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ABSTRACT: We discuss the relatiomship of G.
Spencer-Brown's Laws of Form with multiple-valued
logic. The calculus of indications is presented
as a diagrammatic formal system. This leads to new
domains and wvalues by allowing infinite and self-
referential expressions that extend the system. We
reformulate the Varela/Kauffman calculi for self-
reference, and give a new completeness proof for
the corresponding three-valued algebra (CSR).

I. INTRODUCTION,

This work is primarily devoted to locking at
the mathematics of G. Spencer-Brown's Laws of Form
[16] and at extensions of this work for multiple-
valued logic due to myself and Francisco Varela
([21, (3], [4], [12], [17]).

I present a proof of the completeness of
Varela's calculus for self-reference (denoted CSR).
This clears up a gap in Varela's original paper
[17]. One of the outgrowths of this discussion is
a new formulation of the axioms for the Varela
calculus. We determine clearly that the Varela
calculus (and corresponding structures in the
Kleene three-valued logic) is predicated on the
appearance of exactly one value that is non-Boolean
in the sense that it remains invariant under cross-
ing (negation)}. This means that the Varela calcu-
lus is a minimal and complete description of the
skeletal situation of the emergence of a third
value.

It is a characteristic of the subject of formal
logic that simple and useful applications have wait-
ed for a clearing of mathematics and epistemology
before making their appearance, This is undoubt-
edly the case with the subject of multiple-valued
logie, and particularly with the uses of Laws of
Form. (Here and elsewhere I use Laws of Form with-
out underlining to refer both to Spencer-Brown's
book by that title and to the context that it con-
notes. This context holds discrimination as apri-
mary act through which the patterns of mathematics
and loglc are seen.)

A more general completeness result (see
Rasiowa [15]) and its relation te Laws of Form de-
serve further study. There 1s a deep mathematical
relationship between the formal approach using im-
aginary values (pioneered by Varela and myself)
and an intricate translation involving set-theory.
‘Further clarification of these issues will allow
us to make a more penetrating analysis of the use
of these caleculi in circuits and waveforms.

I begin the paper with a discussion of Spencer-
Brown's primary arithmetic in relation to Boolean
algebra. I emphasize that the primary arithmetic
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can be viewed as a simple example of a non-
trivial diagrammatic formal system. We discuss
the concept of diagrammatic formal system and its
relation with the usual notion of formal system in
mathematiecal logic. The diagrammatic formal sys-
tem is more general in concept, depending on con-
ventions and agreements for the interaction and
manipulation of elements (as in the pieces and
board of a well-defined game). This type of formal
system deserves to be explored more deeply. The
approaches to completeness theorems that we dis-
cuss use these aspects of diagrammatics cruclally,
and it is through this point of view that the mul-
tifold relationships to circuit design, fractals,
topology and complex numbers ([2], [4], [51, [61,
[87, [91, [10], [12]) come to the fore in my own
work. (See also [13], [14], [18], [19], [20] for
related issues in the work of Lefebvre, Varela and
Goguen.)

1 particularly recommend that we continue to
ask questions and create clarification of the Laws
of Form mathemtical structures. These structures
are very deep reflections of intelligence, whose
unfoldment will inevitably lead to new and useful
inventions.

A general comment on approach: While Laws of
Form does lead to a clarification of issues in
multiple-valued logic, this is only one of a2 my-
riad of possible applications. There is enormous
potential for understanding systems through the
distinctions that we mzke in perceiving and model-
ing them, By searching for the underlying distinc-
tions being used to create a system we penetrate
to levels of understanding that are simply not
available in any external modelling approach.

II. PRIMARY ARITHMETIC AS A DIAGRAMMATIC FORMAL
SYSTEM.

I first given an equivalent version of Spencer-
Brown's primary arithmetic [16]. The elements of
this system are finite collections of disjoint
rectangles in the plane. Any such collection is
called an expression. This includes the empty
collection. A typical non-empty expression is
given below.
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Note that typographically it is difficult to
represent the empty expression. This is due to the
already-present complex display of symbols on a
page. Nevertheless, there is only one empty ex-
pression under consideration, and this is under-
stood to be a plane without any rectangles drawn
upon it,.

It is useful in illustrating a system of this
type to simply draw representative collections of
rectangles on a blackboard or sheet of paper. - The
analog with studying geometry and using diagrams
should be obvious. However, in primary arithmetic
we are concerned only with the fact that each ree-
tangle distinguishes an inner and outer region in
the plane (rather than any topological or rigid
properties).

Since we can distinguish for any rectangle in
a plane a bounded inside and an unbounded exterior,
we speak of the inside or outeide of a given rec-
tangle, and also say whether one rectangle is in-
side (in the bounded part) or outside (in the un-
bounded part) of another.

Two expressions are said to be identical if all
relations of inside and outside among the component
rectangles are the same in each. In other words,
there should be a one-to-ome correspendence between
the rectangles of one expression and the rectang-
les of the other such that these relations are pre-
served. For example, the two expressions indicated

below are identical
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while the following two expressions are not identi-
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Identity of expressions is an identity of form.
It does not depend upon any particular properties
of the rectangles other than their mutual relation-
ships in the plane.

To what extent should this description of
rectangle-expressions be formalized? It can be ex-
pressed in relation to a mathematical plane in
terms of sets of points, But any such formaliza-
tion ultimately rests on systems of notations and
communication that presuppose exactly the set of
conventions for planar writing that we are attempt-
ing to formalize. We read script and write symbols
exactly on the basis of these ideas.

With this understanding it 1s possible to be-
gin to view this arithmetic of rectangles directly
as built on a formalism of rectangle drawings that
are no different in kind from any other written
mathematical text. I request that the reader make
this shift!
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The primary arithmetic arises in the study of
an equivalence on expressions generated by the fol-
lowing two types of moves (calling and crossing):

< (calling)

(crossing).

It is understood that the replacements above
can be performed within any larger expression just
so long as the explicit configurations being chan-
ged are identical to those above. HMore precisely,
it must be possible to encircle a portion of the
larger expression and to find within this encircle—
ment the form of crossing or the form of calling.
If there are no rectangles in the encirclement,
then the crossing change allows us to draw two rec-
tangles, one within the other.

Two expressions are sald to be equivalent if
one can be obtained from the other by a sequence
of moves of these two types. Note that the moves
can be performed in either direction. 4n express—
ion equivalent to the empty expression is said to
be unmarked.

One then proves that any expression is either
marked or unmarked. No finite expression of rec-
tangles can be both marked and ummarked,

This is a complete description of the primary
arithmetic at the level of its construction. Pat-
terns of equivalence give rise to the next domain
of description. Thus we can write

since it is indeed the case that for any express-

fon A, A 1is marked exactly when A is
marked.
But upon making a description of this kind, we
have moved to the level of algebra. In algebra it
may be convenient to create a special symbol for
the unmarked state. If we do so, then we have
arrived at standard Boolean algebra. If we choose

to simply use within this formalism as the

natural symbol for unmarked, and otherwise to con-
tinue to respect the conventions of the primary
arithmetic, then we are doing Spencer-Brown's pri-
mary algebra. This is a subtle difference between
primary algebra and Boolean algebra,

The practical nature of this difference re-
sides in the close fit between primary algebra and
primary arithmetic., Primary algebra is a minimal
description of primary arithmetic that returns di-
rectly to the arithmetic when variables are re-




placed by expressions. This has an immediate ad-
vantage for symbolic computation, and also for
pattern recognition.

Everything we have said in relatdion to pri-
mary arithmetic and primary algebra as diagram-
matic systems applies to many other mathematical
situations. By understanding the fitting rela-
tionship of good description with that which it
describes we open the possibility for creative
modelling.

of this discussion to
is simply that of re-
an abbreviated rectangle

stands for [], and the
arithmetic become:

9

REMARK: The translation
Spencer-Brown's notation
placing the rectangle by

(the mark). Thus "_1
initials for the primary

i
=]

(= denotes &—
The initials of the primary algebra take the form:

2] -
plallr = oelael|

(plus implicit associativity and commutativity).

, not identity.)

I.

1I.

REMARK: The term initials is due to Spencer-
Brown. The intials denote a starting point for
the system (arithmetic or algebra in this case).
Initials can be taken to be axioms or pestulates,
or simply as rules of the game.

One of the mathematical advantages of this no-
tation is seen in the derivation of reflexion

al

= pj from these initials:

» =311 Al

(1)
=ﬂ_lp‘ﬂ1= (1n)
-7l 4] @
- 3l p-ﬂlﬂ (1)
- 7] .

Here the combinatorial interaction of I and
II just conspires to make reflexion a consequence.
The minimal notation of the primary algebra gives
access to this phenomena. Certain circumstances
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require the use of every bit of the availlable
structure —- taking the system to its limits.

I1TI. IMAGINARY VALUES.

Consider the equation x = [:]. It has no
solution in primary arithmetiec. The notation sug-
gests a formal solution —— an infinite collection
of nested boxes:

Being infinite, this expression is outside the ca-
tegory of finite expressions that constitute the
primary arithmetic. This suggests a possible in-
terpretation for an "imaginary" logical value that
is invariant under negation. Since J contains

an identical copy of itself within itself, we can
also describe J recursively or self-referentially
via the suggestive notation

Here the arrow-head indicates where the form re-
enters its own indicational space. Thus

KD

Note that on performing the recursion, the indica-
tive line and arrow-head are erased.

In Spencer-Brown notation (see [12], [16],
[171) we write for this re-entering mark.

In

the next section we discuss a particular algebraic
context for this wvalue.

There 1s much to say on the interpretive side.
One remark is that J = can be viewed as a
shorthand for the recursion J -—-> . Then we
obtain the process

Ll (=l

I it

0|

—

=

=




and, as indicated above, if each step in the pro-
cess is evaluated as an element of primary arith-
metic, then the process appears as a discrete os-
cillation, a wave-form. Depending upon the start-
ing value for J, there are really two phase-
shifted waveforms:

d: "L LTL
- .

We would like to be able to make three statements
here:

1. T__l__,=_|_[
2. dd-

3. —ﬁ,T_]

The first statement says that globally, the wave-

form “|] is identical with ﬁ—l .
7:] and ijn

gether combine to form a constantly marked state.

1:] and :ii]

sent phase-shifted forms in juxtaposition.
With the usual conventions of substitution,
these statements lead to a paradox.

T-Tm-aa-T
-1l - Tl

-3

=

The third

statement says that taken to-

In this interpretation, repre-

The calculus for self-reference of the next sec-
tion is one way to resolve the paradox (by letting
go of statement 3.). Another very beautiful way
to avold the paradox is the

Flagg Resolution. There is only one re-entering

mark. If, in an expression, a given instance of

Ll is replaced by ﬁl

of 7] must be replaced in the same manner.

then all instances

This treatment of the paradox allows one to
remain in the primary, Boolean context and still
maintain all three statements about the wave-form.
James Flagg and the author will explore this point
of view elsewhere,
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Another way to retain the wave-form context ig
to allow two extra values i and j, satisfying
I =1,3] =3, 1j = “]. This is studied in [3]
and [12]. See also [4] for a relationship with
complex numbers. There is, at this level, a very
remarkable correspondence with the formalism of
the complex numbers. Briefly this involves in-
troducing the square root of negation V¥~, With

Vo Vo = and ~ _1 = :i], n=:ﬁ1 = _]

a+ ««.« abababab ...
b+ vea +.. babababa ...

we take the identifications

I

marked

T +FT

T+ =7
ﬂ+1/5_|—l=

T +v=T]

and find that rhese values are "rotated" cyclic-
ally by the square root of negation, just as the |
Square root of minus one operates on the complex i
numbers. The square Toot of negation is an ima-
glnary operator that rotates from the domain of
necessity(marked/dnmarked, true/false) to the
domain of possibility (possibly marked/possibly
unmarked) .

possibly unmarked

unmarked

possibly marked.

12 (=)

A:=AA+-TD

+ ]

-




REMARK: For those interested in an interpretation in
the framework of quantum mechanics, —l + \/:_I can be

thought of as a mixed state, neither marked nor un-
marked and yet capab le of projecting these values.

Just so, -[] is neither marked nor is it unmarked.

NEW CSR INITIALS

I. mp =p
II. F]E]lr = 5;] E;]l {transposition)
III. F]P] d="d (location)

al-1T

{occultation)

It is understood that the mark operates on all
symbols underneath it, that the juxtaposition operation
(p,q ————- > pq) is commutative and associative, and
that the re-entering mark is an element of this system.

We will show that if u is any element in a sys-
tem satisfying the initials above, then u =u im-
plies that u = Thus the calculus describes the
situation of unique self-reference.

We then give a proof of the equational complete-
ness for CSR.

The first part of the task is to derive a series
of consequences of initials I and II. These are com-
mon to both the above system and to Varela's calculus.
His calculus differs in the third initial where he
takes

T, p_'fﬂp='[],_|=7_|.

In this terminology an algebra satisfying I and II
will be called a brownian algebra [12]. This is the
analog, in this context, of a De Morgan algebra [3].
It is possible to have infinitely many different x
in a brownian algebra each satisfying the equation
x = x|]. See [3] and {12]) for examples.

Consequences of I and II

1. ETT = a

Den. 31| =5_ﬂa3l] ()

E=TRETA I
-7l 7l an

= Ei]a (I) [here take p unmarked,
q marked]

=a (I)
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2

Dem.

3. dja = _1

Dem. Ja =

2.

7]

« 1.
I

o Tle] - w7

Dem. 3Tbc

2.

= Tl -

E =181l

alelole] = &le).

2.

II

ol

Alsll:

6. 0] = als]s51]

7. alolalsl] - 21 vl

Dem.

a8

bea. o] - a1l

ul5T6] ] -
I

Z.

P

alb|b]n].

21 51l

w5117

- TRl




8. slezler]] = asTe=nAl.

—
pen. alor]er]| = F5le} e @.,11)

- AsalarEl

(2.,11,2.),

o. #lall=1=1] = FmeIE el
ven. STEIETR] - o511 s r‘rEﬂ” ()

= pr]ps|qr]as] (1z2.)

10. (crosstransposition)

- AlzmlaaliEsla
- AR e

(8.)

(2.,11,2.).

We include one struetural theorem at this
level:

THEOREM: Let x be an element in a brownian al-
ebra satisfying ﬂ = x, Then ax = bx and

g—lx = -b-lx implies that a=b for a and b in
this algebra.

Proof. a = a (1)
(a]x = B]x)
(x = x|)

= balxa] (11)

= ba|bx]| (xa = xb)
= z[x]|b (11)
= a_!x b (x = ﬂ)

= le b (Z']x = -ﬂx)

1]
o

(1).

Consequences with IIT included

PROPOSITION: E‘p ="p .
Proof: HP = ﬁ] ﬁ] P

- %kl 7 o0
-

(L,ﬁq‘_})

(2.,ifj]='[])

(1,2.,1II)

- s «al-m

Basic Metatheorem for CSR. x = x| 1ff x = U

Proof. -D = ﬁl by definition. Conversely,

syppose that x = ;c_l Then




(D

b
[}

& =%
(p 'ﬂ'P =7 b

(x = x|)

k|

=x T
=xn
-7

(x = xx)

T
|

Completeness for CSR

(x =%

(I11).

L]

We sketch the proof of equational completeness
for CSR. That 1s, the equality of two expressions
in CSR is a comsequence of the initials I, II, III
if and only if the two expressions agree for all
substitutions from the arithmetiec

3.9 .7

for corresponding variables,

The proof is based on the fact that any ex-
pression can be algebraically brought into the
form

E= ;;liizl x;1c d

where the variable x appears only as indicated.

(The term xx|c] was neglected in [17], hence the
need for a new proof of the completeness.) Think
of E = E(x) as a function of x. Then

13g b Bld
eC1b = 2ld
=i - el el Tele.

Similar remarks apply to a function of many vari-

ables. Our proof, being based on Induction, only

requires the isolation of one variable at a time.
Similarly, if

By ) K B

then
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F(C) = b e
F(ﬁ') =aa
FOC LD = -:]a'l -E]BT] -iJc‘ld'.

Given that E(x) = F(x) for x =_|, '-II, 'ﬂ

we wish to demonstrate that E = F. It suffices
to show that E = F 'ﬂ and that

'ﬂ'n = ﬂ-ﬂ in CSR. By symmetry of the argu-
ment, it actually suffices to show that

E=Fg.

Note that

T ala -3 T 3k

=dn
iI

Thus we can assume:
Bld = b']a’
ald = 3"a’
dd =<' o.

Then E'|]=E|I_]b-l:mdﬂ

- mlellede ] O am
- mlxl e O
= m;lﬂ E d'u {crosstransposi-

tion - 10.)

- <=la 7| ¥R T xﬂd'ﬂl' (In.

(D

Now use the equalities (%). Substitute, and re-

verse steps to conclude that E ﬂ = F 'ﬂ .
This completes the essential inductive step in

proving equational completeness for CSR.

In [12] we use a similar technique to obtain
equational completeness for brownlan algebras. A
corresponding argument for DeMorgan algebras is
given in [3]. The novelty of this approach is its
use of imaginary Boolean values in the course of
proving the result.

IV, EPILOGUE.

Except for the interpretation of section III
I have made little mention of standard three-
valued or multiple-valued logic in this paper.
The relationship of the Varela system to Kleene's
three valued logic 1s detailed im [19]. In fact,




it has been my intent to direct attention to other
related domains - formal diagrammatic systems,
complex numbers, imaginary values. A few more
words about diagrams: One way to see the emer-
gence of a third value is in the recognition of
the boundary. Thus fuzzy set theory arises by
directly articulating the structure of a boundary
layer that intermediates between inside and out-
side. In Venn dilagrams we may decide to take the
boundary seriously and develop diagram-notation
for how one boundary can cross another:

/\/ or X. Thus, 1In

one boundary crosses another

twice, while in each boundary

crosses and is crossed by the other. An appro-
priate formal diagrammatic system already exists
for this situation via the theory of knots and
links (See [9]). Extraordinary relationshipswith
other domains arise in the articulation of the
boundary. In the topological context, each bound-
ary becomes an indicational space in which further
distinctions and (lower-dimensional) boundaries
can be explored, The plane is the lowest dimen-
sional space in which the boundaries {one—dimen-—
sional) can have internal structure, Imaginary
values intermediate between the structural, time-
iess geometric/topological domain and the process/
creative domain of time/recursion and possibility.

REFERENCES

(1] J.D. Edmonds, Jr. Hypercomplex number app-—
roach to Laws of Form and Logic. Specula-
tions in Science and Technology, Vol. 1, No.
3 (1978).

[2] L. Kauffman. Network synthesis and Varela's
calculus. Int. J. Gen. Sys. 4(1978), 179-
187.

[3] L. Kauffman., DeMorgan algebras - complete=
ness and recursion. Proc. Eighth Int. Symp.
Mult., Val. Logic. (1978), 82-86.

[4] L. Kauffman. Complex numbers and algebraic
logic. Proc. Tenth Intl. Symp. Mult. Val.
Logic. (1980), 209-213.

[5] L. Kauffman. Formal Knot Theory. Mathema=-
tical notes series #30, (1983) 165 pages.
Princeton University Press.

[6] L. Kauffman. Sign and space. From Religious
Experience and Scientific Paradigms - Proceed-
ings of the TASWR Conference 1982, pp. 118-
164. Institute for Advanced Study of World
Religions, Stony Brook, N.Y.

[7] L. Kauffman. Transformations in special re-
lativity. 1Int. J. Theo. Physics, 24 (1985),
223-236. -

[8] L. Kauffman. Map Reformulation. Princelet
Editions #30, 249 pages - London (1986).

[9] L. Kauffman. On Knots. (To appear as Annals
Study - Princeton University Press (1987).)

[10] L. Kauffman. Self-reference and recursive
forms. J. Soc. Biol. Struct. 1987, 10, 53-72.

[11] L. Kauffman. State models and the Jones poly-
nomial. (To appear in Topology).

[12] L. Kauffman and F. Varela. Form dynamics.
J. Soc. and Bio. Strs. 3 (1980), pp. 171-206.

[13] Vladimir A. Lefebvre. A Formal method of in-
vestigating reflective processes. Gen. Syst.
XI1, (1972), pp. 181-188.

[14] Vliadimir A. Lefebvre. Iconic claculus: sym-
bols with feelings in mathematical structures.
Gen. Syst. XX (1975), pp. 71-93.

[15] H. Rasiowa. An Algebraic Approach to Non-
Classical Logics. North Holland Pub. (1974).
Chapter 3, pp. 38-50.

[16] G. Spencer-Brown. Laws of Form. Julian
Press, N.Y. (1972).

[17] F. Varela. A calculus for self-reference.
Int. J. Gen. Syst., 2 (1975), 5-24.

[18] F. Varela and J. Goguen. The arithmetic of
closure. J. Cyber., 8 (1578).

[19] F. Varela, The extended calculus of indica-
tions interpreted as a three-valued logic.
Notre Dame J. of Formal Logic, Vol. 17 (1976).

[20] F. Varela and J.S. Andrade. Self-reference
and fixed points - a discussion and extension
of Lawvere's theorem. Acta Applicandae Mathe-
maticae 2, 1-19. (1984)

Acknowledgement: Research for this paper was par-
tially supported by ONR grant NO014-84-K-0099 and
the Stereo-Chemical Topology Project at the Uni-
versity of Iowa, Iowa City, Iowa 52242. Research
resulting in the alternate third initial of the
Varela calculus was sponsored by the Deputy for
Development Planning, Aeronautical Systems Divi-
sion (AFSC), United States Alr Force, Wright-
Patterson AFB, Ohio 45433 under contract
F33615-85-C-0122 with SYSTRAN Corporatien, Dayton,
Ohio 45432,







