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RAMSEY THEOREMS FOR KNOTS, LINKS

AND SPATIAL GRAPHS

SEIYA NEGAMI

Abstract. An embedding f: G —► R of a graph G into R is said to be

linear if each edge f(e) (e G E(G)) is a straight line segment. It will be

shown that for any knot or link type k , there is a finite number R(k) such that

every linear embedding of the complete graph Kn with at least R(k) vertices

(n > R(k)) in R   contains a knot or link equivalent to k .

1. Introduction

A link is a disjoint union of a finite number of simple closed curves in the

three-dimensional Euclidean space R3. In particular, a link with only one com-

ponent is called a knot. A knot k is said to be trivial if k bounds a 2-cell in

R and equivalently if there is a homeomorphism h : R —> R which carries k

onto the unit circle in the xy-plane {(x, y, 0) G R3 : x, y e R} . Also a link k

is said to be trivial if there is a homeomorphism h : R -*R such that h(k) is

contained in the xy-plane. In other words, a trivial link is a union of mutually

unlinked trivial knots.

Two knots (or links) kx and k2 are said to be equivalent or to have the same

knot type (or link type) if there is a homeomorphism h : R -» R such that

//(/c,) = k2. An ambient isotopy of R3 is a continuous map H: R3 x / -> R3

such that //, is a homeomorphism for any / G / and H0 is the identity map,

where / stands for the unit interval [0,1] and Ht : R —* R is a map defined

by Ht(x) = H(x. t). Two links kx and k2 are said to be ambient isotopic if

there is an ambient isotopy H: R x I —► R3 such that Hx(kx) = k2. (See [Ro]

for the terminology of knot and link theory.)

On the other hand, a graph G is a 1-dimensional simplicial complex or

the underlying space of such a complex and each 0-simplex and 1-simplex are

called a vertex and an edge of G, respectively. In particular, the 1-skeleton of

an (n - 1)-simplex is called the complete graph on n vertices and is denoted

by Kn . In other words, the complete graph Kn is a graph such that any two

vertices are joined by an edge. We denote the vertex set and edge set of a graph
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G by V(G) and E(G), respectively. (See [BM] for the terminology of graph

theory.)

A cycle C in a graph G is a cyclic sequence {v0, ... ,vn_x} of distinct

vertices of G such that any two consecutive vertices v¡ and v¡+x, i taken

modulo n , are joined by edge v¡v¡+x and is often regarded as a simple closed

curve in the topological space G. So if one embeds G in R3 by an embedding

/:G-»R , then the image of any cycle in G is a knot, trivial or not, and any

disjoint union of cycles in G forms a link in R3. (We can find a combinatorial

arguments on knots and links in graphs in [Sa].)

We call an embedding /: G -* R3 of a graph G in R3 a spatial embedding

of G and a graph f(G) embedded in R a spatial graph. We shall say that

two spatial graphs are equivalent or ambient isotopic in the same sense as knots

and links.

As a typical phenomenon of spatial embeddings of graphs, Conway and Gor-

don have proved the following theorem in [CG]:

Theorem 1 (Conway-Gordon [CG]).

(i) Every spatial embedding of K6 contains a nontrivial 2-component link.

(ii) Every spatial embedding of K1 contains a nontrivial knot.

This theorem says nothing about the types of such a link and a knot. What

can we say if their link and knot types are specified? Our purpose in this paper

is to answer this question.

We would like to establish theorems in the same style as above. It is however

impossible in general.  For if one makes a local knot on each edge of Kn in

R , then any cycle in Kn must have a specified knot type as its connected sum

factor. So we should restrict spatial embeddings of graphs so as to forbid such

a phenomenon. A spatial embedding /: G —> R is said to be linear if fi(e)

is a single straight line segment for each edge e e E(G). Clearly, any linear

spatial embedding of a graph contains no local knot.

By Robinson's geometric arguments in [Rb], it can be shown that every linear

spatial embedding of K6 contains a pair of linked triangles, which is equivalent

to the Hopf link. Also Brown [Br] proved that every linear spatial embedding

of K-j contains a trefoil knot. We shall show a more general answer to our

question, as follows:

Theorem 2. Given a link k, there is a finite number R(k) such that any linear

spatial embedding of the complete graph Kn with n > R(k) contains a link

equivalent to k.

We call such a minimum R(k) in Theorem 2 the Ramsey number of a link k

with respect to equivalence and use the same notation R(k) for it. For example,

R(k) = 6 for the Hopf link and R(k) = 7 for the trefoil knot by Robinson's and

Brown's results, respectively. (Since any cycle consists of at least 3 edges, it is

obvious that R(k) > 6 for every nontrivial link with two or more components.
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Figure 1

Figure 1 shows a linear spatial embedding of K6 , ambient isotopic to the one

given by Figure 1 in [CG], which contains no nontrivial knot and hence R(k) >

7 for every nontrivial knot.) The Ramsey numbers will be however very large

in general.

Also we can define the Ramsey number R+(k) of a link k with respect to

ambient isotopy in a similar way and can show its existence, modifying slightly

the proof of Theorem 2.

Theorem 3. Given a link k, there is a finite number R+(k) such that any linear

spatial embedding of the complete graph Kn with n > R+(k) contains a link

ambient isotopic to k.

Let k be the mirror image of k . Then the following inequality follows from

the definition of Ramsey numbers of links.

R(k) = R(k) < R+(k) = R+(k).

In particular if k is amphicheiral, that is, if k is ambient isotopic to k , then

R(k) = R+(k), but this equality does not hold in general.

For example, R(k) = R+(k) for the figure-eight knot k but this value is

unknown. On the other hand, Figure 2 shows a linear spatial embedding of

K7, ambient isotopic to the one given by Figure 7 in [CG], which contains only

one nontrivial knot and the unique nontrivial knot 1234567 is equivalent to the

trefoil knot. Since the trefoil knot is not amphicheiral, any linear embedding of

Kn with n > R+(k) has to contain at least two nontrivial knots, one of which

is the right-handed trefoil and the other is the left-handed one. Thus, R+(k)

exceeds 7 (= R(k)) and also its value is unknown for the trefoil knot k .

Furthermore, we shall discuss the Ramsey number of spatial graphs and es-

tablish the most generalized version as follows.

Theorem 4. Let Gx, ... , Gs be s spatial graphs. Then there is a finite number

R(GX,... ,Gf) such that if n> R(GX,..., Gf), then any linear spatial embed-
ding of the complete graph Kn with an arbitrary partition E(Kf = E{ U • • • UE

contains a spatial graph H with E(H) c E¡ which is ambient isotopic to a

subdivision of G¡ for some i.

A partition of the edge set E(Kn) = Ex U • • • U Es is often interpreted as

an edge-coloring of Kn  with s colors, so this theorem with s = 2 implies
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Figure 2

that we can always find either a red Gx or a blue G2 in a sufficiently large

complete graph with edges painted red and blue at random. If one omits all

topological conditions and replaces "ambient isotopic" with "isomorphic", then

Theorem 4 will be translated into the theorem for the generalized Ramsey num-

ber r(Gx, ... , Gf of graphs Gx, ... , Gs in the combinatorial sense. (See [BM,

p. 109].) That is why we entitled this paper Ramsey theorems for... .

In fact, we shall use Ramsey's original theorem [Ra], as follows, to prove

Theorems 2, 3 and 4. Here we shall denote by (x) the family of /-element

subsets of X.

Theorem 5 (Ramsey [Ra]). Let t,k, ax, ... , ak be positive integers. Then there

exists a finite number R(t ;k; ax, ... , ak) such that if a finite set X contains

at least R(t ; k; ax, ... , ak) elements, then for any partition (f ) = Xx U- • ■uXk

of the family (*), there is an a -element subset A of X, for some i, such that

(1)CX¡.

This is one of the most famous theorems in combinatorics and is the starting

point of what is called Ramsey theory, which has produced various results in

not only combinatorics but also algebra, geometry, topological dynamics and so

on. (See [GRS] for example.)

An application of Ramsey's theorem to knot theory can be found in [Mo],

where Motzkin showed the existence of a bound R such that every general

position set with at least R points contains a knotted polygon. (Now we know

that the bound R is equal to 7 by Brown's result [Br].) He discussed the

existence of a certain special position in space, using Ramsey's theorem, and

found an octahedral position in a sufficiently large general position set. It is clear

that any octahedral position contains a knotted hexagon, which is equivalent to

the trefoil knot.
The strategy of our proof in §2 also is to find such a special position that

contains a given knot or link. However, our problem is not so easy since there

is not an explicit model like an octahedron, and is very delicate since we have
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to find there an ambient isotopic image but not a rigid configuration. Then we

divide the proof into four steps with local targets.

We shall work in the PL category, so every embedding is a tame one and hence

every spatial embedding of a graph G is isotopic to a linear spatial embedding

of a subdivision of G.

2. Proofs

Throughout this section, we shall prove Theorems 2, 3 and 4. Our proof

consists of four steps with the following outline.
_i_ 'i 2 1

Let T be the set of points in R with xyz-coordinates (x, x , ±x ) for

positive real numbers x G R

r± = {(x,x2,±x3)GR3:x>0}.

We call T+ the positive curve and T~ the negative curve. It is well-known that

every subset A on these curves T* is in general position and hence any two

line segments with ends in A do not meet in their inner points. This implies

that the union of line segments which join all the pairs of points in A yields a

linear spatial embedding of Kn if A consists of n points.

First, we construct a given link k with broken lines whose corners lie on

T+ . We shall say simply that we put k on T+ , meaning this construction. In

this case, the projection of such k to the xy-plane has only positive crossings

(see Figure 3). So we have to discuss whether or not there is actually such a

projection of k in the xy-plane, considering plat representations of k, before

we put k on T+ . Next, we find the same configuration as k put on T+ in any

general position set of sufficiently large size, using Ramsey's theorem. These

three steps also proceed for spatial graphs with little modification. In the final

step, we shall conclude the three theorems, comparing their difference.

Step 1. Any spatial graph has aplat representation with only positive crossings.

Put 2« vertical lines Lx, ... , L2n of the same length on the xy-plane and

join each neighboring pair L2/ , and L2i with arcs at the top and bottom so

as to make n long circles, called a trivial plat representation, which presents a

trivial link with n components. We give each line L¡ the upward direction

and replace several parallel parts with positive or negative crossings as given in

Figure 3. (These names are contrary to the usual sense but give the consistency

to our later terminology in this paper.) The resulting figure exhibits a link k

in R . Then we call such a representation an n-plat representation of k . It is

clear that any link has an «-plat representation for some n .

For spatial graphs, we modify the trivial plat representations as follows. Let

dx, ... , d  be positive integers which sum up to an even number 2m = dx-\-h

dp . We join parallel lines Lx, ... , L2n (n > m) in pairs at their bottoms by

arcs as well as for a plat representation of a link. On the other hand, we identify

the top ends of d¡ lines in order to make maximal points as vertices of degree
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positive negative

Figure 3

d¡ and join the remaining n - m pairs of L2m+X, ... , L2n by arcs. This is a

trivial plat representation of a spatial graph, which is a union of paths with self-

loops and a trivial link. Adding crossings to a trivial plat representation, we get

an «-plat representation of a spatial graph with degree sequence (dx, ... , d ).

Given a spatial graph G, move all the vertices and all the local maximal

points on edges upward to the top and next move all the local minimal points

to the bottom. Then an «-plat representation of G as above will be obtained

for some « . An «-plat representation is said to be positive (or negative) if it

has only positive (or negative) crossings. Here we shall show that every spatial

graph has a positive plat representation.

Let P(G) be any plat representation of a spatial graph G. After ambient

isotopic modification, we can assume that no two of crossings in P(G) lie

on the same horizontal level. If P(G) includes a negative crossing, then we

choose the lowest one and turn the lower part of P(G) around the vertical axis

through the crossing. The number of positive crossings has increased but that of

negative crossings has decreased by one in the resulting representation. In fact,

one negative crossing has been replaced with precisely (« - 1)(2« + 1) positive

crossings. We can eliminate all the negative crossings by repeating this process

and the claim of Step 1 follows.   D

Figure 4

Step 2. Any spatial graph G is ambient isotopic to a linear embedding of a

subdivision of G whose vertices lie on the positive curve T+ , that is, we can put

G on T+.
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plat bottoms

Figure 5

We shall construct the desired linear embedding inductively, relying upon a

positive plat representation P(G) of G. Notice that the projections of two

directed edges axa3 and a2a4 (ax, a2, «a3, a4 e T+) cross each other in the

xy-plane and their crossing is positive if and only if four points ax, a2, a3 and

a4 lie on T+ in such an order that their x-coordinates increase.

It is easy to put any spatial graph with a trivial plat representation on T+ . For

example, Figure 5 gives the desired subdivision G+ of a graph G with a trivial

3-plat representation P(G). The original graph G has only two vertices of

degree 1 and 5 while G+ has seven vertices, three and two of which correspond

to the minimal and maximal points of the plat representation P(G). We call

the former plat bottoms, the latter plat tops and the others intermediate vertices.

Furthermore, we divide V(G+) into two classes at some height and call them

the lower and upper classes, respectively, in order to describe the following con-

struction of G+ . We choose the height for a trivial «-plat representation so that

the lower class consists of only all the plat bottoms and the upper class contains

the other vertices including all the plat tops. In process of our construction, we

will add new intermediate vertices to the lower and upper classes, depending on

their height.

Assume that G has a positive «-plat representation P(G) and let H be

the spatial graph with the positive «-plat representation P(H) that is obtained

from P(G) by replacing its lowest crossing with parallel vertical segments. Even

if P(H) has an inessential crossing, we do not cancel such a crossing so that

P(H) differs from P(G) in only one crossing at their bottoms. Thus, also P(G)

is allowed to have some inessential crossing. We need this assumption to carry

out our inductive construction below. By the induction hypothesis, there is a

linear embedding of a subdivision H+ of H such that V(H+) c T+ and an

ambient isotopy deforms it into the plat representation P(H) of H. We shall

construct the desired spatial graph G+ for G from this spatial graph H+ .
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Furthermore, we can suppose the following four conditions (i) to (iv) for

H+. Let ux, ... ,un be the plat bottoms of H+ numbered so that their x-

coordinates increase in this order and let u¡t¡ and u¡s¡ be the two directed

edges incident to u¡ which go upward from u¡ to left and right, respectively.

(i) Any vertex in the lower class is lower than any vertex in the upper class

of V(H+).
(ii) The end vertex t¡ belongs to the upper class of V(H+).

(iii) If s¡ does not belong to the upper class of V(H+), then s¡ lies on T

between u¡ and uj+x and is incident to a vertex in the upper class of V(H+).

(iv) There is an ambient isotopy {Ht: t e 1} which deforms back H+ into

P(H) as follows: First push off only intermediate vertices of V(H+) slightly

from T+ . Next move down those in the upper class and move up those in

the lower class so as to get an isotopic image of P(H) as H+ with many

crossings cancelled. In this second step, we assume that there is a small tubular

neighborhood U(T+) which the isotopy keeps unchanged. Finally, arrange the

plat bottoms and tops to horizontal levels and we get the precise form of P(H).

(This process should be understood with the arguments below.)

Let L¡ and L¡ , be the two strings of P(H) which the additional crossing

of P(G) switches. (They are parallel vertical lines if P(H) is a trivial plat

representation.) If / is an odd number, then they reach the same minimal

point of P(H). In this case, we split the corresponding plat bottom u,i+x)/2 on

T+ into two vertices u" and 5, in such a small neighborhood N(u(i+X),2) that

no crossing change occurs in other places, and join them by a path {u", t, u , s]

of length 3 with u e N(u,i+X),2), as Figure 6. (In Figure 6, / does not lie on

r+ , but it actually should.)
We regard u as a new plat bottom and add u" and 5 to the lower class as

intermediate vertices while / is placed at the highest point in the new upper class

as an intermediate vertex. It is obvious that the resulting graph G+ satisfies (i)

to (iii). To obtain P(G) from G+, first we push up u" slightly and move /

"(z+l)/2

Figure 6
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RAMSEY THEOREMS 535

downward into N(u,¡+X),2). Then we can deform G+ by the isotopy {H¡: t e

1} for H+ , keeping the additional crossing within N(u,¡+Xs,f). This ambient

isotopic deformation satisfies (iv) and carries G+ to P(G).

Now suppose that / is an even number. Then L¡ and Lf+, go down to

the distinct neighboring plat bottoms u = u¡,2 and v = u,¡,2s+x, respectively.

There may be several intermediate vertices of H+ between u and v on T+ .

First we split u into two non-adjacent vertices u and u" and v into v and

v" and next join u to v' by an edge and u" to v" by a path of length 2

via an extra top vertex /. The resulting graph G+ is a subdivision of G as a

graph. (Figure 7 illustrates the above process but does not give a real picture.

There may not be an intermediate vertex 5 = s¡,2 between u and v . In this

case, u is joined directly to "2".)

The top vertex / should be the highest in the upper class of V(G+) but

is not a plat top. Then edges u"t and v"t pass over each crossing and u'v'

passes under all the crossings on it since each edge crossing u'v' joins one

intermediate vertex and another vertices higher than v . We regard u , v" as

new plat bottoms and u", v as intermediate vertices in the lower class. It is

clear that (i), (ii), and (iii) hold for C7+ . An ambient isotopy for G+ with (iv)

can be obtained as follows. First push off all the intermediate vertices including

u", v' and / from T+ . Next simplify the broken line from v" to "2" through

/, u" and 5 so that afterward it joins v" directly to "2" and smooth the path

from u to "3". Now the additional crossing has been settled near v" in the

tubular neighborhood U(T+). Then deform it by the same isotopy as for H+ ,

fixing U(T+). This process carries G+ to P(G).

In either case, the four conditions (i) to (iv) have been preserved. Therefore,

we can get a linearly embedded graph G+ with V(G+) cF+ which is ambient

isotopic to P(G) and hence to G, repeating these deformations downward.   D

Step 3. For any positive integer «, there is a finite number r(n) such that

every general position set of at least r(n) points in R3 contains a positive or

negative position subset of « points.

Figure 7
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We define real numbers D4(vx ,v2,v3, vf) and D3(vx, v2, v3) for vectors

v¡ = (x¡, y¡, z¡) in R   as the following two determinants:

D4(vx, v2,v3, vf =

D3(vx,v2,vf =

x3    X,

y2-yx   y3-yx

x4-xx

y2-yi y^-y: y*-yi

The values of D4(vx, v2, v3, vf and D3(vx, v2, vf) depend on the order of

vectors v¡ in general.

Let A = [ax, ... , an) be a set of finitely many points in R3. If A has

the following five properties (i) to (v) for certain right-handed (or left-handed)

xyz-coordinates, then A is said to be in positive position (or negative position).

(i) A is a totally ordered set in the lexicographical order with respect to

xyz-coordinates.

(ii) A is in general position in R3.

(iii) The projection p(A) is in general position on the xy-plane R , where
3 2

p : R  —> R   is the orthogonal projection.

(iv) D4(a¡, üj , ak , a¡) > 0 for any 4-element subset E = {a¡, a¡, ak, a¡}

with a¡ < a¡ < ak < a¡.

(v) D3(a¡, üj, ak) > 0 for any 3-element subset F = {a¡,aj,ak} with

a¡ < üj < ak .
We shall often write simply DfE) and DfF) for Dfa¡, «3;., ak, af and

D3(a¡, a¡, ak), respectively, since elements of E and F have the specified

ordering under the order of A .

For example, every finite set on the positive or negative curve Y is in pos-

itive or negative position, respectively. We shall show the geometric meaning

of positive position in the next step and find here a positive or negative posi-

tion set of arbitrary size in a sufficiently large general position set combinatori-

ally, using Ramsey's theorem. In particular, we shall use R(4;2; N, N) and

i?(3;2;«, «).
Let X be a finite general position set in R . Then we can choose a right-

handed xyz-coordinate system for which p(X) is in general position on R

and make X totally ordered lexicographically with respect to xyz-coordinates.

Thus, every subset of X satisfies (i), (ii) and (iii) in the definition of positive

and negative positions.

Now we separate the family (x) of 4-element subsets of X into two classes

as follows. Let E = {a¡, üj, ak, af be any element in iff). Since X is in

general position, D4(E)^0. So we set X+ and X_ to be the classes consisting

of all the 4-element subsets E with D4(E) positive and negative, respectively.
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Then (x4) = X+ U X_ and l+nl_=0. By Ramsey's theorem, if X contains

at least R(4; 2; N, N) points, then there is an ./V-element subset Y in X such

that either X+ or X_ contains (Y4).

Let F = {a¡, a¡, ak} be any 3-element subset in Y. Then D3(F) ^ 0 by

condition (iii). Thus the family (3) of 3-element subsets of Y splits into

Y+ and Y_ which consist of 3-element subsets F of Y with D3(F) positive

and negative, respectively. By Ramsey's theorem again, if Y contains at least

R(3; 2; «, «) elements, then there is an «-element subset A in Y such that

either Y+ or Y_ contains (3).

Therefore, if X contains at least R(4 ; 2 ; R(3 ; 2 ; «, «), R(3 ; 2 ; «, «)) el-

ements, then we can find an «-element subset A in X which satisfies one of

the following four:

E £ (f ' ('•©)■

(-+)      D4(E) < 0     ( E e ,

A\\ ,    „ ,„,   .„     („_ (A
4

A

(+-)      D4(E)>0    [Eel"))    and   D3(F)<0    ( F e

))     and   D3(F) >0     (^(3)) •

(—)      D4(E)<0    [Ee (.))    and   D3(F)< 0    [F e
A\\ .    ^ twn   . „     („     (A

4

It is obvious that ^4 is in positive position if ,4 satisfies condition (++).

In the other cases, we can conclude that A is in positive position ((—))

or negative position ((H—) or (—h)), by choosing x-, y- and z-axes suit-

ably. Thus, the desired number r(n) exists and can be chosen not to exceed

R(4; 2;R(3; 2; n, «), R(3; 2; n, «)).   D

Step 4. Conclusion.

Let G be a spatial graph and f:Km —► R3 any linear embedding of the

complete graph Km on m vertices. The number m will be adjusted later to

each theorem. We may assume that f(V(Km)) is in general position.

Let G+ be the linear spatial graph constructed in Step 2, which is ambient

isotopic to a subdivision of G and set « = |F(C7+)| to prove Theorem 2. By

the previous arguments, if m > r(n), then fi(V(Km)) contains a positive or

negative position set A = {ax, ... , an) of size « .

When A is in positive position, we may assume that A satisfies condition

(++) in Step 3 for certain right-handed xyz-coordinates and that a, < • • • <

an . Then A has the following three properties:

(i) The « points p(ax), ... , piaf) lie on the boundary of their convex hull

Ci on the xy-plane R   counterclockwise in this order.

(ii) The orthogonal projection of the linear spatial complete graph over A

on the xy-plane has only positive crossings.
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(iii) The projections of two directed edges a¡ak and a-at cross each other

in the xy-plane and their crossing is positive if and only if a¡ < a¡ < ak < a¡.

This is the geometric meaning of positive position. If A is in negative position,

then its mirror image is in the same configuration as above.

Let vx, ... ,vn be the vertices of G+ which lie on T+ upward in this order.

We define a bijection h : V(G+) —> A by h(v¡) = a¡ (i = I, ... , n) and extend

it to a graph isomorphism h: G+ —> H between G+ and a subgraph H in

the complete graph over A. Suppose that A is in positive position. Then

both spatial graphs G+ and H have projections with only positive crossings

on R and two edges p(v¡)p(vk) and p(v¡)p(v¡) cross each other if and only

if their images p(a¡)p(ak) and p(aj)p(af do. Therefore, C7+ and H are

ambient isotopic and h extends to an orientation-preserving homeomorphism

of R . On the other hand, if A is in negative position, then G+ is ambient

isotopic to the mirror image of H and h extends to an orientation-reversing

homeomorphism of R . This implies that R(G) < r(n). If we restrict G to

be a knot or link k, then Theorem 2 will be obtained.

In the same way as Step 2, we can put G on the negative curve T~ and

get a linear spatial graph G~ , ambient isotopic to a subdivision of G, whose

vertices lie on T~ . Now set n = max{\V(G+)\, \V(G~)\} to prove Theorem 3.

If m > r(n), then there is a positive or negative position set A of « points in

fi(V(Km)), again. We find G+ in A when A is in positive position and G~ in

A when A is in negative position. In either case, f(Km) contains a subgraph

ambient isotopic to a subdivision of G, whose vertex set may not coincide with

A , and hence R+(G) < r(n).

Let C7* and G~ be linear spatial graphs which are ambient isotopic to

subdivisions of G¡ and whose vertex sets are in positive and negative posi-

tions, respectively. Set n¡ = max{\V(G*)\, \V(G~)\) to prove Theorem 4.

Now we use the Ramsey number R(2; s; r(nx), ... , r(nf) and assume that

m > R(2 ; s; r(nx), ... , r(nf). Then every linear embedding of Km with edges

colored by 5 colors contains a monochromatic K, , for some /' as its sub-

graph by Ramsey's theorem and this monochromatic Kr{n) contains a subgraph

ambient isotopic to a subdivision of G¡.   D

3. Estimation of Ramsey numbers

In this section, we shall estimate rough bounds for the Ramsey numbers R(k)

of knots and links, using the following numerical invariants.

The crossing number of a link k , denoted by cr(k), is defined as the min-

imum number of crossings taken over all the projections of k . For example,

the knot and link tables in [Ro] give us the classification of knots and links with

respect to their crossing numbers. In this table, the Hopf link, trefoil knot and

figure-eight knot are denoted by 2X, 3, and 4X , respectively, and these nota-

tions mean that cr(22) = 2, cr(3,) = 3, and cr(4,) = 4. Clearly, cr(0) = 0 for

the trivial knot 0.
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A<^
trivial trefoil        ^ ^"-A
tnvial figure-eight

Figure 8

Here, we define the broken line number of a link k as the minimum number

« such that a polygonal curve or a union of polygonal curves with « edges

realizes k and denote it by bl(«V). For example, bl(0) = 3 for the trivial knot

0 and bl(2j) = 6 since the Hopf link 2, can be realized as two linked triangles.

Also we can show that bl(3¡) = 6 and bl(4t) = 7, classifying polygonal curves

with a few edges as below.

Theorem 6. There are precisely three spatial polygons with seven edges, given by

Figure 8, up to ambient isotopy preserving the linearity of edges and they are

equivalent to the trivial, trefoil and figure-eight knots, respectively. In particular,

the first two can be derived from a spatial hexagon.

Proof. First deform a polygonal knot k slightly so that its vertices are in general

position and suppose that k cannot be obtained from a polygon with six edges

by subdividing one edge and bending it. (The first two in Figure 8 are such

excluded types.) Then each quadruple of vertices forms a tetrahedron and if k

runs along two edges of a face of the tetrahedron, the face has to be pierced by

another edge of k . Under this situation, we can construct only the third one in

Figure 8 as k. It is a tedious routine to see this fact, so we shall omit it. (See

[CF, p. 11, Exercise 2].)    G

If a link k is contained in a linear spatial graph, then it forms a union of

polygonal curves. Thus, the broken line number hl(k) is an obvious lower

bound for the Ramsey number R(k). On the other hand, we can show lower

and upper bounds for hl(k) in terms of the crossing number cr(k) as follows.

Theorem 7. (i) If a link k is not equivalent to the trivial knot,

5 + V25 + 8(cr(fc)-2)^uu^

(ii) If a link k has neither the Hopf link as a connected sum factor nor a

splittable trivial component, then

hl(k)<2cr(k).

Proof, (i) Suppose that k admits a polygonal representation Q with « edges

and that there is an edge e0 which does not lie on a triangle component of Q.
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Then we move the polygon Q so that e0 stands vertically (or in parallel to the

z-axis) and the others do not. Consider the orthogonal projection of Q to the

xy-plane and count the number of crossings in p(Q), where p:R3-»R2 is the

projection map. Since the edge e0 projects to a single point, p(ef¡ contains

no crossing and p(Q) consists of « - 1 edges. Each edge of p(Q) contains

at most « - 4 crossings since any three consecutive edges do not cross one

another. Thus, p(Q) contains at most (« - 1)(« - 4)/2 crossings and we have

the inequality

in-l)¡n-4)>crjk).

Solving this, we get the first inequality in the theorem if Q has a component

with at least four edges. When Q consists of only / triangles, clearly hl(k) = 3/

and any two components have at most two crossings in common. Thus,

cr(k)<t(t- 1).

In this case, the inequality of (i) still holds if / > 2 and k is equivalent to the

trivial knot if / = 1.
(ii) Let G be the 4-regular graph on the xy-plane obtained from a minimum-

crossing projection of k by regarding each crossing as a vertex of degree 4 and

let G' be the graph obtained from G by replacing each pair of multiple edges

with a single edge. Then G' is a simple graph with vertices of degree 3 and 4.

(If k had a splittable trivial component, then G would have a part with no

vertex and would be a graph no longer.)

It is well known that every graph embedded in the plane can be represented

as a graph with each edge a straight line [Fa, Sa, Wa]. In our terminology, G' is

ambient isotopic to a linear embedding G" in the plane. Then split each vertex

of G" into an upper and a lower point in R3 and join them by straight lines

naturally corresponding to edges of G. The resulting figure forms a union of

polygons Q in R   which projects precisely to G" .

If Q has self-intersection, then such a crossing point lies on two edges con-

tained in one vertical plane and these edges project to an edge of G" which

corresponds to a pair of multiple edges of G. We can however push them off

slightly so as to eliminate the crossing and get a piecewise linear representation

of k as a slightly modified Q. (Notice that no vertical plane contains three

edges of Q. Otherwise, the part of k corresponding to these three edges would

form a connected sum factor equivalent to the Hopf link.)

Now we count the number of edges of Q which coincides with that of G.

Since G is a 4-regular graph, we have 2\E(G)\ = 4\V(G)\ and \V(G)\ = cr(k)
by the assumption of G. Thus, k can be constructed as a union of broken

lines with 2cr(k) edges and hence hl(k) < 2cr(k).   D

For example, the left hand of the inequality in (i) exceeds 5 if cr(A:) = 3.

Thus, we can conclude that bl(3,) = 6 by only the above theorem. However,

if we had never taken account of the edge e0 standing vertically, then our

conclusion would be that bl(3, ) — 5 or 6. If we can find many edges which can
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be in parallel to one another in a polygonal representation of a link k , then the

lower bound for hl(k) will be improved.

Corollary 8. Let k be a link which has an m-plat representation with c+ positive

crossings and c_ negative crossings. If k is not equivalent to the trivial knot,

then we have the following inequalities:

5 +v/25 + 8(cr(/c)-2) < R{k) ^ r{3{m + c+ + c_(m _ 1)(2w + 1))} _

Proof. The left inequality follows immediately from Theorem 7. To show the

right inequality, recall the setting of « in Step 4, which has been chosen to be

the number of vertices of G+ with vertex set in positive position. In Step 1,

we replaced each negative crossing with (m - l)(2m + 1) positive crossings,

starting with a given m-plat representation of k, and get a positive m-plat

representation with c+ + c_(m - l)(2m + 1) crossings. In Step 2, we made

three new vertices for each positive crossing to put k on T+ , starting with a

trivial m-plat representation. Such a trivial m-plat representation on T+ has

precisely 3m vertices if we confine the object to a knot or link. Thus, the

resulting polygonal k has at most 3(m + c+-l-c_(m-l)(2m-l-l)) vertices and

this number should be chosen as the parameter « in r(n).   D

Also we get an upper bound for R+(k) by similar arguments

R+ik) < r(3(m + max{c+ , c_) + (m- l)(2m + 1) x min{c+, c_})).

This is not however so worthy since the values of the original Ramsey numbers

are unknown.
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