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SUMMARY

The purpose of this work is to study an application of the averaging method for the model

reduction of chaotic two-timescale systems of ordinary differential equations. We focus on two

practical implementations of the averaging method: first a simple implementation averaging

with respect to a single invariant measure, then a second implementation which includes a linear

response closure term derived from the fluctuation-dissipation theorem. Particular emphasis is

placed on the ability of the reduced systems to capture the long-time statistics and ensemble

perturbation response of the slow variables in the full system, which is not guaranteed by the

averaging formalism. We present some theory in the general case regarding criteria for the

similarity of the perturbation responses, then these methods are applied to a Lorenz 96 system

for linear and higher-order coupling between slow and fast systems. From these numerical

experiments we show that the addition of the linear response closure term greatly improves the

reduced model’s accuracy in capturing the dynamical and statistical behavior of the full system

and could be useful in practice in the presence of computational constraints.
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CHAPTER 1

INTRODUCTION

From observations and first principles the scientific community has been very successful in

deriving models of physical, biological, and behavioral phenomena, and while there is much to

be said about intrinsic elegance or scholarly interest of such models, sometimes these model

can even be useful. However, an important challenge in contemporary scientific modeling is

that despite the vast amount of knowledge of the behavior of components of our world, in some

cases to painstaking depth and rigor, our understanding of how these components function

together as a whole is often lacking. Scientific computation represents the third component of

modern scientific pursuit in addition to theory and laboratory experimentation, but even with

state-of-the-art computers and numerical methods solving complex models on multiple scales

of space and time can still be challenging.

In neuroscience, the Hodgkin-Huxley model for the action potential of a neuron is a highly

celebrated result based on rigorous study of the squid giant axon. However, the model represents

each neuron with a system of four nonlinear ODEs evolving on slow and fast timescales, making

direct simulation of large network of neurons very challenging. In fluid dynamics, the Navier-

Stokes equations describe the general problem of fluid motion almost too well, and the direct

application of the nonlinear PDE is rarely tractable for simulations large in space or time. In

geoscience, numerical weather prediction and climate forecasting consist of a dynamical core

coupled with fine-scale models of biological, chemical, and physical phenomena overlaid on a

1
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discretized earth. The scale of the application dictates which features can be resolved, as a full

earth system would be impossible. In each of these cases practical implementation typically

requires a reduced model derived by taking some simplifying assumptions, asymptotic limits,

or truncated discretizations.

An essential question in modeling is to know how well a mathematical model represents

the actual phenomenon to be understood. Perhaps a less ambitious question is to know how

well a reduced model represents the full model from which it is derived in order to justify the

simplifying assumptions. We make no claims to tackle such general problems in this work.

However, the purpose of this work will be to study a model reduction method for two-timescale

system of ODEs satisfying some assumptions so that long-term projections can be made with

relative accuracy and minimal computational effort.

In this work we will describe a dimension reduction method for the slow dynamics of a

two-timescale ODE system based on an averaging formalism, where the coupled fast dynamical

variables are replaced with a simple deterministic process which depends on the state of the slow

variables. We will apply the fluctuation-dissipation theorem, a result from statistical physics,

to develop a closure approximation to the coupled fast variables which incorporates a response

term appropriate to the coupling term.

We will explore the dynamical and statistical properties of these reduced systems, includ-

ing criteria for validity of these approximations and numerical results in an application to a

two-timescale toy model from geophysics, the Lorenz 96 system, in chaotic and quasi-periodic

parameter regimes.
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In Chapter 2 we begin with basic concepts and definitions for ODEs and nonlinear dynamics.

In Chapter 3 we describe the theory of linear response to small perturbations in ODE systems as

well as historical background of the fluctuation-dissipation theorem. In Chapter 4 we describe

the problem of the two-timescale ODE system, where we have an explicit timescale separation

of variables represented by a small parameter ε. We describe the averaging method for two-

timescale ODEs and present two practical implementations. In 5 we discuss the criteria for an

averaged model for slow variables to have similar perturbation response to the full model. The

Lorenz 96 model will be introduced in Chapter 6 along with some variations whose properties

will be useful in our applications and analysis. Statistical comparisons of the full and reduced

Lorenz 96 models are presented in Chapter 7 and comparisons of perturbation response are

presented in Chapter 8. Finally, an idealized linear response operator is discussed in Chapter

9 and we conclude.



CHAPTER 2

PRELIMINARIES - LA MISE EN PLACE

To begin we’ll establish some definitions and concepts for ODEs and some results from

linear response theory. We will rely heavily on these results in Chapter 4.

2.1 Ordinary Differential Equations

Consider the dynamical system for x ∈ RN given by the autonomous ODE system

dx

dt
= F (x),

x(0) = x0,

(2.1)

where F : RN → RN is a differentiable vector field, and let φt : RN → RN be the flow generated

by F , a one-parameter family of transformations which solves the initial value problem

dφt(x)

dt
= F (φt(x)),

φ0(x) = x,

(2.2)

and which notably has the group property φs ◦ φt = φs+t. For most of this work we will drop

the parantheses and use the notation φtx to denote the flow on x.

4
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We say that a set A is invariant under the flow if φt(A) = A for all t, and a measure µ is

invariant if µ(φt(A)) = µ(A) for any measurable set A and any time t. An invariant probability

measure µ is said to be ergodic if

φtA = A ⇒ µ(A) = 0 or µ(A) = 1 or t = 0. (2.3)

In this work we primarily concern ourselves with systems which have ergodic invariant proba-

bility measures, and here we make precise when this is the case.

A compact φ-invariant set Λ ∈ RN is known as an attractor if there is a neighborhood U

of Λ such that for all x ∈ U , φtx → Λ as t → ∞. An attractor is irreducible if it cannot be

written as the union of two disjoint attractors. Given the differential Dφ, an attractor Λ is

said to be hyperbolic if the tangent space for every x ∈ Λ admits a continuous splitting into

Esx ⊕ Eux where Esx and Eux are Dφ-invariant subspaces such that there exist constants c > 0

and 0 < θ < 1 where

‖Dφtu‖ ≤ cθt‖u‖, ∀u ∈ Es, t > 0,

‖Dφ−tv‖ ≤ cθt‖v‖, ∀v ∈ Eu, t > 0.

(2.4)

If an attractor Λ is irreducible, hyperbolic, and compact, and has a dense set of periodic points,

it is known as an Axiom A attractor, and there exists a unique φ-invariant Borel probability

measure µ on Λ such that for any continuous observable function b(x) we have, for Lebesgue-

almost-every x,

lim
S→∞

1

S

∫ S

0
b(φsx) ds→

∫
b dµ. (2.5)
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In general this invariant measure, known as the Sinai-Ruelle-Bowen (SRB) measure, will not

be absolutely continuous with respect to the Lebesgue measure. If this system has a nontrivial

unstable subspace Eu we call it chaotic (1).

We will mostly be considering dynamical systems that are mixing, so that for any pair of

square-integrable functions f, g ∈ L2(µ) we have:

lim
t→∞

∫
f ·
(
g ◦ φt

)
dµ =

∫
f dµ ·

∫
g dµ (2.6)

This is a stronger assumption than ergodicity. For such systems, a typical long-time solu-

tion “forgets” its initial state. Numerically, the equality of time average and space average

(Equation 2.5) provides the particularly useful property that large ensemble statistics can be

interchanged with long-time statistics of a single trajectory.

2.2 Tangent map

We define the tangent map as

T tx0
:=

∂φt(x)

∂x

∣∣∣∣
x0

. (2.7)

Differentiating (Equation 2.1) with respect to x, we have

∂

∂t
T tx = JF (φtx)T tx

T 0
x = IdN ,

(2.8)



7

where JF (x) is the Jacobian matrix of F at x and IdN is the N × N identity matrix, whose

solution is given by

T tx = exp

(∫ t

0
JF (φsx) ds

)
. (2.9)

Note that the tangent map has the property T s+tx = T sφtxT
t
x, found by applying the chain rule

of differentiation to the identity φs+t = φs ◦ φt.

2.3 Lyapunov exponent

The largest Lyapunov exponent characterizes the average rate of separation of infinitesimally

close trajectories and hence the predictability of the system. It is given by

λ1 := lim
t→∞

lim
x1→x0

1

t
ln
‖φtx1 − φtx0‖
‖x1 − x0‖

, (2.10)

with ‖ · ‖ the standard Euclidean norm. For an ergodic system, Osledec’s theorem guarantees

existence of this limit and equality for almost-every x. The full Lyapunov spectrum can be

defined but we will only refer to the largest, simply as the Lyapunov exponent. A strongly

chaotic system has a positive Lyapunov exponent, characterizing the exponential sensitivity to

initial conditions: ‖φt(x) − φt(x + δx)‖ ≈ eλ1t‖δx‖ as δx → 0 (2). Definitions of weak chaos

generally refer to systems where divergence of nearby solutions is sub-exponential but positive.

The Lyapunov exponents are closely related to the tangent map. If we define

L(x) = lim
t→∞

(
T tx(T tx)T

)1/2t
, (2.11)
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which by Osledec’s theorem will be equal for almost any initial state x, with eigenvalues Λ1 ≥

Λ2 ≥ . . . ≥ ΛN , the Lyapunov exponents are given by

λi = log Λi. (2.12)

2.4 The Kolmogorov equations

Two important equations for ODEs are the Kolmogorov backward and forward equations

which we describe here.

Note that if φtx solves (Equation 2.1) and if V ∈ C1 then

d

dt

(
V (φtx)

)
= ∇V (φtx) · F (φtx) (2.13)

Consider then the generator L, a linear operator which for any v ∈ C1 is given by

Lv = F · ∇v, (2.14)

and the following Cauchy problem for v(x, t),

∂v

∂t
= Lv, for (x, t) ∈ RN × (0,∞),

v(x, 0) = v0(x), for x ∈ RN .
(2.15)
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also known as the Kolmogorov backward equation.When v0 is sufficiently smooth so that

(Equation 2.15) has a classical solution, that solution will be given by

v(x, t) = v0(φtx), ∀t ∈ R+,x ∈ RN , (2.16)

since v(x, 0) = v0(x) and by the identity in (Equation 2.13).

More generally, for a bounded operator L we can define the semigroup

eLt :=
∞∑
k=0

tkLk

k!
, (2.17)

with eL0 = Id, so that v(x, t) = (eLtv0)(x) solves the general Cauchy problem for L, (Equation 2.15).

If we extend the definition of the operator eLt to act on arbitrary functions v ∈ L∞ as

(
eLtv

)
(x) = v(φtx), ∀t ∈ R+,x ∈ RN , (2.18)

then the infinitesimal generator L is defined as the following limit when it exists:

Lv = lim
t→0

eLtv − v
t

. (2.19)
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If the initial condition to (Equation 2.1) is a random variable with probability density ρ0(x),

the evolution of its distribution density ρ(x, t) is given by the Liouville equation,

∂ρ

∂t
= L∗ρ, for (x, t) ∈ RN × (0,∞),

ρ(x, 0) = ρ0(x), for x ∈ RN ,
(2.20)

also known as the Kolmogorov forward equation. If the system is ergodic with a smooth

invariant distribution density ρ∞(x), solutions to the Liouville equation will tend to ρ∞ as

t→∞. Using the semigroup notation the solution to (Equation 2.20) is given by

ρ(x, t) = (eL
∗tρ0)(x). (2.21)

Given an Axiom A attractor with an invariant measure µ we will determine the L2(µ)-adjoint

operators. Given the semigroup definition as in (Equation 2.18) and smooth functions u and

v, we have

〈eLtv, u〉 =

∫
v(φtx)udµ

=

∫
v(φtx)u(x) dµ(x)

=

∫
v(x)u(φ−tx) dµ(x)

= 〈v, eL∗tu〉,

(2.22)
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so that eL
∗tu = u ◦ φ−t. Then L∗ is given by the following limit when it exists:

L∗ρ := lim
t→0

eL
∗tρ− ρ
t

.

= lim
t→0

ρ ◦ φ−t − ρ
t

.

= −Lρ

(2.23)

so we see that L is skew-adjoint. From the ergodicity assumption the null space of L is spanned

by constants in x. We will revisit these operators for multiscale equations in Chapter 4.



CHAPTER 3

LINEAR RESPONSE THEORY

3.1 The linear response

Suppose the system (Equation 2.1) is perturbed by adding a small forcing term δF (x, t)

resulting in the time-dependent system

dx

dt
= F (x) + δF (x, t), x(t) = φ̂tx(0). (3.1)

where δF (x, t) = 0 for t < 0 and where φ̂t is the flow map corresponding to this perturbed

system with initial condition at t = 0. Many of the results in this section can be adapted to

more general forms of perturbation, but in this work we will restrict ourselves to the form in

Equation 3.1.

From equivalent initial conditions the trajectories of the perturbed and unperturbed systems

should diverge for t > 0. We are interested in this perturbation response, which is dependent

on the forcing in a relationship which a priori is unknown. However, when the forcing is

small enough we expect this dependence to be approximately linear, and we will derive an

approximate linear response which will hold for sufficiently small times and forcings. We will

denote this response by

δφtx := φ̂tx− φtx, (3.2)

12
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with δφ0x = 0.

In a real-world application, the state variables x might not be directly observable or might

not be of specifical interest. Furthermore, for chaotic systems one may be more interested in

ensemble statistics than in individual trajectories. Given a vector-valued observable function

b ∈ L1(µ) its its mean response at time t following the perturbation δF is given by

δ〈b〉(t) =

∫ (
b(φ̂tx)− b(φtx)

)
dµ(x). (3.3)

We seek a linear response operator R such that

δ〈b〉 ≈ R(δF )(t) (3.4)

which, in the case where the forcing is only time-dependent, δF (x, t) = δf(t), will take the form

R(δF )(t) =

∫ t

0
R(t, t′)δf(t′) dt′. (3.5)

3.2 Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (FDT), also known as the fluctuation-response relation,

provides an explicit connection between a system’s relaxation following an external perturba-

tion and its natural fluctuations about its mean state, provided some appropriate conditions

are satisfied. An example of this phenomenon was first described at the turn of the 20th cen-

tury independently by Einstein and Smoluchowski amid the search for evidence of the atomic
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hypothesis. They established a relationship between the viscous friction of a moving spherical

particle (given by Stokes’ Law) to the fluctuation of velocities in Brownian motion (3; 4; 5; 6). A

seminal 1928 paper by Nyquist at Bell Labs explained an observed relationship between random

electromotive force in a conductor and the impedance of the conductor using first principles of

the thermal fluctuations of electrons and an equipartition argument (7). More general treat-

ments of the fluctuation-dissipation theorem were given by Callen and Welton (1951) and Kubo

(1957), and proof of the relation is generally attributed to Kraichnan (1959) for systems with

a quadratic invariant, incompressible phase volume, and sufficiently weak forcing (8; 9; 10).

In 1975 Cecil Leith at the National Center for Atmospheric Research introduced FDT to

the geoscience community. The sensitivity of the earth’s climate would be very useful to know

since we would like to be able to anticipate the consequences of human activity or extreme

natural events. However, it would be quite difficult to produce experimental evidence of the

response which is larger than the climate noise. Leith proposed using the FDT as an alternative

which requires only the observable fluctuations of the earth’s climate to produce predictions of

small perturbations response (11; 12). The FDT formulation of Kraichnan and Leith is given

at the end of this chapter as (Equation 3.27), and holds for systems which satisfy the criteria

of Kraichnan and whose distributions will necessarily be Gaussian.

However, earth systems such as the atmosphere are typically subject to both damping and

forcing, resulting in models with a contracting phase space and no exact quadratic invariant. As

a consequence the conditions of Kraichnan do not hold. However, the results of FDT have been

extended to such systems as in the work of Deker & Haake (1975), Risken (1984), and Majda,
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Grote, & Abramov (2005), as we shall see in the next sections (13; 14; 15). The response formula

which we derive is known as the quasi-Gaussian linear response, which will hold approximately

for systems whose distributions are non-Gaussian.

3.3 The Fokker-Planck equation

We will need to establish some results on the smoothness of the attracting invariant manifold

µ of the unperturbed system (Equation 2.1) with respect to perturbations as in (Equation 3.1).

If µ is absolutely continuous with respect to the Lebesgue measure, then there is a distribution

density function ρ(x) such that dµ = ρ dx. It is known that most deterministic dynamical

systems do not have invariant measures satisfying this property, and instead their solutions

live on strange attractors with fractal dimension which have SRB measures that are singular

with respect to the Lebesgue measure (16; 17; 1). However, even a small amount of random

noise is typically sufficient to ensure existence of a distribution density (18). This noise will

generally be present in vivo due to unresolved physical processes and in silico in the form of

small pseudorandom noise due to numerical roundoff. In particular, this noise can be small

enough so as not to significantly affect the statistics of the noise-free system.

Introducing this stochastic regularization we have

dxε = F (xε) dt+ εdW t, xε(0) = x0, (3.6)
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where ε is a small positive scalar and W t is a standard Wiener process in RN . Now forced

by small Gaussian white noise, the evolution of a probability density ρε(t,x) in this system is

given by the Fokker-Planck equation (14):

∂ρε
∂t

+∇ · (F ρε) =
ε

2
∆ρε, (3.7)

where ∆ is the Laplacian operator. When ε = 0 this is equivalent to the Liouville equation

(Equation 2.20). For F corresponding to an ergodic system, the Fokker-Planck equation will

have a unique stationary solution ρ∞ε (x) (18).

Now we can consider the effect of the perturbation on the equilibrium distribution. The

Fokker-Planck equation for the corresponding regularized perturbed system is given by:

∂ρδFε
∂t

+∇ · ((F + δF )ρδFε ) =
ε

2
∆ρδFε ,

ρδFε (0,x) = ρ∞ε (x).

(3.8)

Using this interpretation, the mean response of an observable function b ∈ L1 at time t following

the onset of the perturbation δF is given by

δ〈b〉(t) :=

∫
b(x)ρδFε (t,x) dx−

∫
b(x)ρ∞ε (x) dx. (3.9)

In the next section we will derive a linear response formula to approximate this expression.
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3.4 Derivation of the linear response operator

If we subtract (Equation 2.1) from (Equation 3.1), and if δF is differentiable with we have

∂

∂t
δφtx = F (φ̂tx)− F (φtx) + δF (φ̂tx, t),

= JF (φtx)δφtx+ δF (φtx, t) + JδF (φtx)δφtx+O(‖δφtx‖2),

(3.10)

where JF and JδF are the Jacobian matrices of F and δF , respectively. If δF has a small first

derivatives, we can neglect the last two terms to get the following initial value problem:

∂

∂t
δφtx = JF (φtx)δφtx+ δF (φtx, t)

δφ0x = 0.

(3.11)

The solution to this linear ODE is given by Duhamel’s principle:

δφtx =

∫ t

0
exp

(∫ t

τ
JF (φsx) ds

)
δF (φτx, τ) dτ. (3.12)

Recalling the definition of the tangent map, we note that the initial value problem

∂

∂t
T t−τφτx = JF (φtx)T t−τφτx ,

T 0
φτx = IdN ,

(3.13)

found by multiplying both sides of (Equation 2.8) by T−τφτx, has solution

T t−τφτx = exp

(∫ t

τ
JF (φsx) ds

)
. (3.14)
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Plugging this into (Equation 3.12) we have

δφtx =

∫ t

0
T t−τφτxδF (φτx, τ) dτ. (3.15)

Linearizing the mean response of an observable b ∈ L1(µ) ∩ C1, as in (Equation 3.3), we have

δ〈b〉(t) ≈
∫
Jb(φ

tx)δφtxdµ(x) (3.16)

where Jb(φ
tx) is the Jacobian of b at φtx. From (Equation 3.15) we have

δ〈b〉(t) =

∫ t

0

∫
Jb(φ

tx)T t−τφτxδF (φτx, τ) dµ(x) dτ

=

∫ t

0

∫
Jb(φ

t−τx)T t−τx δF (x, τ) dµ(x) dτ,

(3.17)

where the second equality is due to the invariance of µ under φt. Thus we have the linear

response relation

δ〈b〉(t) =

∫ t

0

∫
∇x
(
b(φt−τx)

)
δF (x, τ) dµ(x) dτ. (3.18)

From the ergodic hypothesis, this is equivalent to the time average:

δ〈b〉(t) = lim
S→∞

1

S

∫ t

0

∫ S

0
∇x
(
b(φt−τ+sx)

)
δF (φsx, τ) ds dτ. (3.19)

See also (19; 20; 21; 22; 23; 24).
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The tangent map T tx in (Equation 3.17) can be numerically computed in tandem with a

solution trajectory x(t), using for example a Runge-Kutta scheme for which the derivation is

straightforward. However, in practice (Equation 3.18) is difficult to compute for large nonlin-

ear systems, which is often the case in geophysical applications. Numerical integration of the

tangent map requires multiplication of N×N matrices at each Runge-Kutta step which greatly

increases the computational cost. A further complication arises for systems with positive Lya-

punov exponents which introduce numerical instability in the tangent map computation. Due

to these factors, the usefulness of the tangent map for linear response prediction is restriced

to short time horizons. However, if we make some simplifying assumptions about the invari-

ant distribution we can derive an alternative linear response formula which is much easier to

implement in practice.

3.5 Quasi-Gaussian linear response

Assuming existence of a smooth invariant distribution dµ = ρ dx, integrating by parts in

(Equation 3.18) we have

δ〈b〉(t) = −
∫ t

0

∫
RN
b(φt−τx)∇x · (δF (x, τ)ρ(x)) dxdτ. (3.20)
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Now let us write the distribution density as ρ(x) = e−q(x), where q is a differentiable function

which goes to infinity as |x| → ∞. Then we have

δ〈b〉(t) =

∫ t

0

∫
RN
b(φt−τx) (∇xq(x) · δF (x, τ)−∇x · δF (x, τ)) e−q(x) dx dτ

=

∫ t

0

∫
b(φt−τx) (∇xq(x) · δF (x, τ)−∇x · δF (x, τ)) dµ(x) dτ.

(3.21)

If we make the simplifying assumption that ρ(x) is a Gaussian distribution with mean x and

covariance matrix Σ, that is,

ρ(x) =
exp

(
−1

2(x− x)TΣ−1(x− x)
)√

(2π)N |Σ|
(3.22)

then we have the so-called quasi-Gaussian linear response approximation

δ〈b〉(t) ≈
∫ t

0

∫
b(φt−τx)

(
(x− x)TΣ−1δF (x, τ)−∇x · δF (x, τ)

)
dµ(x) dτ.

= lim
S→∞

1

S

∫ t

0

∫ S

0
b(x(s+ t− τ)

(
(x(s)− x)TΣ−1δF (x(s), τ)−∇x · δF (x(s), τ)

)
ds dτ,

(3.23)

with x and Σ denoting the sample mean and covariance:

x = lim
S→∞

1

S

∫ S

0
x(s) ds

Σ = lim
S→∞

1

S

∫ S

0
x(s) (x(s)− x)T ds.

(3.24)

In practice (Equation 3.23) is simple to compute, requiring only a sufficiently long trajectory in

the unperturbed system, and is useful in chaotic mixing systems. (11; 19; 20; 21; 22; 23; 15; 14).
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In the case where the perturbation is only time-dependent, δF (x, t) = δf(t), and where the

observed quantity of interest is the state variable itself, b(x) = x, the formula simplifies greatly.

Defining the lag covariance as

Σ(t) = lim
S→∞

1

S

∫ S

0
x(s+ t) (x(s)− x)T ds (3.25)

and the autocorrelation function as

C(t) = Σ(t)Σ(0)−1. (3.26)

then the quasi-Gaussian response of the mean state of x is given by

δx(t) =

∫ t

0
C(t− τ)δf(τ) dτ. (3.27)

This is the fluctuation-dissipation result for linear response presented in Kraichnan (1957) and

Leith (1975), and will hold exactly for the systems they considered which necessarily have

Gaussian distribution. For systems with non-Gaussian distributions, (Equation 3.27) will be

an approximation to the linear response.(10; 11; 25)

3.6 Applications of the fluctuation-dissipation theorem

Several authors have applied the FDT to problems in geoscience. Bell (1980) tested Leith’s

FDT on a truncated model of the barotropic vorticity equation and pushed it further by adding

viscosity and forcing to the model so that energy and enstrophy were no longer conserved.
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Langen and Alexeev (2005) use the FDT to estimate the response of a sophisticated atmospheric

general circulation model (AGCM) to doubling of atmospheric CO2. Gritsun and Branstator

tested response to spatially localized heat forcing in an AGCM, and further tested the skill of

the inverse problem estimating the forcing needed to produce a given response. In each of these

cases the FDT provided effective predictions, although the authors working with AGCMs note

the practical difficulties in estimating the covariance matrix for such large systems.(25; 26; 27)

In the next chapter we will apply the FDT to a different type of application, where we

seek structural changes of invariant manifolds due to small changes in parameters, at least as

observed by projections onto simple functions.



CHAPTER 4

AVERAGED SLOW DYNAMICS FOR A TWO-TIMESCALE SYSTEM

4.1 Averaging method for two-timescale systems

Consider a general two-timescale dynamical system with slow variables x ∈ RNx and fast

variables y ∈ RNy :
dx

dt
= F (x,y),

dy

dt
=

1

ε
G(x,y),

x(0) = x0, y(0) = y0,

(4.1)

where F and G are differentiable vector fields and ε� 1 is a scale separation parameter.

The y-variables might represent some subgrid-scale or microscopic process, or perhaps x

and y represent analogous processes with different physical parameters. From a numerical

standpoint, computing a multiscale system with large timescale separation using an explicit

numerical method typically requires a very small timestep discretization. Furthermore, we

might also expect the number of fast variables to be large, Ny � Nx, which is likely to prohibit

implicit numerical methods that could otherwise accommodate larger timesteps. In any case,

for many real-world applications the fully-resolved multiscale model is simply intractable, and

an appropriate reduced model will be needed to perform a long-term projection.

In this chapter we will derive a reduced model for the slow dynamics of the multiscale

system using properties of the invariant distribution of the fast variables. This reduced model

23
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will provide approximate solutions of the multiscale system originating from the same initial

conditions for times up to t = O(1) as ε → 0. The solutions will also be appropriately close

in the long-time statistics. Formal theory for closeness of solutions is presented in this chapter

and experimental evidence for statistical similarity will be presented in Chapter 7. Criteria

for similarity of perturbation response will be derived in Chapter 5 and comparisons of actual

response will be shown in Chapter 8.

If we consider the change of variables τ = εt to switch to the fast time scale, we have

dx

dτ
= εF (x,y),

dy

dτ
= G(x,y),

x(0) = x0, y(0) = y0,

(4.2)

In the limiting case ε→ 0, or for sufficiently small time, x will be approximately constant and

the fast dynamics are given by the fast limiting system

dz

dτ
= G(x, z)

z(0) = y0,

(4.3)

with flow operator ϕtx and invariant probability measure µx, parametrized by x. We will

assume the fast limiting system (Equation 4.3) is mixing (and consequently ergodic) at least

for values of x on some relevant subset of RNx . In particular, we will need its lag covariance

(Equation 3.25) to decay sufficiently fast so that
∫∞

0 Σξ(s) ds is finite.
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If we define the vector field

F (x) :=

∫
F (x,y) dµx(y) (4.4)

we will show that the evolution for the slow variables x(t) in the multiscale system (Equation 4.1)

can be approximated by solving

dx

dt
= F (x).

x(0) = x0.

(4.5)

4.2 Averaging for ODE systems

We will justify the approximation (Equation 4.5) for times up to O(1) using an averaging

method for ODEs (28). For the multiscale system (Equation 4.1) in (x,y) let us define the

generators

L0 = G(x,y) · ∇y,

L1 = F (x,y) · ∇x,
(4.6)

The backward equation corresponding to (Equation 4.1) is given by

∂v

∂t
=

1

ε
L0v + L1v. (4.7)

We seek a solution for v(x,y, t) in the form of a perturbation expansion

v = v0 + εv1 +O(ε2) (4.8)
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Up to the leading two orders we have

O(1/ε) : L0v0 = 0, (4.9a)

O(1) : L0v1 = −L1v0 +
∂v0

∂t
. (4.9b)

From (Equation 4.9a) and the ergodicity assumption we conclude that v0 is a function only in

(x, t). Furthermore, integrating both sides of (Equation 4.9b) gives us

∫ (
−L1v0 +

∂v0

∂t

)
dµx =

∫
L0v1 dµx

= lim
t→0

∫
eL0tv1 − v1

t
dµx

= 0,

(4.10)

due to the invariance of µx with respect to eL0t. So if v0 ∈ C1 we have

0 =

∫ (
∂v0

∂t
(x, t)− F (x,y) · ∇xv0(x, t)

)
dµx(y)

=
∂v0

∂t
(x, t)−

∫
(F (x,y) dµx(y)) · ∇xv0(x, t)

=
∂v0

∂t
(x, t)− F (x) · ∇xv0(x, t)

(4.11)

This is the backward equation for (Equation 4.5), and from this multiple scale analysis we

conclude that the averaged system (Equation 4.5) will hold for times up to O(1).(28; 29)

4.3 Practical implementation of averaged system

A natural source to look for insight in high-dimensional fast dynamics is statistical me-

chanics. We will use the linear response theory developed in Chapter 2 and results from the
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fluctuation-dissipation theorem to approximate the fast system and reduce the multiscale sys-

tem Equation 4.1 to a lower-dimensional system of slow variables only.

Following the averaging formalism of the previous section, we express the slow solutions of

the two-scale system in (Equation 4.1) and the averaged system in (Equation 4.5) in terms of

their respective differentiable flows:

x(t) = φt(x0,y0) for the two-scale system, (4.12a)

xA(t) = φtA(x0) for the averaged system. (4.12b)

(In a slight abuse of notation, φt(x0,y0) here represents only the slow-variables component of

the flow). If ε � 1, then for the identical initial conditions x0 and generic choice of y0, the

solution xA(t) of the averaged system in (Equation 4.5) remains near the solution x(t) of the

original two-scale system in (Equation 4.1) for O(1) times. (28; 30; 31)

However, use of the averaged system (Equation 4.5) requires a priori knowledge of the

invariant distribution µx for all values of x in the solution space, which is a highly nontrivial

result and in practice requires significant computation to find long-time trajectories of the fast

limiting system (Equation 4.3) for a large set of parameters. As a more practical alternative,

we use an approximation to F that is localized around a single reference state ξ. This reference

state could be the observed mean state x of the multiscale system or another suitable point

near which the dynamics is to be approximated. As we will see in the the numerical results of
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Chapters 7 and 8, even though this approximation is local it will be useful for approximating

the global dynamics.

Given a reference state ξ, we have

F (x) =

∫
F (x,y) dµξ(y) +

(∫
F (x,y) dµx(y)−

∫
F (x,y) dµξ(y)

)
. (4.13)

We expect the term in parentheses to be small and we will consider two simple approximations

to (Equation 4.13). We begin with the zero-order approximation, given by simply ignoring the

difference term:

F 0(x) =

∫
F (x,y) dµξ(y). (4.14)

This approximation of the averaging method is simple to derive and requires minimal com-

putation. It has been suggested (32) as part of a numerical approach for a wide variety of

two-timescale systems, where the reference state ξ and invariant measure µξ can be periodi-

cally updated to prevent ‖x− ξ‖ from growing too large. However, while easily implemented,

this zero-order approximation can fail to capture some of the more complex dynamics of the

two-time coupled system, in particular long-time statistics and linear perturbation response as

we shall see in Chapters 7 and 8.

In this work we will primarily use a first-order approximation, derived below. (33) If the

fast limiting system (Equation 4.3) is structurally stable for x = ξ known to be the case for

Axiom A systems,[ref]
∫
F (x,y) dµx(y) will depend smoothly on x. In this case we will be able
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to at least approximate the difference term in (Equation 4.13) with a linear term for x near ξ.

First, we note that ∫
F (x,y) dµx(y) = lim

t→∞

∫
F (x, ϕtxy) dµξ(y), (4.15)

namely that when the system is perturbed, solutions will settle on the new invariant manifold

of the perturbed system given sufficient time. Then we can write

∫
F (x,y) dµx(y)−

∫
F (x,y) dµξ(y) = lim

t→∞

∫ (
F (x, ϕtxy)− F (x, ϕtξy

)
dµξ(y) (4.16)

This is exactly the mean response of F 0(x) at infinite time to a perturbation of the parameter

ξ in the fast limiting system, and using results from the previous chapter we can express this

term approximately using the linear response and specifically as a function of the statistics

of the unperturbed system. In the next section we present a practical implementation of this

linear response closure approximation for two types of coupling: a simple linear coupling and a

more general nonlinear coupling.

4.4 Reduced model formula for slow variables of two-timescale systems with linear

coupling

The first case we consider is a two-timescale system with linear additive coupling between

the slow and fast variables: 
dx

dt
= f(x) +Lyy,

dy

dt
= g(y) +Lxx,

(4.17)
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where f and g are differentiable functions and Lx and Ly are constant matrices. For a suffi-

ciently large timescale separation we can write an averaged system for slow variables alone:

dx

dt
= f(x) +Lyz(x), (4.18)

The fast limiting system is given by

dz

dt
= g(z) +Lxx, (4.19)

with x as a parameter, and with statistical mean state z(x) :=
∫
z dµx(z). Linearizing this

mean state about an arbitrary reference parameter ξ, we have

z(x) ≈ zξ +A · (x− ξ) (4.20)

where zξ = z(ξ) and where A is some constant matrix to be determined. If we consider the fast

limiting system (Equation 4.19) at x = ξ and perturb it by adding the quantity Lx(x− ξ) to

the right hand side, the linear response of zξ to this perturbation is given by (Equation 3.18):

δzξ(t) =

[∫ t

0
Cξ(τ) dτ

]
Lx(x− ξ), (4.21)
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where Cξ is the autocorrelation function (Equation 3.26) for the fast limiting system (Equation 4.19)

at x = ξ. For a large timescale separation we define the infinite time linear response operator

Cξ :=

∫ ∞
0

Cξ(τ) dτ, (4.22)

so that A = CξLx in Equation 4.19, and derive the first-order reduced system

dx

dt
= f(x) +Lyzξ +LyCξLx(x− ξ). (4.23)

Note that for Cξ to be finite the autocorrelation function must decay sufficiently fast, which

will be the case for strongly mixing and chaotic systems.

4.5 Reduced model formula for two-timescale systems with nonlinear coupling

We now consider two-timescale systems (Equation 4.1) with somewhat more general cou-

pling between slow and fast variables. We cannot handle the most general case so we will

place two restrictions on the multiscal system. First, let us assume that F depends at most

quadratically on the fast variables y, that is, locally near (x,y′) the i-th component of F (x,y)

is given by

Fi(x,y) = Fi(x,y
′) +

∑
j

∂Fi(x,y
′)

∂yj
(yj − y′j) +

1

2

∑
j,k

∂2Fi(x,y
′)

∂yj∂yk
(yj − y′j)(yk − y′k). (4.24)
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With respect to the fast limiting system (Equation 4.3), if we take y′ = z(x) and average over

µx we have

F i(x) :=

∫
Fi(x,y) dµx(y) = Fi(x, z(x)) +

1

2

∑
j,k

∂2Fi(x, z(x))

∂yj∂yk
Σjk(x), (4.25)

where Σjk(x) is the covariance between yj and yk in the fast limiting system. Or, more com-

pactly, the averaged system can be written

F (x) = F (x, z(x)) +
1

2

∂2F

∂y2
(x, z(x)) : Σ(x), (4.26)

where : is the Hadamard (component-wise) product with summation. As we can see, the

averaged system depends nonlinearly on the mean state z(x) and linearly on the covariance

Σ(x). We will derive approximations to these functions around a reference state x = ξ using

the appropriate linear response formulas.

Second, let us assume the right hand side of the fast system is of the form:

G(x,y) = g(y) +H(x)y + h(x) (4.27)

where g : RNy → RNy , h : RNx → RNy and H : RNx → RNy × RNy are arbitrary functions

which may be nonlinear. Let H and h be the mean values of H(x) and h(x) in the multiscale

system, or else some other appropriate reference values, and define δH(x) := H(x) −H and
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δh(x) := h(x) − h to be the deviations from these values. Consider then the fast limiting

system

G(x, z) = g(z) + (H + δH(x))z + (h+ δh(x))

= g(z) +Hz + h+ δH(x)z + δh(x).

(4.28)

Let zξ and Σξ be the mean and mean-centered covariance for this system in the unperturbed

case where δH = δh = 0. To find a closed formula for (Equation 4.25), we will derive the

infinite-time responses of zξ and Σξ when the forcing terms δH and δh are nonzero. This will

yield the following expressions (see Appendix A for details):

z(x) = zξ +RL→z :δH(x) +Rc→z (δh(x) + δH(x)zξ)

Σ(x) = Σξ +RL→Σ :δH(x) +Rc→Σ (δh(x) + δH(x)zξ) ,

(4.29)

where : denotes the Frobenius (component-wise) inner product, and where the components of

these four linear response operators at t =∞ are given by

Rc→zij =

∫ ∞
0

[
lim
S→∞

1

S

∫ S

0
(zi(s+ τ)− zi)(zk(s)− zk) ds

]
dτ (Σ−1

ξ )kj

RL→zijk =

∫ ∞
0

[
lim
S→∞

1

S

∫ S

0
(zi(s+ τ)− zi)(zl(s)− zl)(zk(s)− zk) ds

]
dτ (Σ−1

ξ )lj

Rc→Σ
ijk =

∫ ∞
0

[
lim
S→∞

1

S

∫ S

0
(zi(s+ τ)− zi)(zj(s+ τ)− zj)(zl(s)− zl) ds

]
dτ (Σ−1

ξ )lk

RL→Σ
ijkl =

∫ ∞
0

[
lim
S→∞

1

S

∫ S

0
(zi(s+ τ)− zi)(zj(s+ τ)− zj) ×

× (zm(s)− zm)(zl(s)− zl) ds (Σ−1
ξ )mk − (Σξ)ijδkl

]
dτ,

(4.30)
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where zi is the i-th component of zξ and δkl is the Kronecker delta. So, using (Equation 4.29)

and (Equation 4.25) we have a closure approximation for the evolution of the slow variables, in

practice requiring only a computed trajectory of the fast limiting system (Equation 4.28) that

is sufficiently long to estimate its mean and covariance matrix.



CHAPTER 5

CRITERIA FOR SIMILARITY OF PERTURBATION RESPONSE

BETWEEN THE TWO-SCALE SYSTEM AND ITS AVERAGED SLOW

SYSTEM

We turn our attention now to the similarity of the averaged model to its underlying multi-

scale model. In this chapter we attempt to establish criteria for the similarity of the responses

of these systems to equivalent perturbations. 1

Consider the two-scale system in (Equation 4.1) and the averaged system in (Equation 4.5),

each perturbed at the slow variables by a small time-dependent forcing δf(t) starting at t = 0:


dx

dt
= F (x,y) + δf(t),

dy

dt
=

1

ε
G(x,y),

(5.1a)

dx

dt
= F (x) + δf(t), (5.1b)

where

F (x) =

∫
F (x,y) dµx(y). (5.2)

1Material in this chapter has been submitted for publication and is awaiting review.(34)

35
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We can express the slow variable trajectories of these perturbed systems in terms of differen-

tiable flows:

x̂(t) = φ̂t(x0,y0), (5.3a)

x̂A(t) = φ̂tA(x0). (5.3b)

Suppose µ and µA are ergodic invariant probability measures for the unperturbed two-scale

system (Equation 4.1) and averaged system (Equation 4.5), respectively. Let b(x) be a differ-

entiable observable function of the slow variables with well-defined averages

〈b〉 :=

∫
b(x) dµ(x,y), (5.4a)

〈b〉A :=

∫
b(x) dµA(x). (5.4b)

The average responses of these quantities, denoted by δ〈b〉(t) and δ〈b〉A(t) for the respective

systems, are defined as

δ〈b〉(t) =

∫ (
b(φ̂t(x,y))− b(φt(x,y))

)
dµ(x,y), (5.5a)

δ〈b〉A(t) =

∫ (
b(φ̂tA(x))− b(φtAx)

)
dµA(x), (5.5b)
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For δf sufficiently small we expect these responses to be approximately linear and we will

approximate them by the following linear response relations, as in (Equation 3.18):

δ〈b〉(t) ≈
∫ t

0
R(t− s)δf(s) ds, R(t) =

∫
∇x
(
b(φt(x,y))

)
dµ(x,y), (5.6a)

δ〈b〉A(t) ≈
∫ t

0
RA(t− s)δf(s) ds, RA(t) =

∫
∇x
(
b(φtA(x))

)
dµA(x). (5.6b)

Here it is apparent that any differences between δ〈b〉(t) and δ〈b〉A(t) are due to differences

between R(t) and RA(t), since δf is identical in both cases. The differences between R(t) and

RA(t) are, in turn, caused by the differences between the flows φt and φtA and between the

invariant distribution measures µ and µA, which are difficult to quantify in practice. In what

follows we express the differences between R(t) and RA(t) via statistically tractable quantities.

First, we make the assumption that the invariant measures µ and µA are absolutely continuous

with respect to the Lebesgue measure with distribution densities ρ(x,y) and ρA(x), respectively,

so that we have:

R(t) =

∫
∇x
(
b(φt(x,y))

)
ρ(x,y) dxdy, (5.7a)

RA(t) =

∫
∇x
(
b(φtA(x))

)
ρA(x) dx. (5.7b)

Integration by parts yields

R(t) = −
∫
b(φt(x,y))∇xρ(x,y) dxdy, (5.8a)
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RA(t) = −
∫
b(φtA(x))∇ρA(x) dx. (5.8b)

Let us express the multiscale distribution density ρ(x,y) as the product of its marginal distri-

bution ρ̄(x) and conditional distribution ρ(y|x), given respectively by

ρ̄(x) =

∫
ρ(x,y) dy, (5.9)

and

ρ(y|x) =
ρ(x,y)

ρ̄(x)
. (5.10)

Now the formula for the linear response operator R(t) above can be written as

R(t) = −
∫
b(φt(x,y))ρ(y|x)

∂ρ̄(x)

∂x
dy dx−

∫
b(φt(x,y))

∂ρ(y|x)

∂x
ρ̄(x) dy dx. (5.11)

Since we expect φt(x,y) and φtA(x) to be close for small t, we can take a first-order Taylor

expansion for b in a neighborhood of φtA(x):

b(φt(x,y)) ≈ b(φtA(x)) +∇b
(
φtA(x)

)T (
φt(x,y)− φtA(x)

)
(5.12)

the second integral in the right-hand side of (Equation 5.11) becomes

−
∫
b(φt(x,y))

∂ρ(y|x)

∂x
ρ̄(x) dy dx = −

∫
b(φtA(x))

(∫
∂ρ(y|x)

∂x
dy

)
ρ̄(x) dx−

−
∫
∇b
(
φtA(x)

)T (
φt(x,y)− φtA(x)

) ∂ρ(y|x)

∂x
ρ̄(x) dy dx.

(5.13)
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The first integral in the right-hand side of (Equation 5.13) is zero due to the identity

∫
ρ(y|x) dy = 1 for all x, (5.14)

so we have

−
∫
b(φt(x,y))T

∂ρ(y|x)

∂x
ρ̄(x) dy dx = −

∫
∇b(φtA(x))T

(
φt(x,y)− φtA(x)

) ∂ρ(y|x)

∂x
ρ̄(x) dy dx

= O(‖φt(x,y)− φtA(x)‖).
(5.15)

The quantity φt(x,y)−φtA(x) will be small compared with either φt(x,y) or φtA(x) for relevant

values of t. Neglecting this term in (Equation 5.8), we have

R(t) = −
∫
b(φt(x,y))ρ(y|x)∇ρ̄(x) dy dx, (5.16a)

RA(t) = −
∫
b(φtA(x))∇ρA(x) dx. (5.16b)

We now express ρ̄(x) and ρA(x) as exponentials

ρ̄(x) = e−q̄(x), ρA(x) = e−qA(x), (5.17)
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where q̄(x) and qA(x) are smooth functions that grow to infinity as x becomes infinite. This

gives us

R(t) =

∫
b(φt(x,y))∇q̄(x)ρ(y|x)ρ̄(x) dy dx

=

∫
b(φt(x,y))∇q̄(x) dµ(x,y),

(5.18a)

RA(t) =

∫
b(φtA(x))∇qA(x)ρA(x) dx

=

∫
b(φtA(x))∇qA(x)µA(x).

(5.18b)

By the ergodicity assumption we can replace invariant measure averages with long-term time

averages to arrive at the following time correlation functions:

R(t) = lim
S→∞

1

S

∫ S

0
b(x(s+ t))∇q̄(x(s)) ds, (5.19a)

RA(t) = lim
S→∞

1

S

∫ S

0
b(xA(s+ t))∇qA(xA(s)) ds. (5.19b)

Since b is arbitrary, we can conclude that for RA(t) to approximate R(t) for finite times, we

need the following three conditions to be approximately satisfied:

1. For equivalent initial conditions, xA(t) should approximate x(t), that is φt(x,y)−φtA(x)

should indeed be small, on the finite time scale of decay of the correlation functions in

(Equation 5.19);

2. The invariant distribution ρA(x) of the averaged system in (Equation 4.5) should be

similar to the x-marginal ρ̄(x) of the invariant distribution of the two-scale dynamical

system (Equation 4.1);
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3. The time autocorrelation functions of the averaged system in (Equation 4.5) should be

similar to those of the slow variables of the two-scale system in (Equation 4.1).

The first condition is expected to hold for relevant values of t based on the scale analysis for the

averaged dynamics in Chapter 4 and (28; 29). In the following chapter we present a nonlinear

two-timescale toy model, and we will verify the second and third conditions numerically for

this system in Chapter 7. In Chapter 8 we will validate the above results for the similarity of

perturbation response between this model and its corresponding approximate average systems

in several parameter regimes.



CHAPTER 6

TESTBED – THE LORENZ 96 SYSTEM

The methods in the previous chapters hold for systems satisfying a number of hypotheses:

they should be ergodic with hyperbolic structure on an invariant manifold and mixing on an

appropriate timescale. In a realistic or useful model described by a high-dimensional nonlinear

system, we may have experimental evidence of a chaotic or Anosov flow but no rigorous proof

that these hypotheses are satisfied. Furthermore, the averaging theory holds formally in the

limit ε → 0 and only guarantees that solutions will stay close for times O(1), but typically

we will have ε > 0 and we may be interested in more general properties of a system such as

long-time statistics or sensitivity to perturbation.

In this chapter we describe a high-dimensional nonlinear two-timescale system to which we

apply the averaging methodology of Chapter 4. By construction, this toy model is relatively

simple to analyze yet has a number of properties which make it relevant to real-world geophysical

applications. In the appropriate parameter regimes, this system has the necessary properties of

mixing, etc., to justify the derivation of an averaged reduced model and the statistical analyses.

In Chapters 7 and 8 we will present experimental evidence that the reduced models are indeed

useful as approximations to the multiscale system even as the conditions are relaxed.

42
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6.1 A simple system to study predictability

In an exposition on predictability in models of planetary atmosphere (35), Edward Lorenz

proposed the system

ẋi = xi−1(xi+1 − xi−2)− xi + F, i = 1, . . . , N, (6.1)

with periodic boundary condition xi+N = xi. This system has generic features of geophysical

flows, namely a nonlinear advection-like term which conserves quadratic energy as well as linear

viscous damping and constant forcing terms. For many parameter regimes this system exhibits

linearly unstable waves, mixing, and chaos (15), all of which are present in earth’s atmosphere.

Its simple formulation, with invariance under index translation and a constant forcing parameter

F , allows for straightforward analysis - in particular the long-time statistics of each variable

is identical and is controlled by F . Additionally, the chaos and mixing of the system increase

with the forcing parameter, with decaying solutions for F near zero, periodic and traveling wave

solutions for F slightly larger than zero, weakly chaotic solutions around F = 5, and increasing

chaos and mixing for higher F .

Thorough analysis of this system and its statistical properties can be found in other works

such as (15).

6.2 The two-scale Lorenz 96 system

If we recall, the primary rate at which an infinitesimal error increases or diminishes in a

system is dictated by the leading Lyapunov exponent λ1. For a system which is chaotic, believed
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to be the case for earth’s atmosphere, we have λ1 > 0, and there is a corresponding notion of the

doubling time of errors given by t = ln 2
λ1

. Lorenz noted that doubling times for contemporary

atmospheric models were estimated at 1.5 days, yet a convective system can realistically double

in intensity in under an hour. Models calibrated to resolve synoptic and mesoscale phenomena

would generally not be able to resolve the relatively small convective cells, restricted by their

discretization, so these models might underrepresent error propagation. To study predictability

for such systems with rapidly evolving subgrid-scale phenomena, Lorenz proposed a two-time

system given by 
ẋi = xi−1(xi+1 − xi−2)− xi + Fx −

λy
J

J∑
j=1

yi,j ,

ẏi,j =
1

ε
[yi,j+1(yi,j−1 − yi,j+2)− yi,j + Fy + λxxi] ,

(6.2)

referred to as the Lorenz 96 system, where 1 ≤ i ≤ Nx, 1 ≤ j ≤ J, with periodic boundary

conditions xi+Nx = xi, yi+Nx,j = yi,j and yi,j+J = yi+1,j . Here Fx and Fy are constant forcing

terms, λx and λy constant coupling parameters, and ε is the explicit time scale separation

parameter. It is easy to verify that the nonlinear and coupling terms conserve energy of the

form

E =
λx
2

Nx∑
i=1

x2
i +

ελy
2J

Nx∑
i=1

J∑
j=1

y2
i,j . (6.3)

In Lorenz’s original formulation of the two-scale system he used Fx ≡ Fy ≡ 0, so that the local

intensity of one system drives the local intensity of the other, but we take them to be nonzero

to explore a variety of dynamical regimes.
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6.3 Rescaling the Lorenz 96 system

To simplify the analysis of coupling trends for the two-time system, we perform a change of

variables to scale out the dependence of the mean state and mean energy on the forcing term F .

Given the long-term mean x and standard deviation σ for the uncoupled system (Equation 6.1),

we rescale x and t as

xi = x+ σx̂i, t =
τ

σ
, (6.4)

where the normalized variables x̂ have zero mean and unit standard deviation, while their time

autocorrelation functions have normalized scaling across different dynamical regimes (that is,

different forcings F ) for short correlation times τ . In the rescaled variables, the uncoupled

Lorenz model becomes

˙̂xi =

(
x̂i−1 +

x

σ

)
(x̂i+1 − x̂i−2)− x̂i

σ
+
F − x
σ2

, (6.5)

where x and σ are functions of F , determined by sampling along a long trajectory of (Equation 6.1).

This rescaling was previously used in (36; 33; 37), and a slightly different normalization was

analyzed extensively in (15).

We similarly rescale the coupled two-scale Lorenz 96 model. Dropping the “hat” we have:


dxi
dt

=

(
xi−1 +

x

σx

)
(xi+1 − xi−2)− xi

σx
+
Fx − x
σx2

− λy
J

J∑
j=1

yi,j ,

ε
dyi,j

dt
=

(
yi,j+1 +

y

σy

)
(yi,j−1 − yi,j+2)− yi,j

σy
+
Fy − y
σy2

+ λxxi,

(6.6)
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where {x, σx} and {y, σy} are the long term means and standard deviations of the uncoupled

systems with Fx or Fy as constant forcing, respectively. We will focus on this rescaled coupled

Lorenz 96 system for the closure approximation. The normalization allows us to control the

qualitative dynamics of both slow and fast systems using the forcing parameters Fx and Fy,

respectively, without significantly changing the mean state of the coupled system; the necessary

tradeoff being that the normalizing constants must be found via statistical sampling for each

parameter regime under consideration. For further information on the rescaled Lorenz 96 sys-

tem, including a discussion of how the slow dynamics are affected by the coupled fast dynamics,

see (36).

6.4 Reduced models for the rescaled Lorenz 96 system

For a reference state ξ the fast limiting system for the rescaled Lorenz 96 is given by

ẏi,j =

(
yi,j+1 +

y

σy

)
(yi,j−1 − yi,j+2)− yi,j

σy
+
Fy − y
σy2

+ λxξi, (6.7)

the zero-order reduced system is given by

˙̂xi =

(
x̂i−1 +

x

σx

)
(x̂i+1 − x̂i−2)− x̂i

σx
+
Fx − x
σ2
x

− λyzξ. (6.8)

and the first-order reduced system is given by

˙̂xi =

(
x̂i−1 +

x

σx

)
(x̂i+1 − x̂i−2)− x̂i

σx
+
Fx − x
σ2
x

− λyzξ + (LyCξLx(x− ξ))i , (6.9)
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where Ly and Lx are the linear coupling matrices of (Equation 6.6) and Cξ is the infinite time

linear response operator (Equation 4.22) for the fast limiting system (Equation 6.7).

Before any numerical tests are performed, we can anticipate that the zero-order reduced

system (Equation 6.8) may be inadequate for this model even for simple linear coupling. Once

the reference state ξ is determined and mean of the fast limiting system zξ is computed, we

expect the perturbation term λyzξ to be small, since the uncoupled systems have zero mean in

the uncoupled setting. As a result we expect this to have only a small effect on the uncoupled

slow dynamics. However, it has been shown that coupling a fast chaotic system to a slow

chaotic system has a suppressive effect on the chaos of the slow system (36), and apparently

this phenomenon will not be manifest in the zero-order model.

6.5 Lorenz 96 system with higher order coupling

In addition to the linearly coupled test model presented above, we also consider a Lorenz

96 system with higher order mixed coupling terms. With a similar rescaling as above, we have



dxi
dt

=

(
xi−1 +

x

σx

)
(xi+1 − xi−2)− xi

σx
+
Fx − x
σx2

−

− λy
J

J∑
j=1

[
(a+ bxi)yi,j + (c+ dxi)(y

2
i,j − 1)

]
,

ε
dyi,j

dt
=

(
yi,j+1 +

y

σy

)
(yi,j−1 − yi,j+2)− yi,j

σy
+
Fy − y
σy2

+

+ λx
[
(a+ cyi,j)xi + (b+ dyi,j)(x

2
i − 1)

]
,

(6.10)
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as proposed in (37), where the coupling term also conserves the quadratic energy functional

(Equation 6.3). We see that h(x) and H(x) in (Equation 4.27) are given by

hi,j(x) =
λx
ε

(axi + bx2
i )

H(i,j),(i′,j′)(x) =
λx
ε
delta(i,j),(i′,j′)(cxi + dx2

i ).

(6.11)

We also have

1

2

∂2Fi
∂y2

(x) : Σ(x) = −λy
J

(c+ dxi)
J∑
j=1

Σ(i,j),(i′,j′)(x). (6.12)

In particular, since only the diagonal entries of the covariance matrix Σ(x) are needed and since

H(x) is a diagonal matrix, the infinite-time linear response operators RL→z,Rc→z,RL→Σ, and

Rc→Σ used in the reduced model (as described in Section 4.5) are 2-dimensional matrices and

not 3- and 4-dimensional tensors.



CHAPTER 7

COMPARISON OF STATISTICAL PROPERTIES OF REDUCED

MODELS

In this chapter we describe the results of a numerical study of the rescaled Lorenz 96

system (Equation 6.6) and its corresponding reduced models of slow dynamics. In particular

we investigate the ability of the reduced systems to capture the statistical properties of long-time

solutions in the slow variables as well their mean response to external perturbations. 1

We consider several parameter regimes, varying the degrees of forcing, coupling, and timescale

separation. Held constant will be the size of the systems, with a slow system of twenty variables

(Nx = 20) coupled to a fast system of eighty variables (Ny = 80). For numerical integration

of these ODES we use a fourth order explicit Runge-Kutta method with timestep dt = ε/10 in

the multiscale system and dt = 1/10 in the reduced system.

In Chapter 5 we outlined the main requirements for a reduced model to accurately capture

the response of the corresponding two-scale system: the approximation of joint distribution

density functions (DDF) for the slow variables, and the time autocorrelation functions of the

time series. It is, of course, not computationally feasible to directly compare the 20-dimensional

DDFs and autocorrelations for all possible test functions. However, it is possible to compare the

univariate marginal DDFs and autocorrelations for an individual slow variable, and thus have

1Material in this chapter has been submitted for publication and is awaiting review.(34)
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a rough estimate on how the statistical properties of the multiscale dynamics are reproduced

by the reduced model.

Note on the choice of parameter regimes: the forcing Fy must be large enough so the fast

limiting system is in a chaotic regime with sufficiently fast decay of the autocorrelation function;

we focus in particular on the strongly mixing regime Fy = 12. The coupling strength λx and

λy will be positive, but not larger than 1; we will see that as these parameters increase the full

system will be more difficult to approximate with averaged systems.

7.1 Statistical comparison for L96 with linear coupling

In Figure 1 we compare the distribution density functions and autocorrelation functions

of the slow variables. The DDFs are computed using bin-counting, and the autocorrelation

function 〈xi(t)xi(t+s)〉, averaged over t, is normalized by the variance 〈x2
i 〉. Results from three

parameter regimes are presented. In all three regimes the fast system is chaotic and weakly

mixing (Fy = 12) and the coupling strength λx = λy = 0.4 is chosen to be large enough so

that the multiscale dynamics are challenging to approximate - in particular they are poorly

approximated by a zero-order system (as we shall see in Figure 2, see also (33)). Of particular

interest are timescale separations of ε = 10−1 and ε = 10−2.

First we consider a slow regime which is chaotic and strongly mixing (Fx = 16) with

timescale separation ε = 10−1. Due to the rapid strong mixing of this parameter regime, the

large scale behavior is quite similar for a larger timescale separation. Figures are presented for

the timescale separation ε = 10−1 only, because in this regime the situation is very similar for

ε = 10−2. We also consider a slow regime which is weakly chaotic and quasi-periodic (Fx = 8).
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In this regime the coupled dynamics are more sensitive to the timescale separation so we present

results for both ε = 10−1 and ε = 10−2. Similar plots of statistical quantities for other

regimes, including regimes with less chaotic behavior, can be found in (33).

In order to systematically compare DDFs for many parameter regimes, we introduce two

metrics on the space of distributions. First is the Jensen-Shannon metric (38) which and is

given by

mJS(P,Q) =
1√
2

(∫ ∞
−∞

log

(
2p(x)

p(x) + q(x)

)
p(x)dx+

∫ ∞
−∞

log

(
2q(x)

p(x) + q(x)

)
q(x)dx

)1/2

,

(7.1)

where p and q are densities on distributions P and Q. This metric, derived from the information-

theoretic Kullback-Leibler divergence (39), is a symmetric quantity related to the relative en-

tropy of the two distributions and provides a sense of the amount of information lost by using

one distribution in place of the other. The second metric we consider is the earth mover’s

distance, also known as the first Wasserstein metric, commonly used in image classification

and originally motivated by transportation theory (40). By analogy, this metric represents the

minimum work needed to move one distribution function to another as though they were piles

of dirt; the energy cost is the amount of ‘dirt’ times the Euclidean ground distance it moved.

For distribution functions of one-dimensional random variables, the earth mover’s distance is

the L1 norm of the difference of the cumulative distributions:

mEM(P,Q) =

∫ ∞
−∞

∣∣∣∣∫ x

−∞
(p(s)− q(s)) ds

∣∣∣∣ dx. (7.2)
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Figure 1. Marginal distribution densities and autocorrelation functions of slow variables.
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This metric has the particularly intuitive property that the earth mover’s distance between two

delta distributions δα and δβ is simply the distance between their centers |α− β|.

Figure 2 shows distances between reduced systems DDFs and the corresponding multiscale

slow variable DDFs. A variety of regimes is considered, with coupling parameters λx, λy ∈

[0.1, 1], forcing parameters Fx ∈ {6, 7, 8, 10, 16} and Fy ∈ {8, 12, 16}, and timescale separations

ε ∈ {10−1, 10−2}. The data points are plotted with respect to coupling parameter λx. For each

regime considered, the corresponding distances are shown for both zero-order and first-order

reduced systems.
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Figure 2. Distances between DDFs of reduced and multiscale systems, with linear best fit for
the zero-order system (dashed line) and first-order system (solid line).
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As the coupling strength between fast and slow systems increases, it is apparently more

difficult for the reduced systems to capture the correct slow dynamics of the multiscale system.

When plotted against λy, the coupling parameter for the fast system, this correlation is slightly

weaker. Nevertheless, the distribution densities of the multiscale system are consistently closer

in both metrics to the first-order reduced system than to the zero-order system.

7.2 Statistical comparison for L96 with nonlinear coupling

In this section we make statistical comparison of reduced models implementing the averaging

methodology for nonlinear couplings of Section 4.5. We compare marginal distribution densities

and autocorrelation functions of the slow variables in the full system and in both first- and zero-

order reduced systems. As we see in Figure 3 and Figure 4, for certain parameter regimes we

have close agreement but for others the differences can be much larger.

In particular, extra consideration must be taken with this system because here the param-

eters c, d control the damping in a significant manner, and depending on the regime d can

have a significant effect on the forcing. If the fast limiting system is pushed into a regime

with a highly non-Gaussian distribution, the quasi-Gaussian FDT calculation in the first-order

reduced model will fail to produce an accurate coupling response. In more extreme cases with

large contributions from the higher order terms, Figure 5, the limitations of both reduced order

methods become apparent.

Using the metrics introduced in 7.1 we can explore the parameter space and find the limits

of the model reduction method. shows distances between reduced systems DDFs and the cor-

responding multiscale slow variable DDFs. A multitude of regimes is considered, with coupling
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Figure 3. Marginal distribution densities and autocorrelation functions of slow variables.
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Figure 4. Marginal distribution densities and autocorrelation functions of slow variables.
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parameters λx = λy ∈ {0.3, 0.4}, a ∈ {0, 1}, b ∈ {0,±0.5,±0.8,±1}, c ∈ {0,±0.3,±0.5,±1},

d ∈ {0,±0.3,±0.5,±1}; forcing parameters Fx ∈ {6, 8, 16} and Fy = 12; and timescale sep-

arations ε ∈ {10−1, 10−2}. The distances between distribution functions with respect to the

Jensen-Shannon metric and Earth mover’s distance are shown in Figure 6 For each parameter

regime considered, distances from the full system distribution to the zero-order and first-order

reduced systems are shown. Due to the high dimensionality of the parameter space and the

low dimensionality of this ink, the horizontal component of each data point is determined by

projecting the standardized parameter vector onto the 1-dimensional direction in parameter

space with the highest observed correlation with the distances vector. This is equivalent to the

method of partial least squares regression. (41)
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Figure 6. Distances between DDFs of reduced and multiscale systems for Lorenz 96 systems
with nonlinear coupling
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The coefficients of v1 are all positive, so increasing the value of a parameter typically will

make the marginal distributions of a system more difficult to approximate using a reduced

model. The parameters most highly correlated with a poorly-matched distribution are c, d,

and λx, in that order. In any case, the first-order reduced model typically produces better

approximations to the marginal distribution density function than the zero-order model.



CHAPTER 8

COMPARISON OF RESPONSE TO FORCING PERTURBATIONS

For a reduced model to be a useful approximation it should also respond in a similar way

to perturbations. In Chapter 5 we outline the criteria for the response of an averaged model to

be appropriately close to the response of the multiscale model, and in this section we present

experimental results of perturbation response in the Lorenz 96 system. In particular we examine

the response of the mean state 〈x〉 of the slow variables, that is b(x) = x in (Equation 5.4), in

the Lorenz 96 system following perturbations by simple forms of external forcing. 1

The two forms of forcing we consider are:

1. Heaviside step forcing

δfH(t) =


v if t > 0,

0 if t < 0,

(8.1)

2. Ramp forcing

δf r(t) =



v if t > tr,

vt/tr if 0 < t < tr,

0 if t < 0,

(8.2)

1Material in this chapter has been submitted for publication and is awaiting review.(34)

60



61

where v is a constant vector and tr is a fixed time when the ramp forcing reaches its maximum.

To compute the response of the mean state which we denote by δ〈x〉(t), corresponding to

b(x) = x in (Equation 5.5), we first generate an initial ensemble of 104 members sampled from

a single trajectory which has been given sufficient time to settle onto the attractor. Exploiting

the translational symmetry of the Lorenz 96 system, the ensemble size is increased by a factor

of Nx by rotating the indices of each member.

For each ensemble member we compute a short trajectory under the unperturbed dynamics

as well as the under the perturbed dynamics, then we take the difference between these two

trajectories and average over the entire ensemble. We restrict our attention to forcing at a

single slow variable, v = δf · êj , where δf is a scalar and êj a standard basis vector in RNx ,

motivated in part by our expectation that the response will be close to linear for small forcing

and short times. Taking advantage of the translation invariance of the Lorenz 96 system we

only consider forcing at a single node.

The initial calculations required to generate the reduced Lorenz 96 system take only a few

minutes on a modern laptop; once computed, numerical simulation of the reduced system is

faster than the multiscale system by a factor of ε−1. Computing the mean response for a single

forcing for 5 time units with a sufficiently large ensemble size (105 trajectories) takes over an

hour in the multiscale system with ε = 10−2 but less than three minutes for the corresponding

reduced system.
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8.1 Perturbation response for L96 with linear coupling

The plots in Figure 7 show the response of the slow variables mean state δx to Heaviside

forcing of magnitudes δf = 0.01 and δf = 1 at node x11 for five time units, averaged over an

ensemble of 200,000 trajectories. For comparison, the average magnitude of the right hand side

for this parameter regime is 〈| dxdt |〉 = 〈|F |〉 = 0.38.
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Figure 7. Response of 〈x〉 (b(x) = x in (Equation 5.5)) to Heaviside step forcing δf = 0.01
(left) and δf = 1 (right) at node x11 in a chaotic regime of the two-time rescaled Lorenz 96

system. Fx = 16, Fy = 12, λx = 0.4, λy = 0.4, ε = 0.1

In these plots we can see the primary response in the forced node as well as the propagation

of the response to the adjacent nodes in the direction of advection. Here the large features

of the Heaviside forcing mean response are present after five time units and provide a good

indication of the infinite time response.
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We now compare the mean response of the full and reduced systems. Figure 8 and Figure 9

show snapshots of the mean responses for the two-scale and reduced models at times t = 2

and t = 5 with the Heaviside forcing of δf = 0.01 and δf = 1, respectively. Response to ramp

forcing is shown in Figure 10 and Figure 11, where the forcing increases linearly from zero for

tr = 3 time units to a maximum of δf = 0.01 and δf = 1, respectively. In all

these plots, the reduced models capture quite closely the response of the node which is directly

perturbed, but they differ in their ability to capture the responses of the remaining nodes. In

the case of larger forcing δf = 1, the first order model responds closely to the multiscale system,

while the zero order model tends to underrepresent the response. When the forcing is small, the

small oscillations that propagate in the multiscale system are relatively large compared to the

linear response, and this is a purely multiscale phenomena that the reduced models are unable

to capture. Note that this difference is less prominent as the timescale separation increases

(ε → 0), allowing sufficient time for the oscillations to dissipate in the strongly mixing fast

system.

For a quantitative comparison of these responses, we plot versus time the relative error

‖δx(t)− δxA(t)‖
‖δx(t)‖

(8.3)

and the cosine similarity

δx(t) · δxA(t)

‖δx(t)‖ · ‖δxA(t)‖
(8.4)



64

Response to Heaviside forcing, δf = 0.01
Mean response at t = 2 Mean response at t = 5
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Figure 8. Snapshots of the mean response δx(t) to small Heaviside forcing
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Response to Heaviside forcing, δf = 1
Mean response at t = 2 Mean response at t = 5
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Figure 9. Snapshots of the mean response δx(t) to large Heaviside forcing
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Response to ramp forcing, δf = 0.01, tr = 3
Mean response at t = 2 Mean response at t = 5
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Figure 10. Snapshots of the mean response δx(t) to small ramp forcing
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Response to ramp forcing, δf = 1, tr = 3
Mean response at t = 2 Mean response at t = 5
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Figure 11. Snapshots of the mean response δx(t) to large ramp forcing
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of the mean responses δx(t) and δxA(t) of the multiscale and reduced systems, respectively.

These plots are shown in Figure 12 – Figure 15 for first-order and zero-order reduced systems.

We observe that the first-order reduced system response is a much closer approximation

to the multiscale response than the corresponding zero-order response in all cases. In these

regimes the relative error of the first-order response is limited to about 30% for small forcings

and about 20% for the ramp forcing, while in the zero-order system the difference can exceed

50% at t = 5.

Remark the plots for small ramp forcing in Figure 14, where we see a spike in the response

differences shortly after the onset of forcing in the weakly chaotic regime (Fx = 8, Fy = 12) with

large timescale separation (ε = 0.01) in the multiscale system. In this regime the small nonlinear

fluctuations of the multiscale system develop rapidly and are relatively large compared to the

ramp forcing for t near zero, so the relative error of the reduced system responses is large. As

the ramp forcing increases, the large features of the response become manifest and the nonlinear

contribution becomes negligible.

8.2 Perturbation response for L96 with nonlinear coupling

In Figures Figure 16 and Figure 17 we see the response of the slow variables mean state

δx to Heaviside forcing at node x11 for five time units, averaged over an ensemble of 20,000

trajectories. The two parameter regimes shown correspond to the regimes in Figure 3.

Response to small Heaviside forcing, 1% of the average magnitude of | dxdt |, is shown in

Figure 16. Here the relative errors are quite large, due to the size of the nonlinear effects

compared to the linear response - note that the vertical scales of these plots are [0, 1] but
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Multiscale vs reduced response to small Heaviside forcing, δf = 0.01
Relative error Cosine similarity
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Figure 12. Comparison of multiscale and reduced system mean responses δx(t) to small
Heaviside forcing using relative distance (Equation 8.3) and cosine similarity (Equation 8.4).
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Multiscale vs reduced response to large Heaviside forcing, δf = 1
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Figure 13. Comparison of multiscale and reduced system mean responses δx(t) to large
Heaviside forcing using relative distance (Equation 8.3) and cosine similarity (Equation 8.4).
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Multiscale vs reduced response to small ramp forcing, δf = 0.01, tr = 3
Relative error Cosine similarity
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Figure 14. Comparison of multiscale and reduced system mean responses δx(t) to small ramp
forcing with tr = 3 using relative distance (Equation 8.3) and cosine similarity (Equation 8.4).
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Multiscale vs reduced response to large ramp forcing, δf = 1, tr = 3
Relative error Cosine similarity
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Figure 15. Comparison of multiscale and reduced system mean responses δx(t) to large ramp
forcing with tr = 3 using relative distance (Equation 8.3) and cosine similarity (Equation 8.4).
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the linear-coupling response comparisons above are plotted on [0, 6] and [0.8, 1], respectively.

Response to large magnitude Heaviside forcing, on the order of | dxdt | is shown in Figure 17, for

which we see much lower relative errors which are comparable to the linear-coupling results.



74

Multiscale vs reduced response to small Heaviside forcing, nonlinear coupling
Relative error Cosine similarity
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Figure 16. Comparison of multiscale and reduced system mean responses δx(t) to small
Heaviside forcing for Lorenz 96 system with nonlinear coupling.
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Multiscale vs reduced response to large Heaviside forcing, nonlinear coupling
Relative error Cosine similarity
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Figure 17. Comparison of multiscale and reduced system mean responses δx(t) to large
Heaviside forcing for Lorenz 96 system with nonlinear coupling.



CHAPTER 9

IDEAL RESPONSE

As we have seen from the FDT, the linear response operator of a system at equilibrium

can be found using the long-time statistics of the unperturbed system. For a large multiscale

system, it may be interesting to see how well its response operator can be approximated using

the statistics of an appropriate reduced system; this would be especially important to know

in the general case since we often hope to model multiscale physical reality using a reduced

model, and we would hope they have similar perturbation response. In this chapter we will

perform a more modest exploration of the approximation of the slow variables response in

the two-timescale Lorenz 96 system (Equation 6.6) using the corresponding averaged system

statistics.

In Chapter 8 we compare the observed responses of similar systems. However, in the context

of the FDT it seems worth comparing the linear responses of these systems as well. If we recall,

for a time-dependent additive forcing term δf(t) the mean linear response is computed as a

convolution with a response kernel

δx(t) =

∫ t

0
R(t− τ)δf(τ) dτ. (9.1)

In the quasi-Gaussian approximation this operator is given by R(t) = C(t), the autocorrelation

function (Equation 3.26) of the unperturbed system. But how does this compare to the ‘true’
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linear response operator for this system? The linear response operator can be useful to know

for a large system, since it would permit the estimation of responses to a wide variety of small

perturbations without requiring significant computation. Knowing the linear response operator

would perhaps be especially useful when the level of noise is large compared with the response,

which would otherwise make extracting a statistically significant signal a difficult process (11).

Furthermore, the linear response operator could be useful in solving the inverse problem to

determine what external forcing is needed to produce a particular mean response.

Recall that for a constant (Heaviside) perturbation δf the linear response is given by

δx(t) = R(t)δf . (9.2)

For the quasi-Gaussian FDT approximation, the linear response operator R is approximated

by the integral of the autocorrelation function (Equation 3.26):

R(t) =

∫ t

0
C(t) dτ. (9.3)

To compare the actual linear response, we use the “ideal” response of Gritsun & Dymnikov

(1999), which is computed as a linear least squares of the actual measured responses with

respect to the forcing magnitudes (42; 19; 20; 21; 22; 23; 43; 44; 15). We see in Figure 18

the ideal responses for the multiscale and first-order reduced system for the chaotic parameter

regime, Fx = 16. They are quite similar, which is to be expected as their marginal distributions

and autocorrelation functions are very similar. How nonlinear is the actual response?
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Multiscale system Reduced (first-order) system

Figure 18. Ideal responses of multiscale and reduced (first order) system for Heaviside forcing
at a single node. Fx = 16, ε = 0.1

In Figure 19 we show the relative error of the linear response and actual response for various

magnitudes of forcing. We see that in the full system the smallest forcing result in the largest

relative difference, likely due to the small nonlinearities which are magnified in this setting. For

the reduced system the responses are all quite close to linear, where here the largest difference

is seen for the largest forcing magnitudes.

In Figure 20 we compare response to Heaviside forcing in the multiscale system to FDT

response computed using reduced system statistics. Snapshots of the response are shown at

times t = 2 and t = 5. Of particular note is the poor performance of the first-order system

FDT response, unusual because it performs well in other comparisons. However, this might be

expected because the first-order system does not have a Gaussian distribution in these regimes

(Figure 1), and thus an FDT quasi-Gaussian approximation may be inappropriate. The zero-
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Nonlinearity of Heaviside response
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Figure 19. Relative difference of actual response and ideal response for Heaviside forcing at a
single node
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order systems, however, do have distributions which are close to Gaussian, and so their predicted

FDT responses are closer to the actual response.
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Figure 20. Response of multiscale system and FDT response of reduced systems for Heaviside
forcing at a single node



CHAPTER 10

CONCLUSION

In this work we explored an application of the averaging method for the model reduction of

two-timescale systems. We describe the general setting where this technique can be applied and

describe practical implementation of the averaging method for systems with simple coupling

terms. We find that the slow variables can be reasonably well represented using an averaged

model computed on a single invariant manifold with a linear response correction term. For

a range of parameter regimes, coupling types, and timescale separations, the reduced model

provides reasonably good approximations of both long-time statistics and perturbation response

in the slow variables at a fraction of the computational cost of the full system.

In our application to the Lorenz 96 system, the first-order reduced system was able to

accurately capture the marginal distribution densities and autocorrelation functions of solutions

and the mean response of the system to simple forcing perturbations,

Due to the greatly reduced computational demands of such reduced systems and the relative

fidelity of the large features of the full system, this linear response closure approximation has

potential practical utility for chaotic two-timescale systems as considered in this study, and

perhaps warrants consideration when no better model reduction techniques are available.

For a more updated version of this document please contact the author at marc.kjerland@gmail.com.
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Appendix A

DERIVATION OF LINEAR RESPONSE FORMULA FOR A

NONLINEAR SYSTEM PERTURBED BY TERM WITH LINEAR

SPATIAL DEPENDENCE

Consider an ODE system of the form:

dy

dt
= G(x,y) = g(y) +H(x)y + h(x), (A.1)

for y ∈ RNy where g : RNy → RNy , h : RNx → RNy and H : RNx → RNy × RNy are arbitrary

functions which may be nonlinear, and where x ∈ RNx is vector of parameters. Consider a

particular reference set of parameters x = ξ for which φty is the flow map and µξ is an ergodic

invariant probability measure. Let H and h be appropriate reference values of H(x) and h(x)

and define δH(x) := H(x) −H and δh(x) := h(x) − h. We can then rewrite the RHS of

(Equation A.1) as

G(x, z) = g(z) + (H + δH(x))z + (h+ δh(x)). (A.2)

In the case where δH = δh = 0, let zξ and Σξ be the mean and mean-centered covariance for

this system. Then we can rewrite (Equation A.2) as

G(x, z) = g(z) +Hz + h+ δG(x, z), (A.3)
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Appendix A (Continued)

where

δG(x, z) = δH(x)z + δh(x)

= δH(x)(z − zξ) + δh(x) + δH(x)zξ

(A.4)

is a linear function in z. Now we are interested in the responses of zξ and Σξ to changes in

δG(x, z). For a differentiable scalar function b(z) with average state 〈b〉 =
∫
b(z) dµξ(z), recall

the response formula (Equation 3.23):

δ〈b〉(t) =

∫ t

0

∫
∇z
(
b(φt−τz)

)
δG(x, z) dµξ(z) dτ

=

∫ t

0

∫
∇z (b(φτz)) δG(x, z) dµξ(z) dτ

=

∫ t

0

∫
∇z (b(φτz)− 〈b〉) δG(x, z) dµξ(z) dτ.

(A.5)

Suppose µξ is absolutely continuous with respect to the Lebesgue measure with distribution

density ρξ(y) = e−qξ(y), where q is a differentiable function that goes to infinity as |x| → ∞.

Integrating by parts gives us

δ〈b〉(t) = −
∫ t

0

∫
(b(φτz)− 〈b〉)∇x · (δG(x, z)ρξ(z)) dz dτ

= −
∫ t

0

∫
(b(φτz)− 〈b〉)∇x ·

(
δG(x, z)e−qξ(z)

)
dz dτ

=

∫ t

0

∫
(b(φτz)− 〈b〉) (∇xqξ(z) · δG(x, z)−∇x · δG(x, z)) dµξ(z) dτ.

(A.6)

Since ∇x · δG(x, z) = δH(x) is a constant, we have

δ〈b〉(t) =

∫ t

0

∫
(b(φτz)− 〈b〉) (∇xqξ(z) · δG(x, z)) dµξ(z) dτ. (A.7)
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Appendix A (Continued)

For an ergodic system we switch to a time average, and expanding the forcing term δG we have

δ〈b〉(t) = lim
S→∞

1

S

∫ t

0

∫ S

0
(b(z(s+ τ))− 〈b〉)

(
(Σ−1

ξ )(z(s)− zξ)
)T

δH(x)(z(s)− zξ) ds dτ

+ lim
S→∞

1

S

∫ t

0

∫ S

0
(b(z(s+ τ))− 〈b〉)(z(s)− zξ)T ds dτ (Σ−1

ξ ) (δh(x) + δH(x)zξ) .

(A.8)

Using the identity uTAv = uvT :A, where : is the Frobenius (component-wise) inner product,

we have

δ〈b〉(t) = lim
S→∞

1

S

∫ t

0

∫ S

0
(b(z(s+ τ))− 〈b〉)(z(s)− zξ)(z(s)− zξ)T ds dτ (Σ−1

ξ ) :δH(x)

+ lim
S→∞

1

S

∫ t

0

∫ S

0
b(z(s+ τ))(z(s)− zξ)T ds dτ (Σ−1

ξ ) (δh(x) + δH(x)zξ) .

(A.9)
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