Geometric structures on the Figure Eight Knot Complement

ICERM Workshop Exotic Geometric Structures

Martin Deraux
Institut Fourier - Grenoble

Sep 16, 2013

The figure eight knot

Various pictures of 4_{1} :

$$
K=\text { figure eight knot }
$$

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

The complete (real) hyperbolic structure

$M=S^{3} \backslash K$ carries a complete hyperbolic metric
M can be realized as a quotient

$$
\Gamma \backslash H_{\mathbb{R}}^{3}
$$

where $\Gamma \subset P S L_{2}(\mathbb{C})$ is a lattice (discrete group with quotient of finite volume)

- One cusp with cross-section a torus.
- Discovered by R. Riley (1974)
- Part of a much more general statement about knot complements/3-manifolds (Thurston)
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

Holonomy representation

structures on the Figure Eight Knot Complement

For example by Wirtinger, get

$$
\pi_{1}(M)=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1} g_{2}=g_{2} g_{3}, g_{2}=\left[g_{3}, g_{1}^{-1}\right]\right\rangle
$$

with fundamental group of the boundary torus generated by

$$
g_{1} \text { and }\left[g_{3}^{-1}, g_{1}\right]\left[g_{1}^{-1}, g_{3}\right]
$$

Alternatively

$$
\pi_{1}(M)=\left\langle a, b, t \mid t a t^{-1}=a b a, t b t^{-1}=a b\right\rangle .
$$

The figure eight knot complement fibers over the circle, with punctured torus fiber.

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Holonomy representation (cont.)

Search for $\rho: \pi_{1}(M) \rightarrow P S L_{2}(\mathbb{C})$ with $\rho\left(g_{1}\right)=G_{1}$, $\rho\left(g_{3}\right)=G_{3}$,

$$
G_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad G_{3}=\left(\begin{array}{cc}
1 & 0 \\
-a & 1
\end{array}\right)
$$

Requiring

$$
G_{1}\left[G_{3}, G_{1}^{-1}\right]=\left[G_{3}, G_{1}^{-1}\right] G_{3}
$$

get $a^{2}+a+1=0$, so

$$
a=\frac{-1 \pm i \sqrt{3}}{2}=\omega \text { or } \bar{\omega} .
$$

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot
 Presentation
 Holonomy
 Prism picture
 Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Ford domain for the image of ρ

Bounded by unit spheres centered in $\mathbb{Z}[\omega], \omega=\frac{-1+i \sqrt{3}}{2}$
Cusp group generated by translations by 1 and $2 i \sqrt{3}$.
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Prism picture

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture
Spherical CR
geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary unipotent

Triangulation picture

Can also get the hyperbolic structure gluing two ideal tetrahedra, with invariants z, w.

Compatibility equations:

$$
z(z-1) w(w-1)=1
$$

For a complete structure, ask the boundary holonomy to have derivative 1 , and this gives

$$
z=w=\omega
$$

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

Complete spherical CR structures

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture
Spherical CR geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Domain of discontinuity

- Limit set $\Lambda_{\Gamma}=S^{3}-\Omega_{\Gamma}$

The orbifold/manifold at infinity of Γ is $\Gamma \backslash \Omega_{\Gamma}$

- Manifold only if no fixed points in Ω_{Γ} (isolated fixed points inside \mathbb{B}^{2} are OK);
- Can be empty (e.g. when 「 is (non-elementary) and a normal subgroup in a lattice).

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry

Limit set

Complex hyperbolic

Biholomorphisms of \mathbb{B}^{2}

Up to scaling, \mathbb{B}^{2} carries a unique metric invariant under the $P U(2,1)$-action, the Bergman metric.

$$
\mathbb{B}^{2} \subset \mathbb{C}^{2} \subset P_{\mathbb{C}}^{2}
$$

With this metric: complex hyperbolic plane.

- Biholomorphisms of \mathbb{B}^{2} : restrictions of projective transformations (i.e. linear tsf of \mathbb{C}^{3}).
- $A \in G L_{3}(\mathbb{C})$ preserves \mathbb{B}^{2} if and only if

$$
A^{*} H A=H
$$

where

$$
H=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures
Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Equivalent Hermitian form:

$$
J=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Siegel half space:

$$
2 \mathfrak{I m}\left(w_{1}\right)+\left|w_{2}\right|^{2}<0
$$

Boundary at infinity $\partial_{\infty} H^{2} \mathbb{C}$ (minus a point) should be viewed as the Heisenberg group, $\mathbb{C} \times \mathbb{R}$ with group law

$$
(z, t) *(w, s)=(z+w, t+s+2 \mathfrak{I m}(z \bar{w})) .
$$

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

 geometryLimit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

- Copies of $H_{\mathbb{C}}^{1}$ (affine planes in \mathbb{C}^{2}) have curvature - 1
- Copies of $H_{\mathbb{R}}^{2}\left(\mathbb{R}^{2} \subset \mathbb{C}^{2}\right)$ have curvature $-1 / 4$ (linear only when through the origin)
- No totally geodesic embedding of $H_{\mathbb{R}}^{3}$!

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question

Isometries of $H_{\mathbb{C}}^{2}$

structures on the Figure Eight Knot Complement

Classification of (non-trivial) isometries

- Elliptic (\exists fixed point inside)
- regular elliptic (three distinct eigenvalues)
- complex reflections
- in lines
- in points
- Parabolic (precisely one fixed point in $\partial H_{\mathbb{C}}^{2}$)
- Unipotent (some representative has 1 as its only eigenvalue)
- Screw parabolic
- Loxodromic (precisely two fixed points in $\partial H_{\mathbb{C}}^{2}$)
$P U(2,1)$ has index 2 in Isom $H_{\mathbb{C}}^{2}$ (complex conjugation).

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry

Limit set
Complex hyperbolic geometry
Central question

Central question

structures on the Figure Eight Knot Complement

Which 3-manifolds admit a complete spherical CR structure?

In other words:
Which 3-manifolds occur as the manifold at infinity $\Gamma \backslash \Omega_{\Gamma}$ of some discrete subgroup $\Gamma \subset P U(2,1)$?

Silly example: lens spaces! Take 「 generated by

with p, q relatively prime integers (in this case $\Omega_{\Gamma}=S^{3}$).

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Central question

Geometric
structures on the Figure Eight Knot Complement

Which 3-manifolds admit a complete spherical CR structure?

In other words:
Which 3-manifolds occur as the manifold at infinity $\Gamma \backslash \Omega_{\Gamma}$ of some discrete subgroup $\Gamma \subset P U(2,1)$?

Silly example: lens spaces! Take「 generated by

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 \pi i / q} & 0 \\
0 & 0 & e^{2 \pi i p / q}
\end{array}\right)
$$

with p, q relatively prime integers (in this case $\Omega_{\Gamma}=S^{3}$).

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

More complicated examples

- Nil manifolds
- Lots of circle bundles (Anan'in-Gusevski, Falbel, Parker,......)
(open hyperbolic manifolds)
- Whitehead link complement (Schwartz, 2001)
- Figure eight knot complement (D-Falbel, 2013)
- Whitehead link complement (Parker-Will, 201k, $k \geq 3$)
(closed hyperbolic manifolds)
- many closed hyperbolic manifolds (Schwartz, 2007)
- ∞ many surgeries of the figure eight knot (D, 201k, $k \geq 3$)

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
knot
Presentation
Holonomy
Prism picture
Tetrahedron picture
Spherical CR
geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem

More complicated examples

- Nil manifolds
- Lots of circle bundles (Anan'in-Gusevski, Falbel, Parker,......)

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux
(open hyperbolic manifolds)

- Whitehead link complement (Schwartz, 2001)
- Figure eight knot complement (D-Falbel, 2013)
- Whitehead link complement (Parker-Will, 201k, $k \geq 3$)

(closed hyperbolic manifolds)

- many closed hyperbolic manifolds (Schwartz, 2007)
- ∞ many surgeries of the figure eight knot (D, 201k, $k \geq 3)$.

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

More complicated examples

Geometric
structures on the Figure Eight Knot Complement

- Nil manifolds
- Lots of circle bundles (Anan'in-Gusevski, Falbel, Parker,......)
(open hyperbolic manifolds)
- Whitehead link complement (Schwartz, 2001)
- Figure eight knot complement (D-Falbel, 2013)
- Whitehead link complement (Parker-Will, 201k, $k \geq 3$)
(closed hyperbolic manifolds)
- ∞ many closed hyperbolic manifolds (Schwartz, 2007)
- ∞ many surgeries of the figure eight knot (D, 201k, $k \geq 3$).

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

Negative result

(not all manifolds)

- Goldman (1983) classifies T^{2}-bundles with spherical CR structures.

For instance T^{3} admits no spherical $C R$ structure at all (complete or not!)
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR
 geometry
 Limit set
 Complex hyperbolic
 geometry
 Central question

Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

CR surgery (Schwartz 2007)

structures on the Figure Eight Knot Complement
M a complete spherical CR structure on an open manifold with torus boundary.

If we have

1. The holonomy representation deforms
2. $\Gamma \backslash \Omega$ is the union of a compact region and a "horotube"
3. Limit set is porous

Then ∞ many Dehn fillings $M_{p / q}$ admit a complete spherical CR structures.

Not effective, which p / q work?

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

The figure eight knot

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot
 Presentation
 Holonomy
 Prism picture
 Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

The figure eight knot

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 Presentation
 Holonomy
 Prism picture
 Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Preliminary analysis

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR geometry

Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Preliminary analysis

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux
In particular, ρ_{1} and ρ_{2} are discrete.
$\operatorname{Im}\left(\rho_{1}\right)$ has empty domain of discontinuity (same limit set as the lattice $P U(2,1, \mathbb{Z}[\omega]))$.

Action of $\operatorname{Out}\left(\pi_{1}(M)\right) \rightsquigarrow$ up to conjugation,

$$
\rho_{3}=\rho_{2} \circ \tau
$$

for some outer automorphism τ of $\pi_{1}(M)$ (orientation reversing homeo of M).

The figure eight

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic

Complete structure for 4_{1}.

> Write $$
\begin{array}{l}\text { - } \Gamma=\operatorname{Im}\left(\rho_{2}\right), \\ \\ -G_{k}=\rho_{2}\left(g_{k}\right) .\end{array}
$$

$G_{1}=\left(\begin{array}{ccc}1 & 1 & -\frac{1+\sqrt{(7) i}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) \quad G_{2}=\left(\begin{array}{ccc}2 & \frac{3-i \sqrt{7}}{2} & -1 \\ -\frac{3+i \sqrt{7}}{2} & -1 & 0 \\ -1 & 0 & 0\end{array}\right)$

$$
G_{3}=G_{2}^{-1} G_{1} G_{2} .
$$

- G_{1}, G_{3} unipotent
- G_{2} regular elliptic of order 4.

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot
 Presentation
 Holonomy
 Prism picture
 Tetrahedron picture
 Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary unipotent

Back to Dirichlet domains

To see that ρ_{2} does the job, one way is to study Dirichlet/Ford domains for $\Gamma_{2}=\operatorname{Im} \rho_{2}$.

$$
D_{\Gamma, p_{0}}=\left\{z \in \mathbb{B}^{2}: d\left(z, p_{0}\right) \leq d\left(\gamma z, p_{0}\right) \forall \gamma \in \Gamma\right\}
$$

We will assume $D_{\Gamma, p_{0}}$ has non empty interior (hard to prove!) Key:

1. When no nontrivial element of Γ fixes p_{0}, this gives a fundamental domain for the action of Γ.
2. Otherwise, get a fundamental domain for a coset decomposition (cosets of Stab p_{0} in Γ).

More subtle:

1. Beware these often have infinitely many faces (Phillips, Goldman-Parker)
2. Depend heavily on the center po.

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem

Back to Dirichlet domains

To see that ρ_{2} does the job, one way is to study Dirichlet/Ford domains for $\Gamma_{2}=\operatorname{Im} \rho_{2}$.

$$
D_{\Gamma, p_{0}}=\left\{z \in \mathbb{B}^{2}: d\left(z, p_{0}\right) \leq d\left(\gamma z, p_{0}\right) \forall \gamma \in \Gamma\right\}
$$

We will assume $D_{\Gamma, p_{0}}$ has non empty interior (hard to prove!)
Key:

1. When no nontrivial element of Γ fixes p_{0}, this gives a fundamental domain for the action of Γ.
2. Otherwise, get a fundamental domain for a coset decomposition (cosets of $\mathrm{Stab}_{\Gamma} p_{0}$ in Γ).

Beware these often have infinitely many faces (Phillips, Goldman-Parker)
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question

Back to Dirichlet domains

To see that ρ_{2} does the job, one way is to study Dirichlet/Ford domains for $\Gamma_{2}=\operatorname{Im} \rho_{2}$.

$$
D_{\Gamma, p_{0}}=\left\{z \in \mathbb{B}^{2}: d\left(z, p_{0}\right) \leq d\left(\gamma z, p_{0}\right) \forall \gamma \in \Gamma\right\}
$$

We will assume $D_{\Gamma, p_{0}}$ has non empty interior (hard to prove!)
Key:

1. When no nontrivial element of Γ fixes p_{0}, this gives a fundamental domain for the action of Γ.
2. Otherwise, get a fundamental domain for a coset decomposition (cosets of $\mathrm{Stab}_{\Gamma} p_{0}$ in Γ).

More subtle:

1. Beware these often have infinitely many faces (Phillips, Goldman-Parker)
2. Depend heavily on the center p_{0}.

Poincaré polyhedron theorem

Important tool for proving that $D_{\Gamma, p_{0}}$ has non-empty interior.
Use $D_{F, p_{0}}$ instead of $D_{\Gamma, p_{0}}$ for some subset $F \subset \Gamma$.
[In simplest situations, F is finite].
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

The figure eight

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic
geometry
Central question
Known results
Main theorem
Horotube

Dirichlet/Ford domains

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Combinatorial structure of $\partial\left(\partial_{\infty} D_{\Gamma}\right)$ for the Dirichlet domain domain

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot
 Presentation
 Holonomy
 Prism picture
 Tetrahedron picture

Spherical CR
 geometry

Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube

Combinatorics

Triangle group
Surgery
Rank 1 boundary
unipotent

Combinatorial structure of $\partial\left(\partial_{\infty} D_{\Gamma}\right)$ for the Ford domain

$\begin{array}{ll}1: G_{2} p_{0} & 2: G_{2}^{-1} p_{0} \\ 3: G_{3} p_{0} & 4: G_{3}^{-1} p_{0}\end{array}$

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
knot
Presentation
Holonomy
Prism picture
Tetrahedron picture
Spherical CR
geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube

Combinatorics

Triangle group
Surgery
Rank 1 boundary unipotent

Computational techniques

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry

Γ is a triangle group!

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry

Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

Deformations

structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
 knot

Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group
Surgery
Rank 1 boundary
unipotent

FKR Census

		Zero-dimensional prime components						
		Number(s) of Solutions						
Name	1-D	Ext. Degrees	$\mathrm{PGL}_{3}(\mathbb{C})$	PSLa (\mathbb{R})	$\mathrm{PSL}_{2}(\mathbb{C})$	$\mathrm{PSL}_{2}(\mathbb{R})$	$\mathrm{PU}(2,1)$	Volumes
m003	2	2,2,8,8	20	0	2	0	2	0.6488472 .029883
m004	0	2, 2, 2, 2	8	0	2	0	6	2.029883
m006	2	6, 6, 12, 28	43	1	3	1	15	0.7070310 .7198290 .971648 $1.284485 \mathbf{2 . 5 6 8 9 7 1}$
m007	0	$3,6,8,8,8$	33	1	3	1	15	0.7070310 .8227441 .336688 2.568971
m009	0	$2,4,4,4,6,8$	28	2	2	0	8	0.5074710 .7915831 .417971 2.666745
m010	2	4, 6, 6, 12, 12	38	0	2	0	4	0.2516170 .7915830 .809805 0.9823891 .3234302 .666745
m011	1	3,4,16, 64	87	5	7	3	21	0.226838 0.251809 0.328272 0.397457 0.452710 0.643302 0.685598 0.700395 0.724553 0.770297 0.879768 0.942707 0.988006 1.099133 1.184650 1.846570 2.781834
m015	0	3,4,4,6,6	23	3	3	1	11	0.7943231 .5831672 .828122
m016	1	$3,3,10,50$	66	4	6	4	24	0.296355 0.453403 0.75307 0.886451 1.135560 0.710033 1.505989
m017	3	3,4,6,6,44	63	1	3	1	21	0.5270320 .7943230 .801984 0.8287051 .2529691 .588647 $\mathbf{2 . 8 2 8 1 2 2}$
m019	1	4,4,22, 84	114	6	8	4	24	0.027351 0.062112 0.323395 0.332856 0.347159 0.411244 0.467624 0.524801 0.544151 0.599455 0.638404 0.738805 0.758111 0.798098 0.851139 0.916588 1.101800 1.130263 1.190919 1.263709 1.340255 2.1117762 .944106
Wh. link	0	2, 2, 4, 4, 10, 10	32	0	2	0	14	1.1321961 .6831023 .663862

TABLE 1. Description of the solutions

Geometric
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight
knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

geometry
Limit set
Complex hyperbolic geometry
Central question
Known results
Main theorem
Horotube
Combinatorics
Triangle group

Surgery

Rank 1 boundary unipotent

Other examples

Hyperbolic manifolds with low complexity (up to 3 tetrahedra), and representations into $P U(2,1)$ with

Unipotent and Rank 1,

boundary holonomy.
List from Falbel, Koseleff and Rouiller (2013):

$$
\begin{aligned}
& \mathrm{m} 004=4_{1} \mathrm{knot} \\
& \mathrm{~m} 009 \\
& \mathrm{~m} 015=52 \mathrm{knot}
\end{aligned}
$$

Same seems to work:

- Dirichlet domains with finitely many faces (for well-chosen center)
- The image groups are triangle groups.
structures on the Figure Eight Knot Complement

ICERM Workshop
Exotic Geometric Structures

Martin Deraux

The figure eight

knot
Presentation
Holonomy
Prism picture
Tetrahedron picture

Spherical CR

