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Virtual logic is not logic, nor is it the actual subject matter of the mathematics, physics or
cybernetics in which it may appear to be embedded. Virtual logic lives in the boundary
between syntax and semantics. It is the pivot that allows us to move from one world of
ideas to another. This paper studies the virtuality of ordinary and mathematical logic.
Through examples it is shown how what we call ‘ordinary reason’ is itself a paradox.
Reason itself is not at all reasonable! Each new mathematical construction, each new
distinction, each theorem is an act of creation. Ordinary reason itself is virtual. The credo
of clarity is not ordinary. It goes beyond reason into a world of beauty, communication

and possibility.

1. INTRODUCTION

virtual (vur'tual), adj. 1. Archaic. Of or
relating to a virtue or efficacious power;
energizing. 2. Being in essence or in effect,
but not in fact; as the virtual rulers of a
country.—vir'tu.al'i.ty (-al'i.i), n—vir'tu.ally,
adv.

I take the meaning of the word virtual in the
archaic sense. Virtual logic is that which ener-
gizes reason and so brings the forms of logic and
mathematics into being.

Virtual logic is not logic, nor is it the actual
subject matter of the mathematics, physics or
cybernetics in which it may appear to be
embedded. Virtual logic lives in the boundary
between syntax and semantics. It is the pivot that
allows us to move from one world of ideas to
another. The power of virtual logic is that it is not
just a pivot. It provides the real possibility and the
means for the opening of communications across
boundaries long thought to be impenetrable.
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Here there is no guarantee of success. It is in the
place where we make the most valiant attempt at
clarity and communication that our inevitable
failures to communicate have the potential to be
transformed into new worlds.

Section 2 is topological, concentrating on the
Mobius band as an exemplar of a system with
local distinctions and global connectedness. By
viewing the Mobius as an embodiment of the
Liar Paradox, we see how this paradox is actually
a nexus of ideas that can be applied in under-
standing observing systems. Section 3 discusses
reference, self-reference, fixed points, recursions
and the use of imaginary values (also known as
complex numbers). It is explained how the
number 7 is naturally an amalgam of formal
fixed points whose relative values produce the
ratio of the circumference of a circle to its
diameter. It is remarkable that domains imagin-
ary with respect to arithmetic are vitally real with
respect to geometry. In section 4 we discuss the
general Church—Curry fixed point construction
(GX = E(XX) implies GG =F(GG)) in relation to
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the Russell paradox and the issues already raised
in this paper. In section 5 we introduce a basic
referential shift (from A—B to AM—AB) in the
context of a painting by Magritte. This shift is
compared to the shift of an observer who
separates a world into the one who sees and
the that which is seen. Language is the interface
of this separation. Necessarily, language is
shifted to both sides of the apparent distinction.
The Magritte shift is the central pattern behind
the Godel Incompleteness Theorem and con-
structions for direct and indirect self-reference
(I—M then IM—IM). This is taken up in
section 6. Section 7 continues the discussion of
section 6, showing how Lob’s paradox (which
dangerously proves any proposition!) can be
tamed in a Gédelian way to yield insight into the
limitations of formal systems and to show that
the self-affirming Godelian sentence is provable
in consistent formal systems. This L6b Theorem
is a beautiful affirmation of the dictum that
behind every paradox there is a rich vein of
virtual logic. By this point in the paper, the
author has split into two dialoguing parts in a
fugue of understanding understanding.

Paradoxes are gateways into new worlds.

Before reading the rest of the paper, the reader
may like to try his/her hand at the following
puzzle. You have been handed a card with an
inscription that reads:

No logically consistent person, holding this
card, can verify the truth of the statement
inscribed upon it.

You place the card on the table before you and,
reading it, reason quite correctly that indeed the
statement on the card is true. For if the holder of
the card had verified the truth of the statement,
then the statement would undermine this

No logically consistent person,
holding this card,

can verify the truth of the
statement inscribed upon it.
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Figure 1

verification. Now you reach out and take the
card in hand. Where has your verification of the
truth of the statement gone?

It gives the author great pleasure to thank
Heinz von Foerster, Annetta Pedrett, James
Flagg, Gary Berkowitz, Steve Sloan and Daniel
Davidson for many stimulating conversations in
the course of imagining this paper.

2. TOPOLOGICAL LOGIC, PARADOX LOGIC,
KNOT LOGIC

par’a.dox (par’a.doks), n. [F. paradoxe, fr. L., fr.
Gr. paradoxon, neut. of paradoxos, adj., fr. para
beside, contrary to + doxa opinion.] 1. A tenet
contrary to received opinion; also, an assertion
or sentiment seemingly contradictory, or
opposed to common sense, but that yet may
be true in fact. 2. A statement actually self-
contradictory, or false.

Sometimes a paradox can be used to reason to a
real and sensible solution of an intellectual or
mathematical problem. Sometimes a paradox has
a geometrical, topological or structural counter-
part that is special, useful and fascinates us with
its centrality. The Mdbius band is just such an
object. View Figure 1.

A Moébius band has one edge and one side.
Locally, an observer on the band will see two
edges and detect two sides. If the observer walks
along the band he/she will eventually return to
her starting place, but will find that she is on
the other side of the band! In this case, it is
probably best to have two observers on the
band. They start in the same spot, but one
walks along while Mr Fly waits. Eventually,
they come back together, but Ms Fly finds that
she is now across the band from Mr Fly.
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One more turn around the band puts them back
together.

The Mobius band is paradoxical in the first
meaning of the term. Its properties go against
common sense and yet they are true.

The band embodies a form of which it may be
said that it is ONE (one side) and yet it is also
MANY (two sides). Since this form is topological it
is both one and many at the same time. To speak
this way in the absence of the model would seem to
be paradoxical in the second sense of the word (self-
contradictory), yet in the Mobius band we have a
picture before us of just how this unity in multi-
plicity can come about. It is ONE for the global
observer and MANY for the local observer. It is
ONE for the local observer who is willing to travel
and experience the whole. It is MANY for the
‘global observer who is willing to play the game that
looks locally and forgets for a moment the whole.

The circular interconnectedness of the band
provides the stability that keeps it with one side
and one edge. One can look at the band as a
topological realization of a circuit that interconnects
the output of an inverter with its input (Figure 2).

Figure 2

Paradox Generates Time

The topological analogue of the inverter is the
half-twisted band. An observer with head up is
flipped to an observer with head down upon
passing through the twist. The abstract inverter
is usually depicted as shown in Figure 3. It takes

0 - 1 1 .: 0
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Figure 3

a Boolean signal and flips it from 0 to 1 or from 1
to 0. If the signal is motivated to go around the
circuit then it becomes the temporal embodiment
of the Liar Paradox: “This statement is false.” Each
turn flips the signal and the output is an
oscillation that indicates the presence of the
contradiction. Paradox generates time.

In the topological and timeless world of the
Mébius strip there is no oscillation (unless the fly
insists on running around the band). The inverter
(the twist) is itself held in form by the circular
interconnection of the band. There would be no
twist without the band and there would be no
band without the twist.

To attain fully to the condition where observer
and observed are one, it is necessary to go a step
beyond the Mébius band as topological object.
The human observer is already a cybernetic
Mobius band. The space outside is only known
inside ‘and through the twist of perception that
makes the inside appear outside. The observer
fancies a whole that cannot be seen and a
distinction of (outside/inside) that is imaginary.
Thus appears an illusion of seer and seen.

Projective Space

Mobius is the core of the logic of projective three-
dimensional space. Send a ray straight out from
the observer. Continue that ray on out to infinity
and imagine that the infinity before you is
directly connected with the infinity behind. The
great sphere of points at infinity is doubled upon
itself so that forward rays meet backward rays
and every straight line becomes a circle. In this
folded space of three-dimensional projective
geometry the Mobius band lives in the twist
through infinity. A road sent forward and back
meets itself at infinity and is identical to a Mdbius
strip.

Observer/Space

Let us return to the observing system. The
topologist's Mobius band is a viable abstract
model. The system inverts observation in the act
of separation into observer and observed. (Let
the passage through the twist connote observa-
tion.) The system is created just to maintain this
self- observation and will return to flatness when

Virtual Logic
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observation ceases. (Cut the band cross-wise and
the loop will break and untwist.) The system is its
own self description: L = NOT(L). See Figure 4.

Figure 4

Applying the Mébius

As Ricardo Uribe points out (1995), the Mébius
band will solve real problems in switching
theory. We want a system of switches, each
controlled locally, such that each switch controls
a single device. For example, each switch is to
turn a given light on or off. Consider the Mdbius
and regard the twist as a switch with the two
positions: twisted or untwisted. Replace the twist in
a Mébius with no twist and the resulting band
has two sides and two edges.

Make a band with 137 half-twists. Replace any
twist with an untwist, and there will be two
boundary components to the band. Flip any

137 independent Controls for B

Figure 6

other twist and the band is Md&bius once more.
Each twist-switch individually controls the con-
nectivity of the boundary of the band. Attach the
bulb and battery across the local distinction of
band sides and the desired circuit is created.
Each switch is easily made (double-pole, double-
throw) and the whole circuit design proceeds
from Moébius topology with not a hint of Boolean
algebra.

Is this design the simplest possible? No. Is the
circularity inherent in the Mdbius band necessary
for the design? No. Can an equivalent design
evolve from standard logic and Boolean algebra?
Yes, but with much more attention to algebra.
What is the moral of this tale? A paradox can tell a

&0
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>< o ___ Link
L 00\ &—— A
or —
I <
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\\\\ Z Moves
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Figure 5 Figure 7
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tale that jumps across the steps of logical analysis.
Opposites are joined in the whole.

Knot Logic

In this short section, we return to fixed points
and self-reference from the point of view of knots
and links in three-dimensional space. The idea is
very close to the remarks about the M6bius band,
but here we consider all possible knots, links and
tangles. For a more detailed exposition see
Kauffman (1995a).

Knots and links are represented by diagrams
like those shown in Figure 7. A knot is a single
closed loop in space and it is said to be knotted if it
cannot be topologically deformed to a standard
flat circle in the plane. A link has many loops. Two
loops are said to be linked if it is not possible to
separate them by topological deformation. Topo-
logical deformation corresponds to moving the
loops continuously without crossing them
through themselves or one another.

This figure also shows the schema of three local
moves on the diagrams that generate all topologi-
cal deformations of knots and links in three-
dimensional space. These Reidemeister moves
provide a translation from the complex problem
of topology of loops in three-space to an equally
complex problem of understanding a two-dimen-
sional diagrammatic calculus. This calculus of
diagrams is the virtual logic behind the topology
of knots and links. A great deal of mathematics has
been devoted to the study of this branch of
topology (see Kauffman, 1987, 1991, 1993).

In this section we point out how the diagrams
can be interpreted for a version of set theory
without the Axiom of Foundation. This Axiom
forbids infinite descending chains of member-
ship such as are implicit in the set whose only
member is itself: Q = {2},

Knot sets (Kauffman, 1995a) are knot and link
diagrams interpreted in terms of set membership
through the conventions that

(1) labeled arcs in the diagram correspond to the
members of the set;

(2) if arc a crosses under arc b then we say that a
is a member of b (acb).

In this way, we have Q = {2} represented by a
diagram with a simple twist as shown below..

Mutually creative sets such as A={B}, B={A}
correspond to a link.

See Kauffman (1995a) for a discussion of
how this theory interfaces with the Reide-
meister moves. Here we only comment that the
self-reference in the knot model for Q shows
clearly that the infinite descent implicit in the
self-reference is no more serious than the fact that
one can go round a circle infinitely often.
Circulation of the loop representing § takes an
observer through periodic continuous change
from contained to container to contained to
container . . . in an endless round. In the vir-
tuality of the model, the container is the
contained.

b
- a
ac
Figure 7.1
Q Q
QeQ
Q={Q}
Figure 7.2
B
AeB
BeA
A={B}
B={A}
A
Figure 7.3

Virtual Logic
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3. SELF-REFERENCE, FIXED POINTS AND-
INFINITY

Reference requires a distinction between what
refers and what is referenced.

Self-reference does not require words.
Self-reference is as simple as saying nothing.
Self-reference is as simple as saying ‘T’
Self-reference is as simple as saying ‘Tam I'.
Self-reference is as simple as an empty circle.
Self-reference is as simple as an arrow bent

into a circle.
c
17,

Figure 7.4

An arrow bent into a circle in the presence of

an observer can be seen to point to itself.

An arrow points.

Pointing is reference.

An arrow that points to itself is self-referent.

An ob]ect that points to itself with the help of
an arrow is self-referent.

A — Al

An observer traveling on the self-pointing
arrow will experience the same journey as an
observer travelling on the infinite juxtaposi-
tion of unfolded arrows—the unidirectional
unfolding of the self-referential arrow.

J=— — — — ...

\

- > P - ) @ @

Q‘_’

Figure 7.5

Systems Research

The unfolding of the self-referential arrow is a
fixed point of that arrow (Kauffman, 1987b):

I=—1

Each self-reference gives rise to a fixed point at
the level of its unfolding.
In the fixed point, I is ‘the that to which

reference is applied’.

I am the I you pomt toward with an arrow.

Tam — L

Reference is observation.

Observation is reference.

I am {the observation of — I}.

‘Tam the observed relation between myself and

observing myself’ (von Foerster, 1981).

In this interlock lives the possibility of a return
to silence.

The formal structure of paradox L=NOT(L) is the
structure of a fixed point

L=F(L)

At an appropriéte level of abstraction, every
operator has a fixed point. Allow infinite

repetition.
Form
X = F(E(F(F(...))))
Then
F(X) = F(F(F(F(F(...))))) =X

An example from geometry is an infinite nest of
rectangles as shown below.

Figure 7.6

An example from arithmetic is the infinite
continued fraction
f=1+1/1+1/(1+..))

f=1+1/f
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A second example from arithmetic is the infinite
continued square root. Notation: SQRT(A)
denotes the square root of A: SQRT(A) = /A.

g = SQRT(1 + SQRT(1 4+ SQRT(1 + ...)))
g = SQRT(1 +g)

Both f and g are defined in the virtuality of their
self-reference. In arithmetic we prove that they
are equal by applying ordinary mathematics to
their fixed points:

f=1+1/f
ff = £(1+1/f) = fl+£(1/f) = £+ 1
£=f+1

g =SQRT(1+g)

g8 = SQRT(1+g)SQRT(1+g) =1+g
=g+1

F=1+g=g+1

f and g are each positive solutions to x* = x +1.
Therefore, f = g.

1+1/(1+1/1+..)
= SQRT(1 + SQRT(1 + SQRT(1 + ...)))

Figure 7.7

Self-reference is a virtual ingredient in the
proof. Compare with Kauffman (1987b) and
Spencer-Brown (1979).

Another example:

S=l+a+a’+a’+a*+..
S=1l+a(l+a+a’+a’+..)

S=1+aS
S—aS=1
S(1—a)=1
S=1/(1-a).

An example in classical mathematics is Euler’s
formula for e*:

= (1+x/00)*®

The virtuality lives in the use of the symbol for
infinity. Infinity is self-referential:
co=1+4+1+1+1+...
w=1+00
Euler’s formula is interpreted as the limit of
(1 +1/N)N as N tends to infinity. But the symbol
oo can be used as an element in the language of
arithmetic and its transformations.
Let us transform a formula of Euler. Euler’s

famous formula is a relationship betweene, i, 7, 0
and 1.

e +1=0

Here 7 is pi, the ratio of the circumference of a
circle to its diameter. i is the imaginary unit: i = -1.

= (1 +ir/o0)™
e =1
1 +4+ir/o0)® = -1
(1 +im/o0) =)/ = (~1)/
1+4ir/oo = (-1)/*
im/oo = (=1)4/*® —

ir = oo((—1)1/°° -1

DY -1/
Here is a mystical formula for pi, derived directly
from Euler’s formula.

In fact this formula for pi can actually be used
to calculate its numerical approximations. The
key is to consider the roots (- —1)}M of -1 for
integers M that are powers of 2 and to apply the
basic formula SQRT(A + Bi) = SQRT((1+A)/2) +
i E(b) SQRT((1-A)/2)) when A% + B* = 1 and E(B)
is 1 or —1 according as B is positive or negative.
We omit the details of this part.

The real point is that the mystical formula is
actually a true statement about the nature of pi. In
order to understand th15, we must look closely at
the meaning of (- 1)Y/ee

Leibniz characterized i = SQRT(-1) = (-1)** as
an amphibian between being and non-being.

7 = ool((-

iis not real.

All real numbers have positive squares.

2 .

i“is -1.

-1 is negative unity, the symbol for non-being.
+1 is positive unity, the symbol for being.

i intermediates between being and non-being.

Virtual Logic
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i itself is the embodiment of a Liar paradox
where

‘NOT(X) =-1/X

‘NOT" 'NOT' (X) =-1/(-1/X)) ==-X =X

i=-1/1

i='NOT i
Gauss depicted this relationship in a brilliant
interpretation of i as a point in the plane,
occupying the wunit direction on an axis
perpendicular to the axis of real numbers.

a+bi

oA

|
-

Figure 8

In the Gauss plane all numbers of the form
A+Biwith A and B real are represented as points
with horizontal coordinate A and wvertical
coordinate B. Such a point may be regarded as
an arrow emanating from the origin and termi-
nating at the point (A,B). Thus each ‘complex
number’ A+Bi can be regarded as an arrow from
the origin to a point in the plane. An extra-
ordinary harmony with geometry comes into
play. Each arrow has an angle 6 with the
horizontal axis and a radius R measuring its
distance from the origin. Let Z = [R,0] denote an
arrow with radius R and angle 6.

It turns out that the rule for multiplying
complex numbers is simply the arrow rule:
multiply the lengths and add the angles.

[Ra 0][3) ¢] = [RS, 0+ ¢]

This rule is perfectly in accord with the formula ii
= -1.1 has angle 90° and length 1. Multiplied by
itself it acquires angle 180° and length 1. The
number located at 180° and length 1 is exactly 1.

Z=[R0]

Figure 9
[R.6][S,¢]=[RS,8+¢]
)
i
1 [S:4]
R,8
a [R.6]
5 |0 16+
Figure 10

In general, multiplying by i will turn an arrow
counterclockwise by 90°.

Now we can interpret  SQRT(-1),
SQRT(SQRT(-1)), SQRT(SQRT(SQRT(-1))), . . .
We wish to understand the nature of the
limiting form

(=1)Y*° = SQRT(SQRT(...SQRT(-1)...))

-1=[1,180°] = [1, = ] (using radian measure for
the angle)

SQRT(-1) = [1, w/2]

SQRT(SQRT(-1)) = [1, w/4]

SQRTN(-1) = [1, 7/2N ]

SQRTN(-1) is a complex number whose real
part is nearly 1, and whose imaginary part
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fits with great accuracy a (1/2M)-th part of the
half circumference of a circle of unit radius.

A

V- = 1+inf2®

Figure 11

[SQRTN(-1) -1] is approximately i times the
length of an arc of the circle of unit radius in the
plane where half the circumference has been
divided into 2N equal arcs. Therefore 2N
[(SQRTN(~1) ~1)/i} is a close approximation to .

Symbolically,

7 = 2°[(SORT®(~1) — 1)/i]

This is a refined version of our mystical formula
for 7. Note that both 2*° and SQRT*(-1) are
formal fixed points

(22 = 2%, SQRT SQRT*®(—1) = SQRT®(-1))

with special properties that inform this mathe-
matical application, producing 7 as a combina-
tion of self-referential forms. 7 is an interference
pattern in the elementary references of any
observer. Euler’s original mystery formula

" +1=0

can now be seen as a direct consequence (read
the story backwards) of the geometry inherent in
= 2% [(SQRT*(-1) -1)/i].

4. FIXED POINTS AND THE RUSSELL SET

Infinite repetition is the life-blood of recursion.
Elemental self-reference (I am I) partakes of an
interlock that does not need endless elaboration.
The general fixed point for F can be produced
without infinite self-application of F to itself. This
is the fixed point theorem of Church and Curry
(Barendregt, 1984).

Let GX = F(XX)
Then GG = F(GG)
GG is a fixed point for F.
This production of a fixed point is the logical

analogue of the production of SQRT(2) by
drawing the diagonal of a square of unit side.

Figure 11.1

The leap to infinity is accomplished in an
instant, and the observer must look back to see
the vast chasm avoided by taking a step in a
different conceptual dimension.

Criticism of a leap is appropriate once it has
been leapt.

GX = F(XX).

What does this mean? What is F?

Note that you never asked this before when we
made g = FF(F(F...))).

In the old days F was anything that could be
applied to anything else in the form F(Y).

It could just be a box to put around Y.

It could be the formalism of some arcane
mathematics from the planet Tralfamidor.

Virtual Logic
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To write XY assumes that the X and the Y are
capable of being juxtaposed.

To write GX = F(XX) means exactly what it
says.

Take X.
Duplicate it to form XX.
Put that inside F( ).
The formula GX = F(XX) defines the action of G.

(Careful now.)

The equality sign in GX = F(XX) is a prescription
for the action ‘Duplicate X and put the double
copy inside F().

Most of the time the application of this formula
is harmless. However, if G is applied to itself,
then the duplicate GG is a symbol for the
application of G to itself and so the equation
GG=F(GG) is an equation for action. GG=F(GG)
= F(F(GG)) = FFFE(GG))) = ... Thus GG is a
generator of recursion.

Now you may say ‘Why not interpret the
equals sign as a sign of identity?’

Then GG=F(GG) and GG ‘has a copy of itself
inside itself’.

Then the definition GX=F(XX) asserts that GX
is F(XX).

Does G exist?

We are reminded of Anselm’s proof of the
existence of God.

Hypothesis. Existence is greater than non-
existence.

Definition. God is the That of which nothing
greater can be conceived.

Proof. If God did not exist it would never-
theless be possible to conceive of a God that did
exist. Since an existent God would be greater
than a non-existent God, the non-existence of
God contradicts Hypothesis.

Therefore God exists.

Let us return to G. Consider the interpretation:
XY means Y is a member of X.

Let ~X denote ‘not X'

RX = ~XX defines R by the sentence ‘X is a
member of R exactly when X is not a member of
X/

R is the Russell set.

The substitution RR = ~RR tells us R is a
member of R exactly when R is not a member of R.

Does RR exist?

Of course RR does exist.

RR exists as a concept whose extension can
never be fully realized.

RR exists in the structure of the Mébius band.

RR exists in the process that would always
encompass what is into what can be.

Paradox is the generator of time and space.

5. THE MAGRITTE SHIFT

A famous painting by Rene Magritte shows a
realistic drawing of a pipe and underneath the
drawing (within the frame of the painting) are
the words ‘Ceci n’est pas une pipe.’

Ceci n'est pas une pipe

Figure 12

It is quite common to interpret this sentence as
referring to the drawing of the pipe, as though
the painting was saying

‘A drawing of a pipe is not a (real) pipe.
or
“The map is not the territory.’
Of course the map is not the territory
if only we could manage to articulate the
distinction between the two.

Of course the map is the territory.
Territory is itself a map.
Reality is identical with the appearance of
reality.
Universe is what there would be if there could
be anything at all.
Universe is the map of timespace process,
Flower of Nothing in the Void of perception.
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It may help to point out that the sentence written
so beautifully beneath the pipe (Pardonnez moi,
the drawing of the pipe.) does not necessarily
refer to the drawn pipe. It can refer to the canvas,
the frame, the viewer or even to itself.

But what did Magritte do? Did he first write
the fated phrase on a blank canvas? Or did
he draw the pipe and then write the phrase
below it? Let us assume the latter and thereby
tease a particular strand from the Magritte
nexus.

This Magritte, from the multitude of Magrittes

_ and their not-pipes, drew the pipe first.

And held the phrase in his mind all the while.

‘Ceci n'est pas une pipe.’, ‘Ceci n’est pas une
pipe’, . ..

Always referring to the drawing.

Then Magritte reached into his ‘mind’ and
drew out the phrase from internal speech to paint
on canvas, appending the description of his
creation to the creation itself.

The painting is born. What is its name?

The name of the painting of the pipe without
the phrase was

‘Ceci n’est pas une pipe.’

The inscribed painting has a new name that
goes beyond speech.

The name of an object

(whose name is a description of what it is not)
has been added to the object.

The new object has no name.

Will you allow the old name once again?
Perhaps with brackets around it?

What do we do?

Ilearned to call you Heinz.

Whenever I see you, you are not just a person
unknown.

You are Heinz.

In my imagination, your name is over there
with you, :

and it is in my mind.

I meet you

and your name splits.

One part is there with my perception of your
body in space.

One part is in my speech.

Should I call the part that is in my speech
‘Heinz myself or ‘Heinz Meta’ or ‘Heinz
Magritte’?

Heinz — the person

Heinz Myself — Heinz the person
Let us denote this

Meta Heinz

by Heinz M.

In English we use Heinz for both circum-
stances.

Every reference that is meaningful to an
observer has the name split and shifted in just
this way.

The map and the territory are entangled.

The involvement of the observer is the reso-
nance of name and shift.

Discourse is condensed by the collapse of
name and shifted name:

Heinz M = Heing,

and indeed it is so.

My Heinz is Heinz!

In Magritte, we had first the painting and its
reference.
Ceci n’est pas une pipe. —

Magritte performs the shift by his inscription.
Ceci n’est pas une pipe. M(agrittte) —

ceci n'est pas une pipe

We formalize the pattern of this Magritte Shift as
follows.
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Let A — B denote a reference of A to B.

The structure of A and B is left open.

Define the Shift (see Kauffman, 1994) of this
reference to be the reference

AM — AB.
The shift of A — B is AM — AB.

Theorem. Let I denote the name of the
operator in the Magritte shift. Then IM — IM.
Hence IM refers to itself.

Proof. Since I is the name of M, we have I —
M. The shift of this reference is IM ~— IM. This
completes the proof.

It is our contention that the formal self-
reference exhibited in this theorem articulates
personal self-reference. When I say ‘I’ there is an
imaginary separation of self into the roles of ‘self
that names’ and ‘self that is named’. Here is an
evocation of that circumstance.

{Silence}
L
Isay L
I am the one who says I.
I myself say I
‘T’ imagine that it is possible to divide myself into
a part that sees and a part that is seen.
Eachis T.
Separate yet the same.

Let I denote the one who sees.
(Seeing is a form of reference.)

Let myself be that which is seen.
Let M denote myself.

I am myself.
I see myself.
I refer to myself.

I— M.
Myself performs the shift.

A—DB
AM — AB.

Shift entangles seer with the seen.

]—M
M —IM

I myself am I myself.
T am that I am.

This is the linguistic stability of self-reference.

6. THE MAGRITTE SHIFT AND GODEL'S
THEOREM

The Magritte shift (see section 5) is right in
between the general fixed point construction of
section 4 and the formal structure of Gddel's
incompleteness Theorem (Gédel, 1931). The shift
is the underlying logical structure of the Godel
Theorem.

Recall that Shift(A—B) = AM—AB.
Whence Shift(I—M) = IM—IM.

The shift achieves self-reference in a minimal
formal language.

We now place the shift in a mathematical context.
In this context the objects of reference are
statements and texts in a formal language. We
are particularly concerned with those texts that
have one designated ‘free variable’. In mathe-
matics this is quite common. For example,

S ='U is a prime number.’

The free variable in S is U. S is true for some U
and false for others and imaginary for those U
that are not numbers. For example, let U=
‘Marilyn Monroe’ for an imaginary value, U=8
for a false value and U=17 for a true value. Given
a statement with a free variable U, we can
substitute another text in place of the variable U.

This situation of statements with free variables
does not occur directly in spoken English.
However, there are close relatives. For example,
consider the phrases

“Time flies like an arrow!

‘Fruit flies like a banana!’

These can be regarded as the result of
substitution into the free variables U and V in
the phrase:

‘U flies likea V.’

Other substitutions are possible:

We will also assume that every text S is
referenced by a positive integer g = (S).

This number is called the Gédel number of the
text S. We assume that one can decipher the text S
from its number g = (S). Such methods of coding
and decoding are not hard to devise. Word
processors and other devices use similar tricks all
the time. We write

g=(5) —S

304

L. H. Kauffman



]
b

Systems Research

RESEARCH PAPER

to denote the reference of the code number to its
corresponding text.

Now given g — 5(U) where U is a free
variable in S, we can substitute g into S to form
the statement S(g). 5(g) will have its own code
number.

Let gM = (S(g)) denote the code number of the
result of substituting the code number of S(U)
into S(U).

Then gM — 5(g) when g — S(U).

We have defined a structure of substitution in
texts and free variables that mimics precisely the
Magritte shift:

If g — S(U) then
gM — S(g)

This means that it is possible to obtain statements
that talk about their own Godel numbers by
considering the Godel number of the statements
of the form S(UM) and performing a shift.

If g — S(UM) then gM — S(gM).
Hence S(gM) refers to its own Gddel number!

Now all we have to do is let S(U) state that there
is no proof of the statement obtained by decoding
U. Then S(gM) (as above) says that there is no
proof of itself! If the formal system is consistent
then it cannot demonstrate this statement even
though ‘we’ the observers of the formal system
have indeed proved exactly this! Proof and
demonstration are thereby shown to be distinct.

Godel’s Incompleteness Theorem

Any consistent formal system rich enough to
discuss and embody the properties of standard

integer arithmetic is incomplete. There are

theorems of arithmetic that are true but unpro-
vable by the given formal system.

(At this point the author splits into a part that writes
and a part that reads, trying to understand what the
writer has written. The author is Lou; the reader will
be called Jeremy.)

Jeremy. Wait. Wait! That was too fast. Let's go
back to S(UM). Let's say that g — P(U) where U
is a free variable in P. Then you defined gM to the
code number of P(g) so that gM — P(g). But
what is UM where U is a free variable?

Lou. Right. UM is the code number of the result of
substituting U for the free variable in a proposition
whose code is U. In other words, UM is a function
of U, and if you give UM a number g for U, then
gM will return to you a number that is the code
number of the proposition obtained by substitut-
ing the number g into the free variable of the
original proposition. Of course if 13 is not the code
number of a statement with a free variable,
then13M will not have this meaning and we will
have to assign a special value like gM = ‘TILT
whenever the decoding of g has no free variable.

Jeremy. So if 17 — ‘U is prime., then 17M —
‘17 is prime.” and all I would need to get the
value of 17M would be a knowledge of the

. procedure for encoding statements as numbers.

Lou. Yep.

Jeremy. What about 137 — ‘UM is prime.” ?
Then 137M — “137M is prime.’

Is the 137M on the right a number? If so, I think
that I do not know how to compute it, even in
principle, because it is by definition the code
number of the statement that I am working with!
Are you trying to swindle me?!

Lou. No, I am not swindling you. All the cars on
this lot are nearly new and driven only around
Mébius bands on national holidays. The answer
to the question is this. In “137M is prime’ the
137M is not a numeral; it is just literally the
symbol string 137M. This is like writing (137)* +1
when we mean the number 1782, or sin(n/2)
when we mean 1. In the formal system, just as in
the rest of mathematics, it is possible to refer to
numbers indirectly by using a functional nota-
tion. On the other hand, the 137M on the left is
our abbreviation for the actual value of the code
number of ‘137M is prime.” This is not circular, it
is just a laxity in notation. We could say that {gM}
will be the actual value of gM. Then

g — S(U)
gM} — 5(g)
and
g — P(UM)
{gM} — P(gM)
Now P speaks indirectly about the number {gM}

and this number is indeed the code number of
P(gM). However, this matter about naming
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numbers is probably best solved by allowing us
to identify gM and {gM}. That is, since I can refer
indirectly to numbers with algorithms that
generate them, there is usually no confusion in
letting such algorithms be the names of the
numbers. In the rest of this discussion I will
deliberately make this identification and leave it
to you to sort it out.

Jeremy. Well, that begins to clear up some of
these things. But what is this about proof and
demonstration? How do statements in your
formal system discuss proof?

Lou. Ah, you made a natural slip there. My
formal system knows nothing about proof. It
only can know about demonstrations. A demon-
stration is a special text such that each statement
in the text can be justified by either reference to a
specific assumption that is made at the beginning
or by the rules and axioms of the formal system.
The last line of such a text is the statement we
intended to demonstrate. In other words a

demonstration is a proof that is written within the

confines of the formal system. If P is the text of the
proof and Q is the conclusion of the proof, thenI
will write (P)>>(Q) to denote this relation
between the code numbers of P and of Q. To
say that P is a proof of Q is to say that the
numbers (P) and (Q) have a certain complicated
relationship with each other. To find this
relationship, you have to decode each one and
check step by step that P is indeed a demonstra-
tion of Q. In principle this is not different than
saying something like ‘89 is a number that is
obtained by starting with 1 (and 1), forming a
series of numbers by making the next number the
sum of the previous two numbers.” The state-
ment (P) >> (Q) is a statement about numbers
that our formal system can handle.

Jeremy. I get it. But doesn’t this leave the formal
system a bit impoverished in regard to proofs?
For example, suppose I define Bg to be the
statement that the decoding of g is a statement
provable in the formal system? In other words

Bg = [There exists P such that (P) >> g]

Now consider the statement B(Bg). Suppose that
I hand this to your formal system as an
assumption. I bet that it can’t create a demon-
stration of Bg from it!

Lou. You are right. In most cases the formal
system can’t demonstrate Bg from B(Bg) because
B(Bg) only asserts the existence of a demonstra-
tion of Bg, but it does not give us any specific
way to write one down. In this way the formal
system is a good deal more skeptical that you or
me!

Incidentally, you might note what happens
when we ‘Godelize’ the statement Bg. We get

B(UM) = [There exists g such that g >> UM]

If a — B(UM) then aM — B(aM).

B(aM) asserts its own demonstrability in the
formal system.

Is B(aM) demonstrable??

Jeremy. Beats me.

Lou. Well the answer is yes! B(aM) is demon-
strable. The statement that asserts its own
provability is provable!

Jeremy. That's hard to believe.

Lou. It is a famous result of Léb (1955). Léb
found a way to tame a paradox to do it. Just as
Godel tamed the Liar Paradox to prove his
incompleteness Theorem, Lob tamed the Léb
Paradox.

7. LOB’S PARADOX

This section continues the dialogue between
Jeremy and Lou. Lou begins with a demonstra-
tion of the Léb paradox (cf. Laraudogoitia, 1990).

Lou. You know after a person has done mathe-
matics for a time, it becomes easier and easier to
prove theorems. Eventually, I realized that I
could, with slight effort, prove any theorem that
interested me. Perhaps, you would like to enlist
my services. I would be happy to prove any
results that you happen to need.

Jeremy. OK. How about a proof of the Fermat
Conjecture?

Lou. Sure. My proofs are all content-free, so I
needn’t even state this conjecture. We will just go
ahead and prove it. Consider the following
statement:

S=[If this statement is true then the Fermat
Conjecture is correct.]
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If S is true then it follows from S that the Fermat
Conjecture is correct. But this is what S says.
Therefore what S says is correct and hence the
Fermat Conjecture is correct. QED.

Jeremy. Your proof is certainly short and easy,
but it doesn’t give me any insight into the Fermat
Conjecture. Furthermore, it seems to me you
could just as well argue that the Fermat
Conjecture is false. Your statement is of the
form, S = ‘S implies A." If S is true then A must be
true since ‘T implies F is false. If S is false then S
is true since ‘F implies A’ is always true.
Therefore S is never false. I think that the
problem is in the self-reference of S.

Lou. Well you may be right, but we can control
this self-reference and get a version of 5 inside

" our favorite Godelian formal system. Let's see if

we can use it to throw a monkey wrench into th
works! ’

Jeremy. That is a fine diabolical idea.

Lou. Do you recall B(UM) from the previous
section?

Let g — [B(UM) implies A].

Then gM — [B(gM) implies A].

Let L = [B(gM) implies A] so that gM — L.

Then L says that the demonstrability of L
implies A and

L = [B(L) implies A].

This is our analog of the L6b sentence.

Jeremy. Now let’s see if we can make the formal
system demonstrate A. No good. I have no way
to get started writing a demonstraton of A.Ican’t
just play with truth values and interpretations in
the formal system. I have to start somewhere
specific and start making a demonstration.

Lou. Well, some progress is possible. First of all
we can prove the following Lemma.

Lemma. [B(L) implies B(A)] is demonstrable
in the formal system.

Remark. The following facts about B can be
shown to hold for the formal system (cf.
Mendelson, 1987, p. 167):

We use the abbreviation
Dem. B for [B is demonstrable in the formal
system].

(1) Dem. P implies Dem. B(P).

(2) Dem. B(P implies Q) implies
(B(P) implies B(Q)).

(3) Dem. B(P) implies B(B(P)).

Each of these is a direction that the formal system
can handle because the hypothesis already
assumes a given text that proves P or P implies
Q. We will use these properties in the proof.

Proof of Lemma.

We have L = [B((L)) implies A].

Therefore

Dem. L implies [B((L)) implies A]. (This is a
consequence of [L implies L].)

Dem. B(L) implies [B(B((L}))) implies B(A)]
(by 2).

Dem. B(L) implies Dem. B(B(L})) (by 1).

Dem. [B(L) implies B(A)] (modus ponens on
previous two lines).

This completes the proof of the Lemma.

Now we get the following fantastic theorem of
Léb:

L6b Theorem. If Dem. [B(A) implies A], then
Dem. A. ‘

Proof.

Dem. [B(L) implies B(A)] (by the Lemma).
Dem. [B(A) implies A] (by hypothesis).
Therefore Dem. [B(L) implies A] (modus
ponens).

But L = [B(L) implies A].

Therefore Dem. L. Hence Dem. B(L).
Therefore Dem. A (modus ponens).

Jeremy. This really underlines the fact that one
can seldom prove

B(A) implies A

inside the formal system. If we could always do
this, then the system would be inconsistent. The
proof of the Lob Theorem is actually a transcrip-
tion of the Lob Paradox into metamathematical
language that goes back and forth across the
boundaries between the formal system and our
observation of it through code numbers. That
mode of observation is available both to us and to
the formal system, but we get to argue more
hypothetically in constructing proofs than the
formal system can in constructing demonstrations.

Lou. Léb’s Theorem gives us an immediate proof
that the self-affirming statement is provable in
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the formal system. This statement, call it A, has
the property that A = B(A). Hence Dem. [B(A)
implies A] and therefore Dem. A.

Jeremy. With Lob’s Theorem and Godel's
Theorem in place it becomes clear that genuine
logical paradoxes have deep consequences for
the study of mathematics and logic. Paradoxes
can actually be used to prove theorems that
ordinary mathematics and logic can never know.
I think that we should call the logic of paradox
virtual logic and write a paper about these
insights!

Lou. I happen to have information that we are
discussants in a paper on that very topic, so your
suggestion may have come to pass. After all,
paradox generates time (cf. Spencer-Brown, 1979,
Ch. 11) and with plenty of paradoxes there may
be time enough. However, I am a bit confused
about your claims for this ‘virtual logic’. Do you
assert that it has the capacity to transcend what
can be accomplished by ordinary reasoning?

Jeremy. Aha! You think there is such a thing as
‘ordinary reasoning’!?

Lou. Well, of course. Even L6b’s and Godel's -

Theorems are to be found in the handbooks of
mathematical logic. They are clever constructs,
but they are proved by ordinary reasoning.

Jeremy. Ordinary reasoning is not ordinary at all.
It is exactly in the hope of understanding
understanding that we set out on a voyage
toward virtual logic. Gédel’'s Theorem shows,
by a reasoning that all mathematicians can
follow, that reasoning itself cannnot be confined to
any particular set of rules, not if it is to be a reason
powerful enough to handle numbers. So we are
left out here in the void, forced to create creation,
rationalize reason, cogitate cognition and under-
stand our own understanding. What we call
‘ordinary reason’ is itself a paradox. Reason itself
is not at all reasonable! And that is what those
handbooks of mathematical logic are really
saying. Each new mathematical construction,
each new distinction, each theorem is an act of
creation. Ordinary reason itself is virtual.

Lou. Yes. But those handbooks have a credo.
They insist that the discussion be always open to
question, open to asking why, asking for the

reasons behind any step, asking for clarity of
structure and design.

Jeremy. I agree completely. The credo of clarity is
not ordinary. It goes beyond reason into a world
of beauty, communication and possibility. If you
want to call that ordinary reason, I will call it
‘nothing special’ and we can go look at the stars.

Lou: Perhaps a comet.

And we are not separate at all.
The observer is the observed.
The map is the territory.
And our tale is just begun.
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