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ABSTRACT  
 
At the first World Sloshing Dynamics Symposium that took place 
during the Nineteenth (2009) International Offshore and Polar 
Engineering (ISOPE) Conference in Osaka, Japan, it was made clear 
that simplified academic problems have an important role to play in the 
understanding of liquid impacts.  
The problem of the impact of a mass of liquid on a solid structure is 
considered. First the steady two-dimensional and irrotational flow of an 
inviscid and incompressible fluid falling from a vertical pipe, hitting a 
horizontal plate and flowing sideways, is considered. A parametric 
study shows that the flow can either leave the pipe tangentially or 
detach from the edge of the pipe. Two dimensionless numbers come 
into play: the Froude number and the aspect ratio between the falling 
altitude and the pipe width. When the flow leaves tangentially, it can 
either be diverted immediately by the plate or experience squeezing 
before being diverted. The profile of the pressure exerted on the plate is 
computed and discussed. Then the same problem is revisited with the 
inclusion of compressibility effects, both for the falling liquid and for 
the gas surrounding it. An additional dimensionless number comes into 
play, namely the Mach number.  
Finally, a discussion on the differences between the incompressible and 
compressible cases is provided.  
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INTRODUCTION 
 
The problem of a liquid jet impacting on a wall is a classical one, with 
very practical applications, in particular in sloshing. Indeed the impact 
of a fluid on a solid boundary often occurs as a mass of liquid pushing 
the gas around it and hitting the structure ahead. It is a complex fluid 
mechanics problem as suggested by some of its features, such as: the 
nonlinearity of its free surface; the possible presence and importance of 
the compressibility effects, when gas is trapped by the liquid; the role 
of the elasticity of its structure. A description of all phenomena which 
can take place when a liquid jet hits a structure was provided by 

Braeunig et al. (2009) at ISOPE 2009. It was emphasized that 
simplified or academic impact conditions can be quite useful in 
understanding various phenomena.    
The simpler problem of an infinite falling jet has already led to several 
papers, at least in the context of incompressible flows. The main 
motivation was the study of a long bubble rising through an infinite 
plane vertical tube of liquid. This problem can be actually viewed – if 
one uses a co-ordinate system attached to the bubble – as a liquid 
falling around a bubble, instead of the bubble rising in the liquid. The 
problem of an incompressible falling jet impacting on a horizontal plate 
was solved recently by Christodoulides and Dias (2010). The main 
results of that paper will be reviewed. Then we provide a better 
understanding of the compressible flow impacting on a solid plate. 
Since the geometry is exactly the same for the incompressible and the 
compressible cases, the geometric description is provided only once.  
 
A stream of liquid flows down and out of the bottom of a long two-
dimensional vertically-sided pipe of half-width W. The downwardly 
directed flow meets a horizontal plate of infinite extent set at a distance 
H below the bottom end of the pipe. The flow splits into two jets on 
each side of the pipe following a path along the horizontal plate. The 
general solution depends on the ratio H/W, on the dimensionless Froude 
number 
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where g is the acceleration due to gravity and U the velocity of the fluid 
far inside the pipe, and on the Mach number 
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where c is the speed of sound in the liquid. The incompressible case 
corresponds to the limit M = 0. A major difference between the 
incompressible and compressible cases is that the gas motion is 
modeled as well in the compressible case. Therefore there is an 
additional dimensionless number, which is the density ratio between the 



gas density and the liquid density.  
 
The results obtained by Christodoulides and Dias (2010) for the 
incompressible case (M = 0) are summarized in Figure 1. There are 
three regions in the (F, H/W) plane. These regions are divided by two 
curves, which were found numerically. One goes from region I to 
region III by increasing the velocity U at fixed H. In region I, the jet 
emerges from the pipe with a stagnation point. In region II, the jet 
emerges from the pipe without a stagnation point but experiences 
squeezing before being deflected by the horizontal plate. In region III, 
the jet emerges from the pipe without a stagnation point and is 
immediately deflected. 
 
The theory of functions of complex variables and conformal mappings 
was used to obtain a new formulation of the problem particularly well-
suited for discretization. A collocation method was then used to find the 
solution.  
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Fig. 1. The incompressible falling jets depend on two parameters, the 
Froude number F and the aspect ratio between the falling altitude and 
the pipe width H/W. The two plotted curves divide the (F, H/W) plane 
into three regions. In region I, the jet emerges from the pipe with a 
stagnation point. In region II, the jet emerges from the pipe without a 
stagnation point but experiences squeezing before being deflected by 
the horizontal plate. In region III, the jet emerges from the pipe without 
a stagnation point and is immediately deflected. 
 
FORMULATION OF THE INCOMPRESSIBLE PROBLEM 
 
We consider the steady irrotational flow of an incompressible inviscid 
liquid falling from a pipe of width 2W under gravity, hitting a 
horizontal plate of infinite length placed at a vertical distance H from 
the bottom edges of the pipe and splitting symmetrically into two jets 
one on each side of the pipe. As shown in Fig. 2, the stream coming 
from far inside the pipe (points J, J") hits the horizontal plate, centered 
at point C, and forms two jets – one on each side – detaching at points 
A, A" and forming free surfaces A#I, A"# I". 
 
Due to symmetry, the formulation of the problem is based on the ‘right’ 
half of the flow. The results presented in the sequel are simply obtained 
by superposition of the ‘left’ and ‘right’ flows. The point A is taken as 

the origin of the coordinate system (x, y), x being horizontal and y 
vertical. The mass flux emerging from the ‘right’ nozzle is Q = UW.    
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Fig. 2. Sketch of the flow and of the coordinates. The free-surface 
profile is a computed solution for H = 1.5 and F = 1.5. Special points 
are labeled on the boundary.  
 
As the system is governed by the assumptions of irrotationality and 
incompressibility, we have (ux, uy) = $!, ux and uy being the x- and y-
components of the fluid velocity, with Laplace’s equation $2! = 0 
holding for the velocity potential !. Bernoulli’s equation follows as a 
first integral of the Euler (momentum) equations of motion. It is valid 
everywhere inside the fluid and reads 
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where p is the pressure and & the liquid density. Assuming a zero 
pressure on all free surfaces (the flow in the gas is neglected), and 
taking W and U as the unit length and unit velocity respectively and 
consequently Q becoming unity, Bernoulli’s equation on the free 
surfaces becomes, in dimensionless form, 
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where the same symbols are kept for the dimensionless variables for the 
sake of simplicity. The constant on the right-hand side has been 
evaluated at point A, where the velocity is purely vertical and y = 0.  
The 2D problem under consideration is solved with the use of 
conformal mappings. Hence, we define the complex variable z = x + iy, 
the complex potential f = ! + i' for the velocity potential ! (x, y) and 
the streamfunction '(x, y), and the hodograph variable 
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The flow domain in the plane of the complex potential lies within an 
infinite strip of height 1. It is then transformed into the upper half of the 
unit disk in the complex t-plane, with the free surface going onto the 
upper half of the unit circle and the solid boundaries going onto the real 
diameter t+[–1, 1]. It is an elementary exercise to show that the 
transformation from the f-plane to the t-plane can be written in 
differential form as 
 

)1(
11

tt
t

dt
df

(
%

!
,

                            (6) 

-5 -4 -3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

J J" 

x 

y 

H 

2W 
A A"

C 

I" I

3 

         
 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

0 0.5 1 1.5 2 2.5
0 

0.5 

1 

1.5 

2 

2.5 

F 

H/W 

III 

I II 

         
 

 

 

 

 

 

 



 
or, in integrated form, as 
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It is clear that t can be obtained as a function of f explicitly by inverting 
relation (7). We denote by tC the image of point C in the t-plane. 
 
The problem now reduces to finding the hodograph variable " as an 
analytic function of t, satisfying Bernoulli’s Eq. (4) on the free surfaces 
and the kinematic boundary condition on the solid boundaries, that is 
on the real diameter t+[–1, 1]. Christodoulides and Dias (2010) showed 
that " can be sought in the form 
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where the function !(t) is analytic for |t|<1, continuous for |t| 4 1, and 
can be expanded in a power series of the form 
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The numerical method used to determine the coefficients an is 
described below. 
 
FORMULATION OF THE COMPRESSIBLE PROBLEM 
 
We consider the same flow, but of a slightly compressible inviscid 
liquid falling under gravity from a pipe of width 2W in the presence of 
a compressible inviscid gas of much lower density. The two fluids are 
taken to be immiscible at their interface. The bottom edge of the pipe is 
at a height H above a horizontal plate and the liquid has an initial 
vertical velocity U at this edge. Due to the symmetrical nature of this 
problem, we consider only the 'right' half of the flow. 
 
We use the 2D compressible Euler equations to compute the flow of 
each fluid away from the interface. These can be formulated as 
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and where 
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As opposed to the incompressible case, there is an energy equation, in 
which e denotes the internal energy. To close this system, we also need 
an equation of state for each fluid. We use the stiffened gas equation, 
which is a generalization of the ideal gas law: 
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with empirically determined fluid constants "liq = 159290725 Pa, #liq = 
7.0, "gas = 0.0 Pa, and #gas = 1.16. The speed of sound is given by 
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With the chosen constants for the liquid and with # = 1000 kg/m3, one 
finds that the speed of sound in the liquid is equal to 400 m/s at 
atmospheric pressure p = 101325 Pa. Of particular importance is the 
projection of the flux F with a unit vector n: 
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where N = (0, nx, ny, u 8 n)T. 
  
At the interface between the two fluids, it is convenient to consider the 
problem in Lagrangian coordinates. The compressible Euler equations 
in 1D can formulated in Lagrangian coordinates as: 
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where $ denotes 1/#. The fundamental thermodynamic equation Tds = 
de + pd$ yields 
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The change of variables 
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transforms (18) into 
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The Jacobian matrix for this system is given by 
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with eigenvalues  
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and left eigenvectors 
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It is easy to verify that the flux term satisfies the equation 
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Consider an interface which separates two states V- and V+. Linearizing 
yields 
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For (E–), the Riemann invariant associated with the eigenvalue #–c– is 
given by 
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for (E+), the Riemann invariant associated with the eigenvalue -#+c+ is 
given by 
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Using an upwind discretization method one can write 
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which was first derived by Braeunig (2007). 
 
NUMERICAL METHOD FOR THE INCOMPRESSIBLE 
PROBLEM 
 
The coefficients an in the power series (9) are real and are determined 
by using a collocation Galerkin method. The infinite series is truncated. 
Given the distance H+(0, 6), the discretized system is solved by 
Newton’s method for given values of the Froude number F+(0, 6), 
thus giving a two-parameter family of solutions. See Christodoulides 
and Dias (2010) for details.  
 
NUMERICAL METHOD FOR THE COMPRESSIBLE 
PROBLEM 
 
We use the direct Eulerian finite volume solver VFFC-IC 
(Characteristic Fluxes Finite Volume with Interface Capturing), 
developed by Braeunig, Desjardins and Ghidaglia (2009), to solve this 
system. We impose a finite computational domain, discretized into an 
evenly subdivided rectangular grid. At each volume element cell we 
store a volume fraction 0 $ % $ 1 and the conservative variables for 
each material, V1 and V2. We use time-splitting and alternating 
horizontal and vertical traversals for each time step.  
 
For a cell with 0 < % < 1 we create at each time step an artificial 
interface between the two materials based on the volume fraction of the 
cell and of the eight neighboring cells. Wherever we have such an 
interface, we use (33) and the method described below. 
 
To determine the evolution of a volume element !(t) with boundaries 
of potentially nonzero velocity 
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we can derive the following result: 
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We calculate the numerical flux terms % from the physical fluxes F(V) 
based on an upwind strategy. At a face & with normal n, we have 
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where 
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with J(V,n) being the Jacobian of F(V,n) and with R(V,n), L(V,n), and 
&(V,n) being the matrices of right and left eigenvectors and the set of 
eigenvalues of J(V,n).  
 
A description of the boundary conditions can be found in Ghidaglia and 

Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland


Marc Kjerland




Pascal (2005). We impose wall conditions on the left and bottom edges 
of the computational domain, an entry condition at the location of the 
pipe, and Neumann-like boundary conditions elsewhere. Let %K denote 
the flux at a boundary element K. At a wall condition we have u·n = 0, 
so 
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For boundary elements where u·n ' 0, we need external information. It 
can be shown that the eigenvalues of the Jacobian J(V',n) are given by 
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Let VK be a volume element adjacent to the boundary. In the case of a 
supersonic outlet u·n > c, all eigenvalues are positive and thus from 
(35) we need only information from VK: 
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For a supersonic inlet u·n < -c, we must impose all information about 
the flux: 
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For a subsonic outlet 0 < u·n < c, we must impose one external 
condition; here we impose the external pressure pout = patm and calculate 
the remaining terms to satisfy the condition 
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For a subsonic inlet -c < u·n < 0, we must impose three conditions. At 
the entry condition at the pipe, we impose #out = 1000 kg/m3 and uout = 
U. For the Neumann-like conditions we have #out = #in, uout = (·uin, and 
pout = patm. We then calculate the remaining condition to satisfy 
 

4 ( , )K Kl F V V l =8 ! 8 .  (41) 
 
The time step dt is obtained from the CFL stability condition: 
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where A& is the area of face &. 
  
 
RESULTS 
 
For the compressible calculations, the gas density with a background 
pressure p = 101325 Pa is equal to 4 kg/m3 while the liquid density is 
equal to 1000 kg/m3. The density ratio is therefore equal to 0.004, 
which is a typical value for the NG/LNG mixture. In Fig. 2, we have 
already shown a computed solution (incompressible flow) with H = 1.5 
(i.e. the H/W ratio is 1.5) for a relatively large value of the Froude 
number F = 1.5. One can see that the flow leaves the pipe at A (A") 
tangentially at an angle of 180o and gradually moves to the right (left) 
forming a single-free-surface jet that moves along the horizontal plate 

to +6 (–6). Keeping F fixed at 1.5 and letting H vary has the following 
effect in the behavior of flow. As shown in Fig. 3 for ‘small’ H = 0.2 
the flow, after detaching, moves to the right (left) almost immediately 
and continues along the horizontal plate to +6 (–6). Fig. 3 also shows a 
compressible flow with the same H and F but with a Mach number M = 
0.01175. For ‘large’ H = 3.0 (see Fig. 4) the jet becomes thinner (i.e. 
the fluid is like being squeezed) after detaching, then is gradually 
diverted and finally moves along the horizontal plate to +6 (–6). Again 
a compressible flow with M = 0.01175 is also shown.  
 

 
 

 
 
Fig. 3. Free-surface profiles for H = 0.2 and F = 1.5. Top: 
Incompressible flow; Bottom: Compressible flow with M = 0.01175.  
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Fig. 4. Free-surface profiles for H = 3.0 and F = 1.5. Top: 
Incompressible flow; Bottom: Compressible flow with M = 0.01175.  
 
 
Increasing the Froude number to ‘large’ values has no effect on the 
behavior of the flow for small to medium heights H. This behavior 
though, persists even for large values of H, as demonstrated in Fig. 5, 
where F = 10 and H = 3.0. One can observe that there is no squeezing 
of the free surfaces. In fact, for H = 3.0, the transition value of F 
(separating the regions with and without squeezing) is 3.3. 
 

 
Fig. 5. Free-surface profiles for parameter values H = 3.0 and F = 10. 
The result is for an incompressible flow.  

 

 
 
Fig. 6. Free-surface profiles for H = 1.5 and F = 0.7. Top: 
Incompressible flow; Bottom: Compressible flow with M = 0.0054775.  
 

 
The curve along which the transition between squeezing and no-
squeezing occurs is shown in Fig. 1. It is the curve that separates region 
II from region III. Because of the shape of that boundary, it is clear that 
decreasing the Froude number leads to more and more values of the 
height H with the occurrence of the squeezing of the free surfaces. An 
example is shown in Fig. 6, where F = 0.7 and H = 1.5. In fact, for H = 
1.5, the transition value of F (separating the regions with and without 
squeezing) is 0.93. A compressible flow with M = 0.0054775 is also 
shown. 
 
To summarize, we have so far found two types of flows: flows without 
squeezing in region III (these flows look relatively similar to the 
equivalent flow in the absence of gravity) and flows with squeezing in 
region II (these flows are strongly influenced by gravity). The 
incompressible and compressible flows look qualitatively similar. 
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FLOWS WITH A STAGNATION POINT AND OTHER 
FLOWS 
 
The only possible values for the angles between the vertical side of the 
pipe and the free surface are 90o and 120o. The 90o case corresponds to 
the free surface leaving the side of the pipe horizontally, while the 120o 
case corresponds to the free surface leaving the side of the pipe at a 60o 
angle from the vertical. The singularities in the expression for the 
hodograph variable " of must be modified. It turns out that such flows 
exist only for ‘small’ Froude numbers, F 4 0.50 = FC. Actually, this 
critical value FC corresponds exactly to the one found by Vanden-
Broeck (1984) in his study of jets falling from a nozzle. Even though 
the critical value FC is very close to 1/2, there is no obvious reason why 
it should be exactly 1/2.  
 
The curve that gives the boundary between regions I and II is given in 
Fig. 1. As H increases, F approaches the limiting value of 0.5, which 
corresponds to the configuration in the absence of the horizontal plate. 
A typical flow is shown in Fig. 7 for H = 1.01, corresponding to a 
Froude number of F = 0.35. One can see that the flow detaches at A (A") 
at an angle of 120o and gradually turns to the right (left) and moves 
along the horizontal plate to +6 (–6). A compressible flow with M = 
0.00274 is also shown.  
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Fig. 7. Free-surface profiles with 120o stagnation points at A, A" for H = 
1.01. The Froude number F = 0.35 comes as part of the solution. Top: 
Incompressible flow; Bottom: Compressible flow with M = 0.00274. 
 
For the 90o stagnation points the numerical process is exactly identical 
to the previous one, where the coefficients an in the power series (10) 
are real and can be determined by a collocation Galerkin method, 
giving again a two-parameter family of solutions. It turns out that such 
flows exist for ‘small’ Froude numbers (F < FC, see the 120o case) for 
values of H larger than the value of H corresponding to the 120o case. 
For instance, for F = 0.35 such solutions exist for 1.01 4 H, where 1.01 
is the corresponding H for the 120o case. An example of a flow with 
90o stagnation points is demonstrated in Fig. 8 for H = 0.5 and F = 0.1. 
Such solutions fall into region I of Fig. 1 above. A compressible flow 
with M = 0.0007825 is also shown. 

 
 

 
 
Fig. 8. Free-surface profiles with 90o stagnation points at A, A" for H = 
0.5 and F = 0.1. Top: Incompressible flow; Bottom: Compressible flow 
with M = 0.0007825. 
 
PRESSURE ALONG THE PLATE 
 
The results in this section are only for the incompressible flows. It is 
expected to have results for the compressible flows at the conference. 

Along the horizontal plate, the dimensionless Bernoulli’s equation 
simply reads 
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where the pressure p has been non-dimensionalized by &U2/2 and |")| is 
the magnitude of the velocity at point A. Fig. 9 shows a typical pressure 
profile along the plate for H = 1.5 and F = 1.5 (see case of Fig. 2). 
 
At the centre of the plate (point C) the pressure is maximum since the 
velocity is 0. In the case where A is a stagnation point, |")| becomes 
identically 0. For a given Froude number F, one can obtain the 
maximum pressure as a function of height H. In Fig. 10 are presented 
corresponding results for F = 0.7, 1.5 and 5.0. One clearly can observe 
that the curves exhibit a minimum. This minimum can be explained as 
follows. For small values of H, the flow has little space between the 
edge of the pipe and the horizontal plate, as in Fig. 3. The flow is not 
affected much by gravity and is close to the no-gravity case considered 
in the monograph by Milne-Thomson (1996, Example XII.10 and Fig. 
14.8b), where an analytical solution was provided. Using our notation, 
the relationship between H (which is in fact H/W) and the ultimate 
width d = D/W of the jet in contact with the plate (D being the far-field 
depth of the stream of fluid on the horizontal plate) reads 
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In the limit of small H, one finds a constant ratio H/d equal to 1 + 2/*. 
Let v denote the dimensionless velocity of the uniform flow along the 
plate (in the far field). Since the mass flux is equal to 1, d = 1/v. 
Neglecting gravity, it follows that |")| = v. At the centre of the plate 
(point C), Bernoulli’s equation yields approximately  
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Fig. 9. Pressure profile along the plate for H = 1.5 and F = 1.5.  
 
The pressure increases quite rapidly as H decreases, as can be seen in 
Fig. 10. The behavior near the minimum is due to the ‘squeezing’ of the 
free surfaces already discussed above. The two free surfaces tend to 
‘squeeze’ the internal middle flow, thus affecting the pressure exerted 
at C, which increases despite the increase of the distance H. This 
phenomenon becomes weaker for higher values of the Froude numbers. 
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Or rather, the minimum occurs at higher values of H. Again an 
asymptotic analysis allows us to obtain an estimate for the pressure for 
large values of H. In that case, the jet experiences a long free fall before 
hitting the plate. The term containing H in Bernoulli’s Eq. (43) is now 
much larger than the term containing |")| so that  
 

.2 2F
HpC I                            (46)     

 
The pressure increases linearly as H increases. For large values of the 
Froude number, the slope 2/F2 is quite small, as can be seen in Fig. 
10(c). 
 
Let us finally provide a few results with physical dimensions. Taking U 
= 2 m/s, H = 15 m, W = 4 m and & = 1000 kg/m3 (with g = 9.81 m/s2) 
yields F = 0.32 and, using Eq. (46), 
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which is a relatively large value. Taking now U = 2 m/s, H = 1 m, W = 
4 m and & = 1000 kg/m3 yields again F = 0.32 and, using (45),   
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Braeunig, J-P, Desjardins, B, Ghidaglia, J-M (2009). “A totally 
Eulerian finite volume solver for multi-material fluid flow.” European 
Journal of Mechanics B/Fluids, 28, pp 475-485.  

 
which is still a relatively large value. For this particular value of the 
Froude number (F = 0.32), the minimum for the dimensionless pressure 
at point C is 17.008. For U = 2 m/s, W = 4 m and & = 1000 kg/m3, it 
turns out that at the minimum pC – patm = 0.340 bar.  
 

 
       (a)        (b)          (c) 
Fig. 10. Values of the maximum pressure, at the centre C of the plate, 
as a function of H for (a) F = 0.7, (b) F = 1.5, (c) F = 5.0 (solid lines). 
The dashed and dotted lines represent respectively the approximation 
for small and large values of H. 
 
DISCUSSION 
 
We have seen a good qualitative agreement between the compressible 
and incompressible flows. However this is preliminary work and more 
results will be presented at ISOPE 2010.  
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