. Given a commutative ring % and a monoid .Z , let Z4# de-
note the free additive algebra over % with multiplication generated by .Z .
That is, an element of %4 is a formal linear combination r m, + --- +
r,m, with r, € % and m; € .# . Multiplication follows the distributive law
(a(b +c)=ab+ac) and (r,m,)(r;m;) = (r;r;)(m;m;) where the product r.r,
is in the ring % , and the product m,m ; is in the monoid .Z .

Definition 3.5. Let &% =Z[A4, A_l] , the ring of Laurent polynomials in 4 and
A" Let SD, denote the quotient of the algebra RDM, by the equivalence
relation generated by setting 0 = A -4 (6 is the loop element in DM,).
Thus for 4, in SD, we have hl.2 = —(A2 + A—z)h,.. I will continue to write
elements s, of SD, without change of notation from DM, . The algebra SD,
is called the (n-strand) diagram algebra.

Proposition 3.6. Define a mapping p: B, — SD, from the n-strand Artin braid
group to the n-strand diagram algebra by defining it on generators of the braid
group by the formulas

pla)=Ah+A4"",  pla;)=A""h+A.

Then this definition extends uniquely to a representation of the braid group to
the diagram algebra.
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Proof. It will suffice to show that

(1) p(a,)p(6, ') = 1€ SD, and that

(2) p(a,‘)p(apr] )p(a,‘) = p(J[H )p(ai)p(am) and

(3) p(o)p(0,) = p(@))p(a) for |i=j| > 1
since these equations are the image under p of the relations in B, [3].

We shall check these facts by noting that (1) and (3) are easy to verify directly
and that (2) follows from the relation 4, h; = h; in the diagram algebra (see
Figure 15).

(1) po)p(6] )= (Ah + A YA h + A)=h + 1+ (A + 47

= (LA 1+ A+ AR =1,

(2) pla)p(o,, )p(a,) = (Ah,+ A~ )(Ah,, + A" )(ah +47")

)h,

1

= (bbb + A (AR + A7)

= Ahh,, b+ AR + Ahy b+ A7 R+ AR,
+A A A7

= Ah + A(=A" =AYb, + A(hy, b+ hhy, )
+24 o+ a7+ 47

= Alh b+ B )+ A (B by )+ A7

Since this last expression is invariant under the interchange of i and i+ 1, we
conclude that p(o,)p(o,,,)p(0;) = p(o,,,)p(0;)p(0,,,) -

(3) Since h[hj = hjh,. for |i—j| > 1 (Figure 15), we conclude that p(g,)p(a;)
=p(0'j)p(0’i) for Ii - Jl >1.

This completes the proof of Proposition 3.6.

Remark. Since the representation p:B, — SD, corresponds directly to the
bracket expansion, (<) = A(X) + A_’()\) , it is not surprising that the alge-
braic details work out. From our point of view, we had already verified that p
would represent the braid group when we proved that (K) is a regular isotopy
invariant.

On the other hand, this diagram algebra, SD, , is a formal version of the von
Neumann algebra used by Jones [13] to define the V-polynomial. To see the
correspondence more directly, let 7 = 1/ where hf = 0h,;. Then let e, = th,
so that the 4, relations become

2

e; =e,
€€ =7€,
ee; =ee;, [i—jl>1.

These are the relations for the von Neumann algebra 4, that gives rise to the
V-polynomial. The original definition of the V-polynomial involves a (general-
ized) trace Tr:A, — Z[A4, A_l] (with A4 replaced by Y 4) . In our terms, this
trace appears as a diagrammatic count: Tr(H) = (H) where H is a product of
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elements 4, (and Tr(x +y) = Tr(x)+Tr(y) in SD,). Thus the trace is equal
to d—raised to one less than the number of circuits in the closure of the tangle
corresponding to H .

We then have that (by linear extension) Tr:SD, — Z[A4, A’l] and that for
any braid b, (b) = Tr(p(b)). This gives a diagrammatic interpretation of the
Jones trace, and shows how the relation with von Neumann algebras arises out
of the ground of the knot theory.

Remark on the writhe. It is worth remarking here that the invariance of the
writhe (Theorem 2.9) for reduced alternating links can also be seen using only
the bracket. It follows from [20] that the highest and lowest degrees in f, for
K reduced and alternating are given by the formulas

maxdeg[K] = -3w(K)+ V +2(W - 1),
mindeg[K] = -3w(K) -V -2(B-1),
where w(K) is the writhe of K, V' is the number of crossings of K, W is

the number of the white regions and B is the number of black regions in a
checkerboard shading of K. All crossings are shaded as indicated below:

Thus we have
M(K) = maxdeg[K] + mindeg[K] = -6w(K) + 2(W — B)

is an ambient isotopy invariant of K.
Murasugi observes [39] that the signature of a reduced alternating knot is
given by the formula

Sign(K) = (1/2)(W - B) - (1/2)(w(K))

for this same shading. Putting these two formulas together he deduces that
w(K) and (W — B) are individually invariants of ambient isotopy.

Conjecture. The full Tait conjecture [33, 43] states that ambient isotopic re-
duced alternating projections are related by a sequence of flypes (180 degree
rotations of two-strand tangles). If the Tait conjecture is true then the unre-
stricted bracket [K] of a reduced alternating knot would be an ambient isotopy
invariant. The unrestricted bracket is the polynomial in three variables 4, B, d
computed by the bracket recursion (without any further relations on these vari-
ables). The unrestricted bracket is a flyping invariant. I conjecture that it is an
ambient isotopy invariant for reduced alternating diagrams.

IV. ALGEBRAS AND THE BRAID MONOID

The results of §3 extend to the context of an algebra associated to the entire
braid monoid. The L and F polynomials then give rise to mappings defined
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on this algebra (compare [4]). It is the purpose of this section to describe these
mappings, and to give generators and relations for the corresponding algebras.

Let us begin by extending the context of the braid monoid BM, . Recall
from Definition 3.3 that the braid monoid on n strands, BM, , is the set of
regular isotopy classes of tangles generated by products of braid generators (g;),
hooks (4;) and simple closed curves (J). The tangles are diagrammatic tangles
in that they are given by planar diagrams with » input points and # output
points. The tangles occur in the rectangular space between these rows of points,
and regular isotopies are taken relative to the endpoints; these regular isotopies
are confined within the rectangle.

Definition 4.1. Let 7 denote all diagrammatic tangles with n inputs and n
outputs (as described above). Each strand in an element 7 € Z proceeds
from one endpoint (input or output) to another, crossing over and under other
strands in the process. All tangles are taken up to regular isotopy (relative to
the endpoints).

1
R -
W

[l

As with the braid monoid, I shall also allow the possibility that a tangle
includes arbitrary many loop-components. With this caveat, the regular isotopy
classes of tangles I, becomes a monoid under standard tangle multiplication.
We have the proper inclusions 4, > BM, D B, where BM, is the braid
monoid generated by the braid group elements together with the hooks described
in §3. B, denotes the n-strand Artin braid group. That these inclusions are
proper is illustrated by the example in Figure 17. This example shows that the
inclusion would be proper even if we eliminated the possibility of knotted tangle
strands. Figure 17 shows an element T € 7, that is not in the braid monoid.

FIGURE 17
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One way to see that 7 is not regularly isotopic to a braid monoid element is
to note that in 7° a loop appears that is linked with one of the strands. This
example also underscores the reason for allowing loops in the tangles.

Just as we can define the value of the L polynomial on a braid b via the

definition L, =Ly where b is the closure of b we can define

-1 -1
LI, —-X=12Za,a ,z,z ]

by L, = L5, where T is the standard closure of the tangle, obtained by

joining top strands to bottom strands through a trivial n-strand tangle. This

mapping respects monoid relations; thus (for example) Lwhh,  h;t = Lwh;t

where w, 1 €7, and h; and h,  are the standard hook tangles from §3. The

additive polynomial relation
L;\, +L7\ = Z(Lx +L)( )
can be regarded in this context as the relation

Lwo,t + Lwai_l T =z(Lwh,T + LwrT)

for elements of 7.
Formally, one would like to rewrite an equation like the one above as

L(wo,t + wai‘lr - z(wht+wt)) =0.

In order to do this, we need a domain where tangle elements can be combined
additively. This is provided by the definition below.

Definition 4.2. Let 7, denote the tangle monoid and let /.7, denote the free
algebra over 7, with coefficients in % = Z[a, a , Z, z_'], factored by the
following relations:

(i) If d denotes the unknotted, unlinked loop element of 7 , then d is set
equal to z_l(a +a H-leR.
o, + al._l =z(h,+1),
oh, = ho, = ah,,
(i) o 'hy=ho ' =a"'h,

”
—1
hio s hy=a h;,

hiaz‘;llhi = aHhi’
where o, h, are braid and hook generators in 7, .

(Compare Figure 18.) Let 2#, denote the restriction of .%/.7, to tangles
in the braid monoid &4, . Call %#, the braid monoid algebra. Because the
relations in Definition 4.2 correspond to identities for the polynomial L, we
have a well-defined mapping L:%/ 9, — Z[a, a’', z, z“’] and its restriction

L, ~Za,a ', z,z'].
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S
oo e oih;i = Lwo;h;t = aLwh;T

U h,-a,-+1h,~ = Lh,‘(f,'+1h,~ = a“Lh.-
L X .t o

N

FiGURE 18

The map L is defined on individual tangle elements by evaluating L on
the closure of the tangle. It is then extended additively to the entire algebra
oI, (AM) .

In order to have a purely algebraic description of this mapping, one would
like a purely algebraic version (generators and relations) for the tangle algebra
& 7, . This is an open problem. However, the rest of this section will give.
the relations for the braid monoid algebra 2#, . We shall see that it is iden-
tical to the algebra defined by Birman and Wenzel [4]. Thus our result gives a
diagram/geometric context for their algebra.

In order to explicate the structure of .%#, , we first concentrate on relations
for the braid monoid %/, , and within it the diagram monoid D, .

Recall that the diagram monoid is an algebra of diagrams taken up to topolog-
ical equivalence in the plane (relative to an upper and lower row of n points).
Each diagram is represented as a product of elementary diagrams that we have
called “hooks” in §3. Each diagram appears as a collection of nonintersecting
strands proceeding from points of a given row and ending either on that row, or
on the other row. No two strands intersect or cross one another in the diagram
monoid. In order for a given diagram of this-type to be seen as an element
of the diagram monoid it must be configured with paired maxima and minima
that display it as a product of hooks.

The closed loop in the algebra is given to commute with all elements. Con-
sequently, we shall assume that any given diagram is loop-free unless otherwise
indicated.

There is another more simply described monoid associated to the diagram
monoid. I call this the connection monoid, C, . Here we again consider dia-
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grams consisting of noninteresecting strands emanating from, and returning to
the top and bottom rows, always drawn between these rows. No pairing of max-
ima and minima is required here. Thus an element in the connection monoid
may, by pairing maxima and minima in different ways, correspond to more than
one element of D, .

Two elements of the connection monoid C, are said to be equivalent if there
is a topological deformation of the strands relative to the upper and lower rows
that carries one diagram into the other. (Just as in the diagram monoid, the
strands are to remain disjoint throughout the deformation.) For the connection
monoid, this implies that two expressions are equivalent if and only if they have
the same configuration of row connections. For example, in the diagram below,
the data [1'2'][3'4'][12][34] is sufficient to determine it as an element of C, 4
Here [ab] means that the endpoints a and b are connected by a strand.

4 zl 31 4-,
U
N O
I 2 3 4

Remark. Let P, denote the set of parenthesis structures on a row of 2n points.
By the term parenthesis structure I mean a partitioning of the set of points into
pairs so that these pairings can be realized by nonintersecting strands in the
plane above the line of products. Equivalently, if a left parenthesis [(] is on the
left point of a pair and a right parenthesis [)] is placed on the right member of
each pair, then the resulting nested parenthesis structure is a legal parenthesiz-
ing (in the usual sense of correct typography) involving 2n parentheses. For
example, the elements of P, are shown below.

(7 (AN (AN A AR Aan

Fact. The elements of C, are in one-to-one correspondence with the elements
of P, . The proof is indicated in the diagram:

AN SN

It is easy to verify that P,, has cardinality the Catalan number
1 2n\ 1 (2n)!
n+1\n ) (n+1)(n)?’
Consequently the number of loop-free connections in C, has the same value.
To return to the diagram monoid, let ﬁn denote the loop-free elements of

1T
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D,, and C‘n denote the loop-free elements of C,. Define a map e:D, — @n
by forgetting the paired maxima/minima structure of elements of Dn .

Theorem 4.3. The mapping e defined above is a one-to-one correspondence. In
fact, by using this correspondence it follows that two elements h and h' of the
Jull diagram monoid D, are equivalent in D, if and only if they are related (as
words in {h;}) by a finite sequence of applications of the relations

h=dh,=hd,
hlhl:i:lht hi 4
hl.h hjhl, ifli—jl>1.
Proof. Any product of the generators 4, h,, ..., h,_ , can be put into a nor-

mal form by using the relations (*). In the normal form the product takes the
form

h(1)h(2)- - h(m) = h

where £ is a word without any consecutive appearances of a given hook (since
h:h, = dh; and the d commutes with everybody). Furthermore, / is a product
of segments of the form 4, h h --~h = h(k) where the indices a, ..., a,

form a descending sequence of 1ntegers Furthermore, the list of left-most in-
dices of adjacent sequences is ascending as one scans from left to right. See
Figure 16 for an example. (See [15] for a proof of this statement.) By following
the pattern indicated in Figure 16, we associate to each element ¢ of C, an
element 4 of ﬁn that is in normal form (and e(#) = c). Conversely, any
normal form occurs in this way. .

Thus we have shown that if # and 4’ are loop-free words in the generators
of the diagram algebra with e(h) = e(h'), then 4 and 4’ have identical nor-
mal forms. Hence / can be obtained from /4’ by repeated application of the
relations. Since any element can, via the relations, be written as a power of the
loop times a loop-free word, this completes the proof of the theorem.

Now we turn to the structure of the full braid monoid. At this point it is
worth remembering that regular isotopy is generated by Reidemeister moves of
types II and III (see Figure 1). In the theory of braids the moves of type II and
type III are of special importance because with braid strands being unknotted
and always proceding downward from top row to bottom row, the type I move is
never needed. In other words, braid equivalence in the braid group B, is regular
isotopy relative to the top and bottom rows for that braid. A local type I move is
simply not in the braid form. We should remark, however, that a global (on the
2-sphere) type I move can change a closed braid from B, to B, , orto B, _,.
This is called a Markov move. In [3] one finds a proof of the Markov theorem
stating that two knots and links represented as braids are ambient isotopic if and
only if the corresponding closed braids can be transformed one to another by a
combination of braid equivalence, conjugation in the braid group, and Markov
moves. Thus in our terminology the ambient isotopy factors into combinations
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of conjugations, special regular isotopies (the braid moves) and certain type I
moves on the two-sphere (the Markov moves).

The algebraic relations in the braid group correspond directly to the type II
and type III moves. Type II moves are of the form

I _{_g”!
g0, =1=0, o
while type III moves correspond to the braiding relations

0,0;110;=0;110,0;,-

The commutativity relations
0,0, =00, forli—j>1

are topological moves that do not change the configuration of crossings. They
are isotopies of the underlying graphical structure of the braid projection.
The braid group is generated by

-1

—1 -1 .
¢,,0, ,0,,0, ,...,0, 0, , (B, =n-strand braid group)

with exactly the relations described above.

In the braid monoid almost the same situation ensues. Now, however, along
with the “vertical” type II move corresponding to the product of a braid genera-
tor and its inverse there is also the possibility of a “slantwise” type II move at a
hook. Here one of a pair of maxima/minima separate as a single type II move
occurs (see Figure 19). But, as Figure 19 shows, the reconfiguration move along
with the vertical type II is sufficient to generate the slantwise type II move.

A word about the reconfiguration move (0,4, =g, 1hlh2 and variants): See
Figure 19. This move overlies a topological equivalence of the graph (planar
graph) that is obtained by replacing the crossing at a braid generator by a 4-
valent vertex. Thus, we have an underlying graphical reconfiguration as shown

below.
M &

This can be symbolized as h.c,., = h;h,, c;. There are obvious variants such
as

FJ :
n ~o
N
chi . =cihh, . Here c; stands for the graphical vertex replacement of the

braid generator.
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Along with the graphical reconfiguration there is also the standard hook re-

lation such as
U )
N
=h hh

i+1 i+17%0 l+l)'

The point about the reconfiguration move and the hook relation is that these
are both topological equivalences of the diagram. They are not Reidemeister
moves, and they do not change the underlying graphical structure of the diagram.
One further graphical move is commutativity of elements that are far apart
(c[cj = if li—Jj]l>1, hihj =hjh,. if [i—j|>1).

(h

/ / U

9

AN

. slantwise type II move

\/J \y (0102hy = hyoy07)

reconfiguration move
(01h2 = 05 hyhs)

. .'\.j— UN U'% U
BB B

FIGURE 19. Accomplishing slantwise type II by recon-

figuration and vertical (0,0, b= 1) type IL. a,(0,h,) =
-1 —_

a,(a, "hyh) = hyh, = (hyh,0, 1)02 = hy0,0,

D
R
D

Finally, we come to the type III move in the braid monoid. Figure 20 shows
that the type III move can be accomplished using standard braiding (0.0, ,0, =

I00+170
0,,,0,0,.,) and reconfiguration.

Theorem 4.4. Two diagrams in the braid monoid MB, are regularly isotopic
if and only if one can be obtained from the other by a combination of standard
braiding relations, hook relations and reconfigurations.

Proof. Any regular isotopy of diagrams can (by definition) be factored into a
sequence of type II moves and type III moves. Up to a topological deformation
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V) 5 U
/\
= D
{ \ ./IL SN

hyo105' 0, result of topological type III move. (Not yet

A%
= [N

configured in the Braid Monoid)

A

h;alﬂ;, 23 = hwm;(ﬂ, loglas) = hyoy(0305tost) = hyo3hio5to3!
1 1
vemcal type Il braiding type III reconfiguration and
vertical type II

FiGURE 20. D" is a braid monoid element regularly
isotopic to D'. Accomplishing a type III move via
braiding and reconfiguration.

of the diagram, any type II move is either “vertical” and hence of the form
0,0, ' = 1 or “slantwise” as shown in Figure 19. Figure 19 shows that the
slantwise type II can be accomplished via braiding and reconfiguration. Simi-
larly, Figure 20 shows that a nonbraiding type III move can be accomplished
by braiding and reconfiguration. Thus if d and d’ are diagrams in BM, with
d ~ d', then each type II or type III move in this regular isotopy can be replaced
by a move or sequence of moves, resulting in an algebraic equivalence (i.e., by
braiding, hooks and reconfigurations) d = d” where d” is also in BM, and
d" and d’ are topologically equivalent diagrams.

The next stage in the process described by this proof is to show that d" and
d' are equivalent via commuting relations, hook relations and reconfigurations.
In order to do this I indicate two more stages in the procedure: Note that d’
and d” have the same number of crossings, and that in d” these crossings
occur as appearances of g, or ai_l for various choices of i in the word for
d" . I now apply two lemmas, stated and proved below. By Lemma A, a series
of reconfiguration moves will transform 4" into d" where d" has, up to
commutation, the same pattern of o,’s as d . They, by Lemma B, d" i
transformed to d' by commutations and hook relations.

Lemma A. Let d, and d, be two elements of the braid monoid BM, , and
suppose that d, and d, are graphically equivalent diagrams. Let X(d) denote

the word in {o,,...,0 al—l e an__'l} obtained by setting each h; in d

n—12
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equal to 1. Then there exists a series of reconfiguration moves taking d, to d'
so that Z(a’;) and X(d,) differ only by commutation relations (o, 0, =00 for
li—jl>1).

Proof. See Figure 21 for an example of this lemma. The proof goes by induction
on the length of the word X(d). Choose the right-most occurrence of o, or
ai_l in Z(d). Either this index must be changed or it will be left alone in the
transition to d{ . In order to decide this, compare the tangle-graphs underlying
d, and d,. Since we are given that the graphs are equivalent, it is possible
to label the crossings in one graph that correspond to crossings in the other
graph. Thus o, in d, corresponds via the graph-isomorphism to o; in d,
(their exponents may differ if i # j). If i # j then we desire a sequence of
reconfiguration moves that will shift this index. That these moves exist follows
from the equivalence of the graphs: Note the two strands that cross at ;.
Use reconfigurations with adjacent maxima and minima to raise or lower the
index i. These can be accomplished because, via the planar isotopy between
d, and d,, there is an isotopy moving one strand along the other that carries
the crossing to its desired position. This completes the proof of Lemma A.

Lemma B. Let d and d, be two elements of the braid monoid BM,, and
suppose that d, and d, are graphically equivalent diagrams. Let Z(d ) and
X(d,) be as in Lemma A Assume that X(d|) and X(d,) are identical words in
the braid generators. Then there exists a sequence of hook relations carrying d,
to d,.

Proof. Apply Theorem 4.3 to each full word in the #4,’s that is a subword of
d, . The equivalence of the graphs establishes a correspondence between the set -
of h.-subwords of d, and the h;-subwords of d,. The hypotheses of 4.3 apply,
and show that each pair of words are equivalent in the diagram monoid. This
completes the proof of Lemma B.

The proot of Theorem 4.4 is now complete.

Remark. Another good example for Theorem 4.4 is the presence of the regular
isotopy version of the Whitney trick in the braid monoid. This is shown in
Figure 22.

Remark. The connection monoid C, naturally embeds in the Brauer monoid
BR, of all possible connections between two rows of n points. This monoid
is denoted BR after R. Brauer [7] who studied it, and an algebra BR, as
coefficients in the context of representations of the orthogonal group. We have
an obvious map from the braid monoid to the Brauer monoid that is obtained
by taking only the connection structure of a given element of the braid monoid.
The Brauer monoid has a free commuting loop element, and it follows from our
discussion that the braid monoid modulo an appropriate equivalence relation
will give the Brauer monoid. The equivalence relation includes equivalence of
braid generators and their inverses, plus curl-eliminating relations such as

ch=hc=h, hd'h=h,
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U V)

dy = hohyosh,
dy = hohaarh,
dl da.
hohyosh, = hyhyo5 hshy = hyhyhyoyhsh, = hyo1hshy = hahzo1hy
FIGURE 21

Il

where ¢ is a braid generator in the same column as 4, and ¢ is shifted by
a column from 4. A corresponding result shows that the Brauer algebra is
isomorphic to a specialization of the braid monoid algebra AM, . Curiously,
the number of multiplicative generators of AM, and of the Brauer monoid is
the same. This follows from the exchange identity

c+e 'l =z(1+h).

This does not set braid generators and their inverses equal to one another, but
it does reexpress inverses in terms of the rest of the algebra.

The upshot of these considerations is that for computing L, using the alge-
bra AM, , it suffices to know explicitly a set of polynomial values in one-to-one
correspondence with the elements of the Brauer monoid. For BR, there are
(2n—1)(2n—3)---(3)(1) such elements. Thus for three-strand braids it suffices
to know the value of the L-polynomial for 15 particular braids, in order to get
any other by pure algebra! Clearly a computer program is called for here.

V. REGULAR ISOTOPY

We have been using the concept of regular isotopy as a formal trick: re-
stricting knot moves to the Reidemeister types II and III. In this section I will
discuss geometry behind this equivalence relation, and its relevance for the knot
polynomials.

Recall the notion of regular homotopy [47]. Two immersions of the circle
into the plane are said to be regularly homotopic if there is a time-parameter
(¢t) family of immersions of the circle that restricts to one map at 1 = 0 and



448 L. H. KAUFFMAN

v U V) \&
( / ,

) | (
N

>

N

hldl'_lo'zhz = hld'z(dé_ldl-lo'z)hz = hlag(ala{la;'l)hg = hlhzdl 0105 01

U U U
CJ” N
)

N

B hlhgd_ld—lhz = hlhza'_ldzhlhz = hyhohyhy = hyh,
2 1 2

C

Q

D

FIGURE 22. Whitney trick in the braid monoid

to the other at ¢ =1 (for ¢ varying in the interval from 0 to 1). It is required
that the family be differentiable 1n the variable ¢.

This means that the shadows of the Reidemeister II and III moves can be
seen as regular homotopies, but that the shadow of the type I move cannot be
a regular homotopy, since the contraction of the loop would violate differentia-
bility. For planar curves, one can discretize the notion of regular homotopy by
taking the shadows of the Reidemeister type II and type III moves as generators
for the equivalence relation.

Therefore any regular isotopy of link diagrams projects to a regular homotopy
of the underlying plane curves. This is the genesis of the choice of terminology.
It also leads to another invariant of regular isotopy: the Whitney degree of the
underlying plane curve(s).

We define the Whitney degree, d(U), for any oriented curve or curves U
in the plane with ordinary double point intersections (I call such a collection
of curves a link-shadow, or a universe) by splitting each crossing in an oriented
fashion, producing a collection C (the Seifert circuits) of disjoint oriented
curves in the plane. Let d assign plus 1 or minus 1 to each curve according to its
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counter-clockwise or clockwise orientation, respectively. Then let d(U) = d(C)
denote the sum of these plus or minus ones. The resulting integer, d(U), is an
invariant of regular homotopy for U. See [18] for a combinatorial derivation
of this fact.

The integer d(U) is identical in the case of differentiable plane curves, with
the degree defined by Whitney and Graustein. They define degree to be the
total turning of a unit tangent vector to the curve as the curve is traversed once
(and the sum of these total turns for each component of a multiple curve). The
fundamental result is that two oriented curves are regularly homotopic if and
only if they have the same degree.

Thus we may define for a given oriented link diagram L, the invariant
d(L) = d(U) where U is the planar shadow of L. Then d(L) is an in-
variant of regular isotopy. It will be referred to as the Whitney degree of the
oriented diagram L .

2 T A RS R

THE WHITNEY TRICK
FIGURE 23

Example. View Figure 23 for a regular isotopy version of the Whitney trick.
This figure also shows a situation of two curls on a string that cannot cancel up
to regular isotopy, due to the nonvanishing of the writhe. It is sometimes useful
to consider knots on a string (isotopy relative to the endpoints) rather than with
closed loops. Then we assign Whitney degree zero to the unknotted string, and
calculate it for other diagrams by the Seifert circuit description given above.
The decomposition into Seifert circuits yields a collection of closed curves and
one unknotted string. The following lemma is a direct generalization of the
Whitney-Graustein theorem.

Lemma 5.1. Let S| and S, be unknotted strings. Then S, is regularly isotopic
to S, (relative to end-points) if and only if S, and S, have the same Whitney
degree and the same writhe.

For a proof of this lemma see [19 or 46].

Example. The figure eight knot as shown in Figure 24 has Whitney degree —1 .
A standard way to turn the figure eight into its mirror image reverses the orien-
tation on the knot. Since this orientation reversal changes the Whitney degree
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to +1, we conclude that the figure eight knot is not regularly isotopic to its
orientation-reversed mirror image. The figure eight knot is regularly isotopic to
its orientation-preserved mirror image, as shown in Figure 24. In fact,

AR
> @“@WD

FIGURE 24. Regular isotopy of figure eight knot to its
mirror image

Theorem 5.2. If an oriented knot K of writhe zero (w(K) = 0) is oriented
equivalent (ambient isotopic) to its mirror image, then this equivalence can be
accomplished through regular isotopy.

Proof. K is ambient isotopic to its mirror image K! if and only if
K+S§ ~K!'+S,
where + denotes connected sum along the string, and S, and S, are unknotted

strings that catalogue the type I moves needed or performed during the isotopy.
Since writhe and Whitney degree are additive under connected sum, we have

w(K) +w(S,) = w(K!) +w(S,), hence
w(S,) = w(S,) (K has zero writhe).

Similarly, since d(K) =d(K!), we have d(S,) = d(S,) . Therefore, by Lemma
5.1, S| and S, are regularly isotopic. Thus, letting S denote S,, K + S ~

K'!+S. Since S is a string of curls, we may choose s* , a string of opposite
curls in the sense of the Whitney trick so that

S+S8'x L.
Then, adding S* to both sides,
K+S+S' ~Kl+S+58%,
hence K ~ K!. This completes the proof.

Framed links and twisted bands. Another context for regular homotopy arises
by interpreting our links as framed links. That is, we assume that each link
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component is endowed with a unit normal vector field. This is equivalent to
replacing the embedding of each component by an embedded band whose core
is the given component, and such that bands for different components do not
intersect. As Figure 25 illustrates, the Reidemeister moves of type II and type
IIT on the cores of bands extend to the bands themselves, while the type I
move does not extend. (Rather it corresponds to a full twist on the band.)
Consequently, regular isotopy corresponds to ambient isotopy of framed links or
to ambient isotopy of embedded bands. Note, however, that regular isotopy is
actually more restricted than the corresponding band-isotopy. Thus

~ &= —

as bands, relative to the endpoints, while there is no cancelling regular isotopy
for -6 relative to its endpoints. However, by the rules for the L-polynomial,
Lo6=aa"'L~ =L~ (since the Whitney degree does not play a role in
this evaluation). As a result we can interpret the L-polynomial as an ambient
isotopy invariant of links of bands embedded in three dimensional space. The
axioms are given below.

Axioms for L as a Band-Invariant

1.L% +L% =z(LZ +LD(Z ),
Z.LE‘ =lpory =4 e—yp L@ =1,

LF “lpog =l

Note that in this interpretation, the second variable (a) measures the twisting
of the bands. This measurement is distributed throughout the skein calculation.

The same remarks apply to the homfly polynomial. We can start by defining
a polynomial invariant of regular isotopy, call it H, , satisfying the axioms:

Axioms for H

1'H — H =zH ,
>J > “Hew

HY =aH,-’, H G =1, H—6$ =a"‘H’~)_
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Then define P, = a Oy r to obtain an invariant of ambient isotopy. The
polynomial P, is easily seen to be equivalent to the homfly polynomial. In
fact, P, satisfies the identity
a‘lPx‘\‘ - aP\/l, = zP:__:>.

This point of view also shows how the homfly polynomial is reiated to the Hecke
algebra obtained by adjoining the relations g, — ai_l = z to the free additive
algebra over the braid group. (See [13, 41].) The braiding relation o, — ai—l =z
is the direct analog of the polynomial relation H,3 — Hyy = zH= .

To summarize, we have indicated two motivations for regular isotopy, one
as a lifting of regular homotopy of plane curves, the other as a version of am-
bient isotopy of framed links. Because of the multiplicity of interpretations, it
has been convenient to isolate regular isotopy as a formal equivalence of link
diagrams.

=3

Ir.

'3C DE
% .

FIGURE 25. Ambient isotopy of twisted bands

V1. WELL-DEFINEDNESS AND INVARIANCE

This section defines the polynomial L inductively, and proves that it is an
invariant of regular isotopy.

For these purposes it is useful to establish notation for the switching and elim-
ination of crossings. Thus I shall write S;K for the link obtained by switching
K atthe ith crossing, and E,K, e,K respectively for the two modes of splicing
the ith crossing. See Figure 26.

We wish to give a definition of L, so that the identity

Ly+Lgy=2(Lgg+L,g)

is a consequence of this definition. The motivation for the definition we will
adopt is given by the following remarks. The definition (Definition 6.4) will
follow these remarks.
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X W =
N
KS,-K/E;\Z

FIGURE 26. L, + LS’K = Z(LE,K + Le,K)
Motivating the inductive definition. For a set of gossings labelled O, 1, 2,
3,...,n in the diagram K consider the result, K = §,S,_,---S,5,K, of
switching all these crossings. We then have the following list of equations (as-
suming the exchange identity for L):

Ly +Lgg=2(Lggx+L,g)

Lg g+ Lg sk = 2(Lg s+ Les,x)

Ly .sxtLlg=2ULgs .sktLleys, .5k

Definition 6.2. Define abbreviated switching and elimination operators 4, and
B, by the following formulas:

AK=ES,_ - SK, BK=¢S,_,-S,K.

Pi—1" iPi—1"

Successive addition and subtraction of the above equations, then shows that

n
(*) Ly =(-D)""Le+ 2 (=1)'[L, ¢ + Lyl

i=0
Thus, formula () shows how to compute L, in terms of L and the results
of L applied to smaller (fewer crossings) knots and links.

Since we can choose a switching sequence so that K is unknotted when K
is a knot, or K is a split link when K is a link, this formula gives an inductive
procedure for calculating the polynomial L. Note that in calculating with links
we also have the rule

(%%) Ly ok, =dLg Ly,

K UK,

whenever the diagram of K, overlies the diagram of K, . (I say that K, overlies
K, if every crossing of K, and K, has the overcrossing segment in K,.) Here
d=(a+ a_l)(z_l) — 1 as in §2. Note that this includes the case where the
diagrams are disjoint in the plane.

The key to creating an inductive definition is the use of the standard unknot
[2] associated with a given knot-diagram with directed base-point. Let K be
any knot diagram and U its planar shadow. Let p be an interior point of an
arc of U, together with a direction of travel along the prOJectlon U.Call p a
directed basepoint for U .
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The standard unknot is constructed as follows: Given U and a directed
basepoint p, draw a knot diagram K=K (U, p) by tracing along U in the
direction from p and over-crossing on the first pass through each crossing. This
produces an unknotted diagram as shown in Figure 27. I call K = K(U, p) the
standard unknot associated with U and the directed basepoint p .

D A

(SSyRSSS

K= K(W,p)
w

FIGURE 27

The standard unknot K=K (U, p) can be used to produce a specific un-
knotting sequence for the knot K : Traverse K from the basepoint p, and
mark each crossing that differs from the corresponding crossing in K . Label the
marked’ crossings in descending order from the basepoint, say by the integers
n,n-—1,...,1,0. Then K is obtained from K by switching these crossings,
and we have the formula: K = S8, 8,5,K.

This switching sequence is determined by the choice of directed basepoint
on K.

The value of L on standard unknots is given by the formula

w(K(U,
(***) Lk\(u’p):a (K(U,p))
where w denotes the writhe as defined in §2.

In order to make use of formula (xx) (LK]uK2 = dLK] LKz) it will also be
necessary to separate components by a switching sequence. Formula () then
applies with K a split link rather than an unknot.

We are now in possession of a method of recursive calculation using (%), (k%)
and (***) so that the calculations will eventually depend only on the values for
L at standard unknots K = K (U, p) as described above.

In order to formalize these procedures to give an inductive definition, it is

useful to adopt a notation for the right-hand side of formula (x).

Definition 6.3. Let K be any link and let 4 = (4,, 4 > Ay, Ay) be any
ordered sequence of labels for crossings of K. Let A? and Bf denote the
operators given by the formulas

A A
A{=ES,S, S8, , B =¢S5, S5,

1 0

n—1s "
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Let K(1) =S, S, ---S, K. Let

>3 =D (=D'(L g + L)
K i=0
and e

where |A| = n for A as shown above. Note that we intend that Q, (1) be equal
to L . In the inductive definitions, a modification of Q (1) will be used for
logical purposes.

The inductive definition of L. Suppose that K = K, UK, U--- UK, is a link
of n components. Let K — K, denote the link obtained by removing the ith
component from K . Let K, (alone) stand for the knot diagram resulting from
K by deleting all the components K, K,, ..., K,_,, K LK .

i+12 n

Definition 6.4. The following is an inductive definition of the L-polynomial.
Each stage in the definition depends upon the choice of basepoint on the dia-
gram. (It will be shown that the polynomial is independent of these choices.)

(a) If K=K (U, p) is a standard unknot (see the discussion above), then

Ly = a“®) where w(K) is the writhe of K. (Note that w(K) is independent
of the orientation assigned to this diagram by the directed basepoint p.)

(b) If K, is a knot diagram, and K, overlies a link diagram K,, then
LKIUK2 = a’LKI LK2 where d = (a+a”~")(z”") = 1. (See the previous discussion
for the definition of the term overlies.)

(¢)If K =K,UK,U---UK, is alink diagram with components K, , K, ..
K, then

(i) If any component overlies all the others, apply part (b).

(ii) If no component K overlies all the others, let p,, p,, ..., p, be directed
baseponts on K,, ..., K,. Let p,, ..., P, be the same basepoints endowed
with the opposite direction. Let A(p;) be the sequence of undercrossings (order
determined by directions of p;) of K; with K—K; so that I?(l(pi)) = K,U(K—
K,) with K, over-crossing the rest of these components. Since p; determines
Ap;), Y g(A(p;)) depends only on the choice of directed basepoint p,. Now
define L, in this case by the formula

o

JAp)]
1 - Ap)l+1 .
Ly=5-| 2 D" L Ly, +2 3 (M)
‘ K

i=1
A, -
I+ —
+ 3 (=" dLy Lix_x,+2 Y (2(F)] -
j K

i=1

(d) If K is a knot diagram, let p be a directed basepoint for K, p the
same basepont with reversed direction. Let A(p) be the switching sequence
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determined by p, and A(p) the switching sequence determined by 7. Define
L, by the formula

LK — % ((_1)]“!))'“[’75(1@)) + Z;(/{(p)) + (—I)M(b‘)]HLI?(A(ﬁ)) + z?(,{(ﬁ))) .

This completes the inductive definition of L, . Since, for each basepoint
choice, we have included summations for both of the associated orientations,
it suffices to show inductively that these definitions do not depend upon the
choice of basepoint.

All induction arguments will be based on the number of crossings in the link
diagrams. Thus I shall assume in each case that L, has been verified to have
a given property for all diagrams with less than »n vertices, and then show that
Definition 6.4 results in this property for links of n vertices. In all cases it is
easy to check the bottom of the induction on knot and link diagrams with few
vertices.

Definition 6.5 (the inductive hypothesis). The inductive hypothesis for the poly-
nomial L, defined in 6.4 is as follows:

(a) Ly is well defined (independent of basepoint choice) on diagrams with
less than N crossings.

(b) Ly satisfies the axioms of evaluation:

Lg+ Ls;x = z(Le;x + LE;k),
L—bf- =al,
L.-.G- =a-lL,
whenever K has < N crossings (and whenever y~ has < N crossings).

(c) Ly is invariant under Reidemeister moves of type II and type III that
do not increase the number of crossings in the diagram. That is, if K has < N
crossings and K' is obtained from K by a Reidemeister (II, III) move that
does not increase the number of crossings, then L, = L. .

The proof of well-definedness will be a multiple induction on these properties.

The issue that must be addressed in order to prove that L, is well defined
on diagrams is its invariance with respect to change of basepoint in 6.4(c) and
6.4(d). The next lemma is relevant to 6.4(c).

Lemma 6.6. Let A= (A,,A,_,,...,4;,4,) beany choice of labels for a subset
of distinct crossings in a link diagram K .Let = (Ay, Ay, Ay 15 eesAys 4y).
Then Y (A) = Y, (1) where } . (A) is defined as in Definition 6.3. In other
words, 3. (A) is invariant under cyclic permutation of 1.

Proof. The proof is by induction on the number of crossings in the link diagram
K . Thus we assume the lemma and the induction hypothesis 6.5 for all link
diagrams with fewer crossings than K.

Notation. It is sufficient to take
A=(m,n-1,...,1,0) and u=0,n,n-1,...,2,1).
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Then
n
1
S8 = S (-1 (L g + Lii)
K i=0
where
A A
A;=ES;,_ -85, B =eS,_ -85,
and
n .
1
Z(ﬂ) = Z(—l) (Lyug + Lpig)
K i=0 ' '
where
Ag =E,
A = E,S,
m
A5 = E;S,S,
u
A = En—lSn—l "'stl
u
An = EOSnSn—l o 'SZSI

and B! is obtained from A by replacing E by e.
Thus

Z(A) - Z(/") = (LEoK + LeOK) - (LEISOK + LelSOK) +-
K K
+ (_'l)n(LE"Sn_l. "SOK)
—(Lgx+Lex)— Lpskt L,sx)t

-1,
+(_1)n (LE”S”_

=SyK + Le,,S

n—1

wsk T Les, s,k)

nPn—1"""21
n

+ (=) (Lgs, .55,k T Loy, -5,5,8)]
n+l
= (LEOK + LeOK) +(=1) (LEoSn"'SlK + L"oSn'“Slk)
—Lg skt Leg + Lesx + Lokl
+[Lps s+ Lesk+ Leyssx T Lesxlt

n
+(=D'Lgs .sk+LEs, skt Les

n“n—1 n—1

1

sk T Les, skl

n~n—1
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Now use the exchange identity repeatedly to conclude (via induction) that
1
20 =220 = (L + Log) + (1" (L sy + L, osyeg)
K K
= z[Lg ok + L gk + Lo + Le £ k]
tzllp s ek + Les ekt Lesex t Les el T

n
+ (__1) Z[LEnSn—l'”SleOK + LE S

S, S, EoK
tLos .sextLes .5kl
=(Lgg+ (_l)nHLS"S”_I‘--SIEOK)
= 2{Lg gk + Le g k] — WLps, ek + Leys g,k
£ - (—l)n[LEnS,,_lmSIEOK + Le,,sn_,ms]EOK]}
+Log+ (D" Ly g k)
= 2{[Lg ok + Lo o k] — L5 0k T Les,e,x)
o= (D'Lgs sextLes sk}

=0+0=0

by induction using 6.5(b) (repeatedly as in formula (*)). Note that we have
used the independence of order of application of the operators S, E,, e; fora
specific link diagram. This order-independence follows from the fact that these
operators make only local changes in the diagram. This completes the proof of
the lemma.

Remark. It follows at once from Lemma 6.6 that the formula for L, in 6.4(c)
is independent of the basepoint choice. In this case, the basepoint determines
the sequence of crossing changes up to cyclic order, and we have included both
directions for any given basepoint. Thus it remains to examine basepoint de-
pendence in case 6.4(d).

Lemma 6.7. Consider the two ways of splicing a standard unknot at the first
crossing past (or prior) to a directed basepoint. In one case this splice produces
an unknot. In the other case it produces an unlink composed of two standard
unknots with one overlying the other.

Proof. This lemma follows directly from the definition of the standard unknot.
Consider the first crossing (i) past the basepoint: Starting at the basepoint and
travelling in the direction that it indicates, one travels over the crossing i (this
is the definition of the standard unknot: first encounters after the basepoint
are overcrossings). The diagram that is then drawn (up until the return to
i as an under-crossing) lies over the rest of the unknot diagram. One splice
at i separates this first part from the rest, producing an unlink composed of
two overlaid unknots. The other splice produces an unknot consisting in the
connected sum of the two unknots discussed in the last sentence. See Figure 28.
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This unknot diagram is not standard. See the comments following this lemma.
This completes the proof of the lemma.

K= 'R&(,(,)f) I:ct s“'a.ml avd unkno+]

(0
C@Q /'-'-' SLQ = Q(‘"‘)Z’)

7

A~
E " € K
[_+wo :{*4-4«\“‘9 E«.n unkm‘\' (licju«a

unknotted comfcue«.“s
FIGURE 28

Comment. As Figure 28 illustrates, there are two splices e,.IZ' and Eil? . Here
i is the first crossing encountered upon proceeding from the basepoint in a
standard unknot K . In this figure E,.I? is a link (trivial link) of two standard
unknots, while eiI? is an unknot diagram. If we write Eil? = K, UK, where K|
and K, are the two standard unknots in this link, then eil? = K #K, where this
connected sum is taken at the crossing. As is easy to see, the standard unknot
corresponding to e,.12 is KI#K; where K; is obtained from K, by reversing
all of its crossings.

A fact about standard unknot diagrams generalizes to the diagram eil? . This
fact is that standard unknot diagrams are either composed entirely of curls (™)
or they admit simplifying Reidemeister moves of type 11 and type 111. That is,
a standard unknot diagram can be transformed by noncomplexifying moves of
type II and type III to a diagram consisting only of curls. The proof of this
remark involves noting that it is possible to move an arc that overpasses a
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diagram across that diagram by regular isotopy. (See §2 (Figure 2).) These

remarks apply to eK and consequently, we know that L - R = avX) py

applying 6.5(c) and the regular isotopy invariance of the writhe.

Lemma 6.8. Let K = K(U, p) be a standard unknot. Let i denote the first
crossing on K that is encountered when travelling from the basepoint. Let q be
the new directed basepoint obtained by sliding p just past the crossing i, retaining
the direction from q. Then

(1) S;K(U,p)=K(U,q),

(i1) LE(U,p) + LI?(U,q) = z(Le‘_I?(U,p) + LE‘E(U,p)) where these evaluations are
based inductively on Definition 6.4, and the induction hypothesis 6.5 .
Proof. The situation for this lemma is illustrated in Figure 28. We are given
a standard unknot K = K(U, p) and K' = K(U, q) where ¢ is the new
basepoint described in the statement of the lemma. It follows at once from the
definition of the standard unknot that K’ = Sil? (since the first pass through i
will now be done by the other arc at this crossing). Represent the writhe of K
by w(K)=w+1 and w(I? " = . (They will differ by two, possibly with
reversed signs. The argument to follow will go through exactly as given, with
this sign-reversal.) Then w(e, K) =w where e; K is the connected splice. Let
w, and w, be the writhes of the two components of E,.I? . Then w, +w, =w
since, by the Jordan curve theorem, the sum of the crossing sign contributions
between these two components adds up to zero (one curve lies entirely over the
other). Thus, using the comment prior to this lemma, we have

w+1
LE =a s

w——l

Lig=a""",
w

Lz=a",

L ER= da”'a" =da”""™" = da"

Since, by definition of d, a +a~' = z(1 + d), we have a""' +a""' =

z(a" +da"), it follows that Ly + L, = z(L, » + L, ), proving the lemma.
Note that the evaluations on the left-hand side are evaluations of standard
unknots—part of the definition of L, . The evaluations on the right-hand side
follow by induction with these links having smaller number of crossings.

Lemma 6.9. Let K be a knot diagram. Then the value of L, as described in
Definition 6.4 (d) is independent of the choice of basepoint. More particularly, let
D be a directed basepoint for K . Let A(p) be the switching sequence determined
by p. Then

Q(p) = (- Ly 23 ()
K

is independent of the choice of basepoint. (Here K (p) = K(A(p)) is the standard
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unknot associated with p, and Y, (p) = Y (A(p)) is the summation defined in
Definition 6.3.)
Proof. We may assume that the switching sequence determined by p is labelled
A=(n,n—-1,...,1,0) so that Q,(p) = (—1)”+1L1?(p) +2zY . (p). Since
Ly(p) = Qg (p) + Q (D)) it suffices to prove that Q. (p) is independent of
basepoint. The proof is by induction on the number of crossings in the link
diagram, and depends upon the inductive definition and induction hypothesis.
Consider the first crossing i past the basepoint in K and in K(p). In K(p)
this is an over-crossing by definition.

/

//z’ //<\(t°>

P

In K(p) the crossing may be either an undercrossing or an undercrossing.

Case 1. The crossing i is an undercrossing in K(p):

7 /?
— — o
" ke " [ ke

In this case i is part of the switching sequence for K relative to K . In fact,
by our convention, i receives the label n (highest index) for the switching
sequence K(p) = S,S,_1S5,K.

Now consider the result, in this case, of sliding the basepoint p to position
g just past the crossing. Then we have

/'—?.7__'—-— zrﬁ?p

K(g) /K\(g,)

that the crossing i is not switched in K (g). Thus the switching sequence for
K(g)is(n—-1,n-2,...,1,0) and K(q)=S,_,S,_, S, 5,K.
We wish to show that Q,(q) = Q,(p). We have

Qup) = (-1)" 'Lz, +2 (),
K

Qu(a)=(-1)"""Ly  +2d (),
K
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where
n

S 0) =Y (L + Ly )=
K i=0

and
n—1

@) =Y (L g+ Ly (-1

K i=0
The switching sequence for K(g) is a subset of the switching sequence for
K(p). Thus

Q(0) - Q(a) = (-1)"™'[L

However, we have

Ry T Lrglt zZ(Ly x + LB"K)(*I)n .
AnK = EnSn—l o 'SlSOK = Enk(p) s

BnK=eS “SISOK:enI?(p)’
K(q)=S,{K()}

nn—1"

and, by Lemma 6.8,

L. +L, =z(L

K T TK)

Therefore Q. (p) = Qg(q).
We have verified that in Case 1 the value of Q. (p) is unchanged by sliding
the basepoint past the first crossing along its direction.

e Ry T LE,,I?w))'

Case 2. The crossing i is an overcrossing in K(p):

/s [:

“Tar T

K (p)

In this case, i is not part of the switching sequence for K(p). When the
basepoint is slid across i we have

K(3) 1R

that i is part of the switching sequence for K(gq). Let i stand for the place in
this switching sequence so that

I?(q)=SnSn—l"'Si+lSiSi—1"'SISOK
(i.e., l(q)z(n,n—1,...,i+1,iA,i—1,...,1,0)). Then A(p) = (n, n—
1,...,i+1,i-1,...,1,0) and K(p)=S,S,_, "= S;,/Si_; -+ S;5,K . Note
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that S,.IA((q) = I?(p), and that Lemma 6.8 applies to the pair I?(p) , I?(q)
with respect to i, this being the case of the first crossing in K (g) just prior to
the basepoint—the same arguments apply. However, we can also simplify the
calculations for ), (p) and ), (q) by using Lemma 6.6. Lemma 6.6 says that

these sums are mvarlant under cychc permutation. Therefore, we can replace
A(p) and A(g) by

ll(p)z(i—l,...,1,0,n,n—1,...,i+1),
A@)=G,i=1,...,1,0,n,n—1,...,i+1).

At this point the structure of the argument is identical to that of the first case,
and the same form of calculation shows that Q,(p) = Q,(q).

Thus we have verified that € (p) is independent of the placement of the
oriented basepoint along the knot diagram. This completes the proof of Lemma
6.9.

Lemma 6.10. Let i be any crossing in a link diagram K. Then L, satisfies
the identities

(@) Ly + Ly = 2(L, g+ Lgg).

(b) Lyr=aL, L-g=a"'L.

Proof. The proof is by induction on the number of crossings in the diagram.
We use the already-proved fact (Lemma 6.6 and Lemma 6.9) that L, as defined
in 6.4 is 1ndependent of the choice of basepoint. Note that at no pomt in the
argument up to this point have we used the conclusion of Lemma 6.10, except
in the special case form of Lemma 6.8.

We have shown in 6.9 that in the case of a single component diagram the indi-
vidual summations Q,(p) and Q. (p) are each independent of the placement
of the basepoint.

1. Suppose that K has one component and a given crossing i. Let SK be
the knot obtained by switching this crossing, and EK, eK the two diagrams
obtained by splicing this crossing. By choosing the basepoint correctly

&

or

we can make i the “nth” crossing in the switching sequence for K. Comparison
with 6.4(d) shows that the identity L, + Lg, = z(Lg, + L) follows directly
from the difference of the expansions of Q,(p) and Qg (p).

2. Suppose that K has more than one component, and that at the crossing
i we have a crossing of a component with itself. Then this crossing will not be
involved in the lift sequence for any component. Hence the identity follows by
induction, using 6.4(c).

3. Suppose that K has more than one component, and that the two strands
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in the crossing are from different components. Recall that L, is by 6.4(c)
the average over evaluations from lift sequences for liftable components. (A
component is liftable if it does not overlie the entire diagram.) Consider one of
these summands. If the component being lifted does not contain either of the
two strands at the crossing, then the exchange formula follows by induction. If
one of the strands is involved in the lift sequence, then appropriate choice of
basepoint exhibits the identity as before. Since the identity is established for
each summand (for a given lift sequence), it is established for their average.
This completes the proof of part (a). To verify part (b) simply note that the
curl will, in the recursive Definition 6.4, eventually be part of a knot-evaluation,
and that by choosing the position of the basepoint this curl will be unchanged
on the corresponding standard unknot. Hence all terms in the right-hand side
of 6.4(d) contain identical copies of this curl. (b) then follows by induction.
This completes the proof of the lemma.

Lemma 6.11. Let K be any link diagram and K' another link diagram regularly
isotopic to K . Then the polynomials L, and L. are equal. L, isan invariant
of regular isotopy.

Proof. If K s a knot, the invariance under moves of type II and type III
(these generate regular isotopy) can be seen, inductively, by appropriate choice
of basepoint: Thus in the case of a type II move, choose the basepoint as shown
below:

o

Then the two crossings involved in the move are not switched by the switching
sequence for K. Since we inductively assume (6.5(c)) that each term in the
expansion of 6.4(d) is invariant under type II (simplifying) moves, it follows
that L, is also invariant under the type II move. Here it is assumed that the
proposition (invariance under simplifying type II moves) has been verified for
all knots/links with fewer crossings than X .

If K has more than one component, then we must consider those cases of
type II moves where one of the strands is involved in the lift sequence. The
worst possible case then corresponds to a basepoint choice of the form

v

(_____/ K

2

where the basepoint is necessarily on the undercrossing strand in order to ac-
complish the lift sequence. However, Figure 29 coupled with Lemma 6.10 shows
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that L, = LSl SK - In the link §,S,K the type II move will not be involved in
a lift sequence and invariance follows by induction as before.

Having verified that L is invariant under simplying type II moves for all
knots and links, we conclude that L, is type II invariant for both directions of
the type II move.

Now consider the type III move. Suppose that K is a knot diagram. By
choosing the basepoint, we arrange that two out of three crossings are uninvolved
in the switching sequence:

/ .§/
The remaining starred crossing may be switched or spliced in any of the terms
of the expansion formula 6.4(d). If it is switched then the type III move is

applicable inductively. If it is spliced, then invariance follows either by direct
diagram equivalence

/
N ~ ———
-

or by using the type II invariance

“pe z oo

For the type III move in the multi-component case, the ideas are the same.
Here two consecutive crossings may be involved in a lift sequence. If these
are labelled 1, 2 as in Figure 29 then L, = Lg 5K again applies to simplify
the situation, and allows us to conclude invariance under the type III move by
mathematical induction.

This completes the proof.

9 . X ¥

l A
K S\K ElK . 81K
——
5 L
28 _ Q
SzS;K EleK Czle

Lg + Ls,x = z2(LE,k + Le,K),
Ls,x + Ls,s,x = 2(LE,s,k + Leas,k )
LE.K = LE,S.K,LCIK = GL;-: = Le,S.K,
= Lk = Ls,s,k

FIGURE 29
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VII. The Dubrovnik polynomial

The Dubrovnik polynomial D, (a, z) is the name I give to another version
of L, . (It was discovered in the old city of Dubrovnik, Yugoslavia and told
to W. B. R. Lickorish by postcard. That postcard received an immediate reply
to the effect that D, and L, are interconvertible!) The Dubrovnik polynoial
is also an invariant of regular isotopy, and it satisfies the axioms

1. Dx —D\/\ = Z(DX —D)( ),
—_ — — 1
2. Do =aD, Dg =1,D-g=a"'D.
Note that the minus sign makes sense relatively speaking. Thus ¢ :=::34:)(

in the sense that the second pair is obtained from the first pair by 90 ° rotation,
and we can, by convention, associate >~< and =< .

Proposition (Lickorish). Dy (a, z) = —i_w(K)(—l)C(K)LK(ia, —iz) where i de-
notes the square root of negative one (i = /—1), and c(K) is the number of
components of K .

I shall omit the proof of this proposition, but give one example to illustrate
it.
Example. We have

-Dg —Dg =z(Dg -Dg )

=»>a—a " =z(Dg -1)
Thus Dg = z—l(a —a_l) + 1. Now
(3)=2
w( g )=0.
Thus if A =8, then
— "MW WL, (ia, ~iz)

= —(1)(-1)’L,(ia, —iz)
. . -1 —
=—L/\(la,—‘lZ) (L/\:Z (a+a )'—'1)
1
)—1]
=—[iz " a—a")i-1]
=z a-a ") +1
=D,(a, z).
There are some formal advantages in using the Dubrovnik polynomial. For
example, we can construct an algebra analogous to the Birman-Wenzel alge-
bra described in §4. Then the basic relation would take the form ¢, — c,._1 =

z(1—h;). Then at z = 0, the algebra collapses directly to the group algebra of
the symmetric group.

= —[(—iz)"'(ia—ia~
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I would like to give an account here of how I came upon the Dubrovnik
polynomial. This will show another facet of this reformulation: Knowing that
the bracket could be constructed as a state-model via () = A(=)+ 4~ (0() I
decided to try (in October 1985) to construct a more general model in the form

[>XT=4l = 1+B[)( T+0[ XK ]

where the third local configuration is a simple crossing (not under or over). In
other words it is a 4-valent graphical vertex. Now an inductive expansion of this
type is easily seen to be well defined if we know the values of [G] for 4-valent
planar graphs. There are many possibilities for graphical evaluation, and I tried
what seemed the simplest, namely [G] = d'“=! where |G| is the number of
“knot-theoretic circuits” in G. That is |G| is the number of link components if
G is regarded as a link projection. Thus

(00 1= 1=[G I=¢'=d'=d
since these graphs all have two link components.
With this definition, we have a generalization of the bracket [20], and can
investigate its invariance under Reidemeister moves. The case of the bracket is
C=0,B=A",d=-4>—-47%. 1 found that the only other solution that

is a regular isotopy invariant (with this form of graphical evaluation) has the
form

[X] = (=) ]+ (=) DA+ (=5) X,
[27] =e[~][-6]=a"[~]

[O] =1

[G] = 2l61-1 G a 4-valent planar graph.

Note that it follows at once from these identities that this regular isotopy
invariant satisfies the identities

[5] - [3<] = (@=a")([==] - (),
(o] = e[~ ].[~6] =o' [~]
[0]=1

Thus [K] is a special case of the Dubrovnik polynomial.
In fact, we have

Proposition 7.1. [K] with A = (@ -a"")/2), B = (&' = a)/2), C =
((a+a~")/2), and |G| = the number of link components in a 4-valent pla-
nar graph G, [G] = 2161=1 s given by

%) ISEED L
e

where @ runs over all orientations K of the unoriented link K . Here w(Kﬁ)

is the writhe of the oriented link K? .
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Proof (sketch). Extend the writhe to oriented diagrams with knot-theoretic
(3>3) and graph-theoretic (%) vertices by summing over the signs of the
knot theoretic vertices. (w(>§) = +1.) Define [K] by formula (*) in Propo-
sition 7.1. Let [X], denote that part of the summation where this particular
crossing has positive sign. Let [<]_ denote that part of the summation where
the indicated crossing has negative sign. Thus

> =], + X1
by definition. Then verify that
(<1, =@+ 1-D (D

and

(5 1= COK -1 1+D ().

(These last two formulas are verified by checking the various cases of local ori-
entations. Thus [»] can take the local forms >4 , 5", ¥ Wwhile [=<] can
take the forms =3 , & , 2 =, Note that forms of type =2 ,% are in 1-1 cor-
respondence with forms of type ¥t , 74 by local resplicing. Thus [=] — D (]
counts =% , == and subtracts 1% ,3{. Hence [X] + [=] — D (] counts 3<
and >§ twice since Y and =} are also in one-to-one correspondence. Thus
3(] + [=1-D(]) counts all cases of positivity. It must be multiplied by «

to take the crossing into account.) We then obtain the defining formula for

[><] = (20 (] + (2 =]+ =)D (]

by adding these two formulas for the + writhe contributions. This completes
the proof.

Remark. If K is a link of two components then [K] = o + o’ where
[(a — b)|/4 = |Ik(K)|. Thus, this special case state model for the Dubrovnik
polynomial calculates the absolute value of the linking number of two curves
from an unoriented diagram for the link.

This is a remarkable fact. In principle the absolute linking number does not
depend upon orientation. That it is possible to give an algorithm to calculate
it that does not use orientation is amazing. (A similar version of this model
and the corresponding conclusion about linking numbers was independently
obtained by Andrew Lipson [32].)

There is much more to say about state models. I have shown this one because
it is simple, gives a different view of linking numbers, and is a special case of
the Dubrovnik polynomial.

The form of expansion

[><] =A[=]+B[Y(]+[X],
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and

[>A] =B[=]+4[) (] +[X]

will always satisfy the Dubrovnik identity ] — [X] = z([=] — D(]) with
z = A— B . Pierre Vogel and the author [25] observe that this triple of equations
can be regarded as the form of definition for [K] on graph-diagrams. This.
definition depends upon the theory of the polynomial L, . In [25] we give a
graphical calculus for evaluating [G] on planar graphs in this generality and
show that this extension of the polynomials to three variables gives rigid-vertex
isotopy invariants for graph embeddings in three space.

Remark (added in proof). State models using solutions to the Yang-Baxter
Equation (see [0], [15.1], [26.1], [45.1]) can be used to establish the existence of
the polynomial invariants discussed in this paper. In [48] Witten has initiated
- three dimensional interpretations and generalizations of these invariants via
quantum field theory.
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