free generators of n,(#,) are also free generators for =,(%,4,), for in each

case there is a deformation retraction of &, ; onto &,,.

In Cases (4), (5), (6) the old boundary curve is replaced by two or three
new ones, some of which may be spanned by discs in & — (#, U A, ).
When these discs are added the result is replacement of the old boundary
curve by (a) one, (b) two, or (c) three new ones. In Chse (a)-the.free generators
of n,(&,) are also free generators for n,(% ., 1) by the same argument as
above. a

In Case (b) we get one new generator. Recall that free generators for
7,(%,) are found by collapsing &, onto a bouquet of circles 4,,. It is clear
that &%,,, can be collapsed onto 4, plus one new edge (corresponding
to A, 1), hence the free generators of (%) will serve as free generators for
T {& ,+1) In conjunction with one new generator which passes through
A, . 1. In Case (c), which can only arise from (6) we get two new generators
passing through A, ,.

This completes the proof of the claim.

It follows that there are nested fiee presentations of m,(F,), 7,(Z 2),
7 (%3), ..., and hence a free presentation of =,(#), by the concluding
argument of 4.1.7. O

Exercise 4.2.2.1. Construct surfaces to realize the free groups on 1,2,3,... and a
countable infinity of generators.

4.2.3 Wirtinger Presentation of Knot Groups

A knot A is a simple closed polygonal curve in R3. 4" of course need not be
an actual polygon, but only the image of one under a homeomorphism of all
R? (this is to exclude wild embeddings, see 4.2.6). During the nineteenth
century the study of knots and their classification was pursued on an ex-
perimental basis, but with the advent of the fundamental group decisive
results could be obtained for the first time. The key observation is that when
2 is a trivial knot (isotopic to the circle in R?) the group of its complement is
infinite cyclic. Thus if we can show that the knot group m,;(R® — ) is not
infinite cyclic for a particular knot 4~ we have a topologically sound proof
that " is not trivial.

The first method for computing knot groups was introduced by Wirtinger
around 1904 in his lectures in Vienna, but not given wide circulation until
its publication in Tietze 1908. We begin with intuitive explanation of the
method.

Any knot " can be given by a projection on the plane with no multiple
points which are more than double, and with indication being given, at
each double point, which branch of % is uppermost. Figure 156 shows a
projection of the trefoil knot. The double points are called crossings. If we
break the lower branch at each crossing we obtain a finite set of arcs ¢;,

Figure 156

and it is intuitively clear that 7 (R® — &) is generated by loops a; which |
pass around these arcs. Thus we have as many generators as there are
crossings. We choose an orientation for the knot J, and then orient the
generators g; around the arcs «; by the right-hand screw convention (Figure
157). It is also convenient to order the subscripts to follow a circuit round
A, so that the lower arc o; into a crossing is followed by the arc o, out of -
the crossing. Referring to Figure 158, we see that for the crossing of type (1)
the curve a;a; 'a;34 a; contracts to a point, hence we have the relation

a;a; alﬂa =1 or a;q = 410
For the crossing of type (2) we have
-1 -1 _ 1 .
aiajai+1aj = or a;a; = ajaiH.

(The other two possibilities correspond to the opposite orientation of &,
and hence give relations of one of these two forms.)

LIES

Figure 158




4.2.4 Proof of the Wirtinger Presentation

We now give a rigorous derivation of the presentation using the Seifert-Van
Kampen theorem.

We can assume that each arc o; of the knot ¢ lies in the plane z = 1
except for a vertical segment at each end which goes down to z = 0. The
final point of «; can then be joined to the initia] point of o;, ; by a segment

B in the plane z = 0 passing under the uppert 4rc of the crossing «;, to
complete the knot . We now remove from R® the “tunnel” neighbourhood
A of A" swept out by a cube of side ¢ which travels with its midpoint on
A and faces parallel to the afes, where ¢ is small enough to ensure that
R® — ./ is a deformation retract of R® — 2 (Figure 159). R® — A& can
now be expressed as the union of open sets .« and % which reflect the genera-
tors and relations, respectively, of =;(R> — 4.

d’ -9/,' +1

/4 LT, ’
]

4.

Figure 159

o = {z >0} — N has a deformation retraction onto a bouquet- of
circles ay, ..., a,, where g; is a loop passing under the tunnel &f; containing
«;. The reader may become more convinced of this by first deforming o
so that the “hollows™ £; containing the f ; are pressed down to z =0,
then pulling the tunnels «; into parallel with each other, as in Figure 160
(cf. the cube with holes in 3.3.2).

a,
a,

o, o,

Figure 160

Hence 7,() = <ay, ..., ay; —).

B = {z < ¢/2} — .4 is an open half-space with “trenches” containing
the segments %; dug out of it. It is clearly simply connected, so n,(%) ={1}.

A B ={0<z<¢g2} — A is an infinite plate with n holes in it (the
upper halves of the trenches), hence

(2 N B) = free group of rank n.

The typical generator of n,(& n %), a circuit round a trench (Figure
161), has the form a;aj 'a;Ya; in n () (or a;a;a;'a; "t for the second

. type of crossing) and 1 in =,(%). Thus the Seifert-Van Kampen theorem

gives precisely the Wirtinger relations for

(U F) = (R® — N) = m(R® ~ A). (]
t
e G
oA —> l Sig—>

~J L

Figure 161

Exercise 4.2.4.1. Show that any one Wirtinger relation is a consequence of the re-
mainder. (Suggestion: Instead of using 4 to seal the tunnels ; at the bottom of =7,
use a separate open set %; to seal each #;, where % is an open cube with %; removed
from its top. Then show

LR}~ N)=n (A UG, U---UE,)

= (L VE VUG VG YV UEB))




XERCISE 4.2.4.2. Generalize the Wirlinger method to compute =, (R® — %), where ¢ is
ny graph embedded in R3. Show in particular that the relation at a vertex of degree
has the form

ap @, - a;, =1

sheng; ., ..., o is the clockwise sequence of edges into the vertex.

-2.5 The Simplest Knot and Link

Ve now compute the groups for the trefoil knot and the two-crossing link.
(i) The two-crossing link (Figure 162). At X we read off the relation

-1 -1
a,aia; a; =1 or aa, = aa,

Figure 162

nd at Y we find the same relation. Thus the group of the two-crossing
nk is

{ay, az; aya; = axa;)

r the free abelian group of rank 2. The group of (R3-two unlinked circles)
i the free group of rank 2 (why?) and hence we have a proof of the non-
‘iviality of the link.
(ii) The trefoil knot (Figure 163). At X we read off

ajaztayta; = 1. 6))
tY

aza; ‘ayta, = 1. )
tZ

a,aj‘tazta; = 1. )

Figure 163

Solving (1) for a; and substituting the result in (2) and (3) we find that each
yields the equation

30,03 = Az434;. 4
It follows that
(Clzasaz)2 = (azazas)a, a3 a;) = (a3a.2)3

which we write
a? = b? ®)

by setting a = a,asa,, b = aza,. But a, =ab™', a3 = b%2a~! so a, b
are in fact generators and (4) is a consequence of (5). Thus we have the
presentation

Gy s = <a,b;a = b*)

for the group of the trefoil knot.

We now investigate whether G,_; is infinite cyclic. Notice that the group
S, of permutations on three symbols is also a model of the relation a? = b,
namely, take

a=(12), b=(123).

Hence any relation in G, j is also valid in Sy under this interpretation of
a, b. It follows that ab = ba is not a relation of G, 3, since ab # ba in S;,
and therefore G, 5 is not infinite cyclic because all elements commute in
the infinite cyclic group. (The representation of G, 3 by S5 is due to Wirtinger,
who used it to construct a covering of S3 branched over the trefoil knot, see
1.1.4. The same covering had already been considered by Heegaard 1898,
who made the surprising discovery that the covering manifold is also s3)




Figure 164

EXERCISE 4.2.5.1. Show that the cube with holes shown in Figure 164 has a deformation
retraction onto the torus, and hence gives an alternative derivation of the group of
the two-crossing link.

4.2.6 The Fox—Artin Wild Arc

A simple polygonal arc o in R? has the property that 7,(R> — &) = {1}.
Fox and Artin 1948 call a simple arc & in R® wild if there is no homeomor-
phism of R® which maps ./ onto a polygon, in particular if 7,(R® — &) #
{1}. Figure 165 shows an example of a wild arc (the limit points P and Q are
included in the arc). :

The generators we shall use for n,(R® — .«¢) are loops a,, b,, c, for all in-
tegers n, placed as shown in Figure 166. R® — & is the union of sets €,
obtained by removing cubes centred on P, Q at the positions shown in

Figure 165

— v v
ba bao bay
thoy i‘bo ibn ~
Figure 166
B |C_,, C,
¥
P la—n ....‘-_I a, Q

-
lb_, b,

Figure 167

Figure 167. The generators of n,(%,) are a,, by, ¢, for —n < m < nand the
relations are

1 = Comk 1CmCom+ 1 Wirtinger relations at the crossings;
bm = cl;-)l- 19 Cm+1
Cont1 = Do Dy 1D —n<m<n
together with relations
Copd_y=b_,, c,a, = b,

at the ends (shrinking the cubes to points and using Exercise 4.2.4.2).

By removing a small tunnel neighbourhood of the arc (of diameter which
—0 as n — o0) we can replace %, by a finite simplicial complex, so it follows
from 4.1.7 that the generators of n;(R® — &) are a,, b,, c, as claimed, and
the relations are (for all integers n)

clla" = bll (1)
Ay = cn‘-!-llcncn+l (2)

bn = Cu_-i-llancn+1 (3)
Covy = b;lbn+1bn' (4)

Substituting (2) in (1) and (3) gives
C,,C,TIC,,_IC" = bm that iS, bn = Cp-16y (5)

and
— a1 -1
bn = Cu+1Cn Cn—1CuCy+1- . (6)




Substituting (5) in (4) gives
— p—1,.-1
Cut1 = Cy "Cp1CuCpy 18y~ 1Cy
or

Cn—1CuCn+1 = CuCpt1Ci—1Cy (7)
e
which is the same as the result of eliminating b, between (5) and (6). Thus
we can use the ¢’s as generators, with the defining refations (7).
It can then be verified that these relations hold in the nontrivial group
generated by the permutations (123 4 5) and (1 4 2 3 5) when ¢, is interpreted
as (1234 5) for n odd and (1 4 2 3 5) for n even, hence n;(R® — &) # {1} O

In constructing the wild arc &/ we have also constructed a wild ball (the
tunnel neighbourhood of ) and wild sphere (the boundary of the wild
ball). The first examples of such objects were given by Antoine 1921, based
on an even more paradoxical object, a wild Cantor set in R®. The ordinary
Cantor set, obtained by the “middle-third” construction on the unit interval,
has a simply connected complement in R®. However, a wide variety of
descending sequence constructions lead to homeomorphic images of the
Cantor set; the one used by Antoine iterates the construction of linked solid
tori inside a solid torus (Figure 168). Four linked tori are constructed again
within each inner torus, and so on. The intersection of all these tori is a
Cantor set in R? called Antoine’s necklace. Antoine showed geometrically
that its complement is not simply connected, and this was confirmed by
calculation of the fundamental group by Blankenship and Fox 1950.

Figure 168

Fox and Artin 1948 also showed the wildness of the arc /' obtained by
altering & so that the crossings are alternately over and under. &' is in
fact the “chain stitch” of knitting, infinitely extended in both directions. Its
group is calculated similarly, but turns out to be slightly more complicated
than that of . It is interesting to note that the infinite chain stitch was
pictured in the first ever paper on knot theory, Vandermonde 1771.

Figure 169

ExERCISE4.2.6.1 (Fox 1949). Show that the group of the simple closed curve in Figure
169 is generated by bg, by, b, ... subject to the relations

bibobi ! = bybybs ! = bybyb3! =+

and find a permutation representation which shows it is nonabelian.

4.2.7 Torus Knots

Consider a solid cylinder & with m line segments on its curved face, equally
spaced and parallel to the axis. If the ends of € are identified after a twist of
2n(nfm), where n is an integer relatively prime to m, we obtain a single curve
A . » ON the surface of a solid torus J (Figure 170). Assuming that J~ lies

Figure 170




in R® in the “standard” way, which means among other things that
n,(R* — ) is infinite cyclic, the curve &7, , is called the (m, n) torus knot.
We now compute =,(R® — £, ,), following the method of Seifert and
Threlfall 1934.

If we drill out a thin tubular neighbourhood #” of ', , from R®, the
effect on I is to gouge out a narrow channel from its su,rfzi'é’e, and similarly
on the surface of R*— 7.9 — N and (R® — &)=/ then meet along an
annulus .&,, , which, like ¢, ,, results from m parallel strips on the cyiin-
der being joined up after a twist of 2a(n/m) (Figure 171). n,(%,, ) is infinite
_cyE:lip and generated by the centre line I, , of &, ,. ©{(T — ) is also
infinite cyclic and generated by the axis a of . Since 1, , results from m
circuits of 7~ we have

m,n

m

lm,n =a
in (9 — A). Similarly, =,((R* — ) — A) is infinite cyclic, generated
by a loop b through the “hole” in 7, and

hyw ="
inm ((R® — ) — ).

Then if we expand 9 — A" and (R® — 9) — A slightly across &,

mn

to open sets &7, # which intersect in a neighbourhood of .%,, ,, the Seifert—
Van Kampen theorem becomes applicable, and we obtain the presentation

Gm,n = <a’ b; a"l = b">
for the group of the (m, n) torus knot. O

Figure 171

EXERCISE 4.2.7.1. Show that the (n, n) torus knot is the same as the (#7,/m) torus knot.

EXERCISE 4.2.7.2. Let #, be the solid body (handlebody) bounded by an orientable
surface of genus n which is standardly embedded in R so that m(R3 — #,) is the
free group of rank n. Show that if /" is a simple curve on the surface of then
n, (R} — ) has a presentation with n + 1 generators and n relations. (Hint: Attach a
thin handle # to 2, which follows " just above the surface of 5, and has its ends
at neighbouring points on . Show that #;, U J# is a standardly embedded handle-
body . 1, then cut £, , , S0 as to obtain a body whose complement is homeomorphic
to R — A7) ’

4.2.8 Lens Spaces

The (m, n) lens space is a 3-dimensional manifold introduced by Tietze
1908, by means of the following construction. On the surface of a solid ball B
one draws an equatorial circle and m equally spaced meridians, dividing
the upper hemisphere into triangles Ay, ..., A,, and the lower hemisphere
into triangles A}, ..., A,,, where A} is below A; (Figure 172). The upper
hemisphere is then identified with the lower after twisting it through 2a(n/m),
that is, a point P with latitude and longitude (6, ¢) is identified with the point
P’ with latitude and longitude (—0, ¢ + 2a(n/m)), where ¢ + 2n(n/m) is
reduced mod 2z. Thus A; is identified with Aj,, after inversion (i + n
reduced mod m).

Figure 172

It is evident that if m, n have a common divisor d then the result is ex-
pressible more simply as the (m/n, n/d) lens space, so we may as well assume
that m, n are telatively prime. Likewise, there is no point in taking n > m.

Many properties of the (m, n) lens space will come to light in Chapter 8,in
particular the fact that it is a manifold and the reason for the name “lens
space.” For the moment we wish only to compute its fundamental group.

By virtue of 4.1.5, we can forget about the interior of B3, and just compute
n, of the surface complex which results from identification of the two
hemispheres. Since each point below the equator is identified with a point




e

a

Figure 173 T

above, it suffices in turn to find out what becomes of the upper hemisphere
when the identifications on its boundary, the equator, are carried out.
Since m, n are relatively prime, the numbers

L14n1+42n...

run through all values 1, 2, ..., m when reduced mod m. This means that
corresponding points on the bases of any two triangles are identified (Figure
173) or that the equator is wrapped m times round a circle corresponding
to the base of a triangle. Thus our surface complex is a disc with boundary
identified with the path a™ round a circle a. Its fundamental group is therefore
{a; @™, the cyclic group of order m, by 3.4.4. \ 0

4.3 Surface Complexes and Subgroup Theorems

4.3.1 Surface Complexes and Groups

A surface complex & consists of three sets {P;}, {¢;}, and {A,} of elements
called vertices, edges, and faces respectively, subject to certain incidence
relations. The vertices and edges constitute a graph ¢ (see 2.1.2) called the
1-skeleton of %, and each face A, is incident with a certain closed path b,
in ¢ called its boundary path.

There is no harm in thinking of & being realized by actual points, line
segments, and discs embedded in some euclidean space, where A, is a disc
with its boundary identified with a closed path b, and different edges and
discs are disjoint except where identifications force boundary points into
coincidence. Comparison with 4.1.3 will then show that the group we are
about to define combinatorially is the familiar fundamental group of &#.
However, the purely combinatorial approach will suffice for the results
we wish to derive, and no appeal will be made to general continuity con-
siderations. Thus the situation is comparable with Chapter 2; the geometric
language could in principle be dispensed with, but it seems to convey the
most natural explanation of certain group-theoretic results. Indeed, it
could be said that those results follow from viewing groups themselves as
surface complexes.

T DULIGW LUILPITAGY allt QUUELUUD LLCULTHD Lo

The (combinatorial) fundamental group of &, n(%) is the group defined
by extending the path product operation to equivalence classes of closed
edge paths from some vertex P. Paths p, p’ are equivalent if one can be con-
verted to the other by a finite sequence of operations of the following types:

(i) insertion or removal of spurs;
(ii) insertion or removal of boundary paths of faces.

Paths which are equivalent by operations (i) above will be called freely
equivalent. The equivalence class of p will be denoted [p].

We know from 2.1.7 that generators for all edge paths based at P can be
found by constructing a spanning tree  of ¢, and for each edge ¢; = P, P,
taking the closed path

_— -1
a; = Wy e;W, -,

where w, denotes the unique reduced path in 4 from P to P,. In fact, any
closed path p(e;) from P is freely equivalent to the corresponding product of
the a;’s, p(ay).

For each boundary path

bi(e;) = efte2 -+~ efr (wheree; = +1)

ta

of a face A, we have a relation
bi(ay) = aflaf} -+ iy = (k)

because b,(a;) is freely equivalent to the path wh,(e;)w ™, where wis the unique
reduced path from P to the initial point of b,(e;). Conversely, any relation in
7,(F) is a consequence of the relations (k), because the result of insertion
(deletion) of b,(e;) in a closed path p(e;) from P.is freely equivalent to the
result of insertion (deletion) of b,(a;) in the path p(a;).

It follows immediately that any group ¢ can be realized as the combina-
torial fundamental group of a surface complex &, by taking a bouquet of
circles ay, a,, ... and attaching a face A, with boundary b, for each relation
b,(a;) = 1 of G. Furthermore, some of the useful topological properties of
the (topological) fundamental group have combinatorial counterparts. We
now establish some for use in later sections.

(a) (%) does not change under elementary subdivisions of & or their
inverses (1.3.8).

1

Subdivision of an edge means replacing some e¢; by eje; and a; by aia;
accordingly. But if we extend the spanning tree  to reach the new vertex
it must include exactly one of ¢}, ¢f, say e;. Then af = 1 and all we have
done to n;(%) is to change the presentation by replacing a; by a;.

When a face is subdivided we can assume that the new edge ¢; begins at
the initial vertex of the boundary path r, (since a defining relator can be

(A A

replaced by a cyclic permutation of itself). Then if r, = r,ry is the subdivision




