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Introduction

This report is a summary of work done during six months of research
training at the Centre de Mathématiques et de Leurs Applications,
with funding from l’École Normale Supérieure de Cachan. The subject
of this research, directed by Jean-Michel Ghidaglia and Frédéric Dias,
is the modeling of two-phase fluid flow, in particular of a slightly-
compressible liquid moving through a compressible gas.

The fluids are considered to be inviscid and inmiscible, and we use
the compressible Euler equations to model the flow. We use the ideal
gas law for the thermodynamic equation of state of the gas and we use
the stiffened gas law for the equation of state of the liquid.

This work was primarily done using the VFFC-IC method (Volumes
Finis à Flux Caractéristiques with Interface Capture) [1], in collab-
oration with Jean-Philippe Braeunig and Daniel Chauveheid. This
method uses a direct Eulerian finite volume scheme for the mono-phase
flow and a Lagrangian-type scheme at the interface of the fluids. The
two-dimensional scheme is presented in this paper, although it has
since been scaled to three dimensions.

In Chapter 1, I will focus on the single-phase problem. The methods
for multi-phase flow will be detailed in Chapter 2. My contributions
to this project are the addition and improvement of fluid boundary
conditions for the VFFC-IC method, and the implementation of ghost
cells for the multiphase case; these contributions will be presented in
the appropriate sections. In Chapter 3, I will present some numerical
results.
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Chapter 1

Single-phase flow

1.1 Compressible Euler equations

The compressible Euler equations in nd dimensions can be written
in conservation form as:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

∂t(ρE) +∇ · ((ρE + p)u) = 0,

(1.1)

where ρ is the density, u ∈ Rnd is the velocity field, p is pressure, and
E = e + 0.5‖u‖2 is the total internal energy with e being the specific
internal energy. A thermodynamic equation of state is necessary to
close this system, for which we use the stiffened gas equation:

p+ π = (γ − 1)ρe, (1.2)

where γ is the adiabatic index and π is an empirically determined
constant for the fluid. Note that for π = 0 this is exactly the ideal gas
law; for a slightly compressible liquid we use π � 0.

It is convenient to write our system of PDEs (1.1) as:

∂tv +∇ · F (v) = 0, (1.3)

where v = v(x, t) is the vector of conservative variables (ρ, ρu, ρE), F
is a matrix function:

F : Rnd+2 −→ Rnd+2 × Rnd

v 7−→ F (v),
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and where ∇ · F (v) =
∑nd

i=1 ∂xi
F i(v). Of particular importance is the

projection

F (v) · n = (ρ(u · n), ρu(u · n) + pn, (ρE + p)(u · n)). (1.4)

1.2 Finite Volume approach

The VFFC method (Volumes Finis à Flux Caractéristiques), intro-
duced by Ghidaglia, et al [1], is a direct Eulerian finite volume scheme.
The finite computational domain Ω is subdivided into discrete volume
elements, and our system advances at discrete time steps dt. At a given
volume element K we consider an average of the physical variables

vK(t) =
1

vol(K)

∫
K

v(x, t)dx. (1.5)

By integrating (1.3) over K and applying the divergence theorem, we
have

vol(K)
dv

dt
+

∫
∂K

F (v(σ, t)) · n(K, σ)dσ = 0, (1.6)

where n is the outwarding-pointing normal on ∂K. When the volume
elements are polyhedra we have∫

∂K

F (v(σ, t)) · n(K, σ)dσ =
∑

L∈N(K)

FK,L, (1.7)

where N(K) denotes the neighbors of K and where

FK,L =

∫
K∩L

F (v(σ, t)) · nKLdσ. (1.8)

The crux of the numerical method is finding a suitable approxima-
tion to the physical flux terms FK,L. This will be the numerical flux
φ which satisfies

FK,L ≈ area(K ∩ L) φ(vK ,vL,nKL). (1.9)
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1.3 Hyperbolicity and the Eigensystem

We turn our interest to the eigensystem of the Jacobian matrix:

J(v,n) =
∂(F (v) · n)

∂v
. (1.10)

The compressible Euler equations form a hyperbolic system of con-
servation laws; that is, the Jacobian has only real eigenvalues and is
diagonalizable. We can determine the eigenvalues λk(v,n), left eigen-
vectors lk(v,n), and right eigenvectors rk(v,n), for 1 ≤ k ≤ nd + 2,
which will satisfy

tJ(v,n) · lk(v,n) = λk(v,n)lk(v,n)

J(v,n) · rk(v,n) = λk(v,n)rk(v,n),
(1.11)

with the normalization

lk(v,n) · rp(v,n) = δk,p. (1.12)

In the two-dimensional case, where u = (ux, uy) denotes the velocity,
n = (nx, ny) the unit normal, and for some t = (tx, ty) such that
t · n = 0, we have:

λ1(v,n) = u · n− c,
λ2(v,n) = u · n,
λ3(v,n) = u · n,
λ4(v,n) = u · n+ c,

(1.13)

R(v,n) =


1 1 0 1

ux − cnx ux tx ux + cnx
uy − cny uy ty uy + cny

H − c(n · u) H − c2

k (t · u) H + c(n · u)

 , (1.14)

L(v,n) =
1

2c2


K + c(n · u) 2k(H − ‖u‖2) −2c2(t · u) K − c(n · u)
−kux − cnx 2kux 2c2tx −kux + cnx
−kuy − cny 2kuy 2c2ty −kuy + cny

k −2k 0 k

 ,

(1.15)
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where

c =

√
γp+ π

ρ
(speed of sound),

H = e+
p

ρ
+

1

2
‖u‖2 (total enstrophy),

k =
1

ρ

(
∂p

∂e

)
,

and K = c2 + k(‖u‖2 −H).

(1.16)

1.4 The VFFC Method

In order to approximate the physical flux on a face Γ between two
volume elements K and L, we take vΓ to be an average of the conserved
variables of the bordering cells, such as:

vΓ =
volKvL + volLvK
volK + volL

. (1.17)

By multiplying (1.3) by the Jacobian matrix and considering only evo-
lution in the normal direction n from K to L, we arrive at the following
equation:

∂t(F (vΓ) · n) + J(vΓ,n)∂n(F (vΓ) · n) = 0, (1.18)

where ∂n = n · ∇. Thus we have Riemann invariants which travel in
the direction of n with speed λk(vΓ,n):

(∂t + λk(vΓ,n)∂n) (lk(vΓ,n) · F (vΓ) · n) = 0. (1.19)

We solve this equation in one dimension using the method of charac-
teristics and an upwind discretization:

• If λk(vΓ,n) > 0, then lk(vΓ,n) · φ(vK ,vL,n) = lk(vΓ,n) · (F (vK) · n).

• If λk(vΓ,n) < 0, then lk(vΓ,n) · φ(vK ,vL,n) = lk(vΓ,n) · (F (vL) · n).

• If λk(vΓ,n) = 0, then lk(vΓ,n)·φ(vK ,vL,n) = lk(vΓ,n)·
(
F (vK) + F (vL)

2
· n
)

.
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We can thus write the flux term explicitly as

φ(vK ,vL,n) =

(
F (vK) + F (vL)

2
− sign(J(vΓ,n))

F (vK)− F (vL)

2

)
·n,

(1.20)
where

sign(J(vΓ,n)) = R(vΓ,n) diag(sign(λ(vΓ,n)))L(vΓ,n).

Note that the numerical flux is both consistent and conservative:

φ(vK ,vK ,n) = F (vK) · n (1.21)

φ(vK ,vL,n) = −φ(vL,vK ,n) (1.22)

Finally, the time step dt is determined by a Courant-Friedrichs-Levy
(CFL) stability condition:

dt < min
i

(
voli

Amaxk |(λi)|

)
(1.23)

1.5 Handling boundary conditions

Common boundary conditions used with this method are periodic,
wall, and fluid conditions. Here we will address the latter two condi-
tions. Let φ(vK , K,n) denote the numerical flux for a volume element
K at the boundary with outward normal n.

In general this problem will be ill-posed if we impose either v or
F (v) ·n as boundary conditions. This can be understood by analyzing
the linearized problem:

∂tv + J(v,n)∂nv = 0. (1.24)

For a positive eigenvalue λk(v,n) > 0, by the method of characteristics
we have scalar information propagated in the direction of n, and in the
opposite direction for a negative eigenvalue. For the nonlinear problem,
recall that for λk(vK ,n) > 0 we have

lk(vK ,n) · φ(vK , K,n) = lk(vK ,n) · (F (vK) · n). (1.25)
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Thus for each positive eigenvalue we have scalar information at the
boundary which is propagated from the interior of Ω. Similarly, for
each negative eigenvalue λk(vK ,n) < 0 we need external scalar infor-
mation. For a more detailed treatment, see Ghidaglia & Pascal, [2].

1.5.1 Fluid Conditions

Here we address fluid boundary conditions, where there is nonzero
normal velocity at the boundary ∂Ω. The eigenvalues (1.13) are func-
tions of u · n, so we will look at several cases individually.

Supersonic outlet: u · n > c

Here all the eigenvalues are positive, so all the information at the
boundary is determined by the interior physical state. Thus

φ(vK , K,n) = F (vK) · n. (1.26)

Supersonic inlet: u · n < −c
Here all the eigenvalues are negative, so all the information at the
boundary is determined externally. The flux is determined solely
from given physical conditions outside the domain:

φ(vK , K,n) = F (vgiven) · n. (1.27)

It should be noted that flows with large Mach numbers are very dif-
ficult to resolve numerically in this framework, so these supersonic
conditions are in practice not yet resolvable.

Subsonic outlet: 0 < u · n < c

Here only one eigenvalue is negative and the rest are positive. Let
φ(vK , K,n) = F (v) · n. Then we need to prescribe one physical
boundary condition, and from (1.25) we have:

lk(vK ,n) · (F (v) · n) = lk(vK ,n) · (F (vK) · n),

for k = 2, . . . , nd+ 2.
(1.28)
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Then from the normalization (1.12) we have:

F (v) · n =
nd+2∑
k=1

(lk(vK ,n) · (F (v) · n))rk(vK ,n)

= F (vK) · n+ (l1(vK ,n) · (F (v) · n− F (vK) · n)r1(vK ,n).
(1.29)

So F (v) · n is just a slight perturbation from F (vK) · n. If, for
example, we were to prescribe a physical boundary condition p =
pgiven, then to determine φ(vK , K,n) we simply need to solve the
system: {

F (v) · n = F (vK) · n+ εr1(vK ,n)

ε ∈ R such that p = pgiven,
(1.30)

which can be solved using the Newton-Raphson method.

Subsonic inlet: −c < u · n < 0

Here only λnd+2(vK ,n) > 0 and the remaining eigenvalues are
negative. Thus we impose nd + 1 conditions, and the remaining
condition must be calculated to satisfy:

lnd+2(vK ,n) · (F (v) · n) = lnd+2(vK ,n) · (F (vK) · n). (1.31)

We have many possible options for prescribing physical boundary
conditions in this case. One possibility might be to impose ρ =
ρgiven, p = pgiven, and u = µûgiven, for some magnitude µ to be
determined. In another scenario, one could prescribe (ρ,u) and
solve for p. Since we know lnd+2 and F (vK) ·n, we simply expand
(1.31) and solve for the single unknown. Using the notation lnd+2 =
(L1,L, Lnd+2), we have the following equation:

ρ(û · n)
(1

2µ
3L1 + µ2(û ·L) + µ((L1 + hLnd+2) + p(L · n))

)
= lnd+2 · (F (vK) · n)

(1.32)
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1.5.2 Wall Conditions

At a wall with outward normal n, we have the condition u · n = 0.
Thus the normal flux is given by

F (v) · n = (0, pn, 0). (1.33)

To determine this flux, we simply find the unknown p by solving (1.31):

p =
lnd+2(vK ,n) · (F (vK) · n)

lnd+2(vK ,n) · (0,n, 0)
. (1.34)
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Chapter 2

Multi-phase flow

We now consider the multi-phase flow problem. Here the domain
contains two different fluids, such as air and water, assumed to be
inmiscible and inviscid at the interface. Each fluid flow obeys the
compressible Euler equations, differing only in the parameters π and γ
in their respective equations of state.

2.1 Finite volume integration

In general the interface between two fluids will be non-stationary.
Thus in the multi-phase problem we must consider fluid volumes whose
boundaries are variable in time. Suppose we have such a domain Ω(t)
whose boundary has nonzero velocity:

∂Ω(t) = Γ(t) = Γu·n=0 ∪ Γu·n 6=0. (2.1)

We use the following result:

d

dt

∫
Ω(t)
vdS =

∫
Ω(t)

∂v

∂t
dS +

∫
∂Ω(t)

v(uint · nint)dσ, (2.2)
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where uint denotes the velocity of the interface ∂Ω(t). By integrating
the system over Ω we have:

0 =

∫
Ω(t)

(∂tv +∇ · F (v))dS =

=
d

dt

∫
Ω(t)
vdS −

∫
∂Ω(t)

v(uint · nint)dσ +

∫
∂Ω(t)

F (v) · ndσ. (2.3)

Noting that F (v) = v(u ·n) + pN , where N = (0,n,u ·n)t, we have:

=
d

dt

∫
Ω(t)
vdS +

∫
Γu·n6=0

pintN intdσ +

∫
Γu·n=0

F (v) · ndσ. (2.4)

So we arrive at the following finite volume scheme:

|Ωn+1|vn+1 − |Ωn|vn

∆t
+
∑

Γu·n=0

area(Γ)φΓ +
∑

Γu·n 6=0

area(Γ)pintN int = 0.

(2.5)

2.2 At the interface

To understand the dynamics at the interface of the two fluids, it
is convenient to consider the problem in Lagrangian coordinates. The
compressible Euler equations in a 1D Lagrangian formulation are given
by:

∂t

τ
u

E

+ ∂x

−up
pu

 = 0, (2.6)

where τ = 1
ρ . The fundamental thermodynamics equation Tds = de+

pdτ yields

T∂ts = ∂te+ p∂tτ

= −∂t(1
2u

2)− ∂x(pu) + p∂xu

= −u∂tu− u∂xp
= 0.

(2.7)
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The change of variables ϕ : (τ, u, s)→ (τ, u, E) transforms (2.6) into:
∂tτ − ∂xu = 0

∂tu+ ∂xp = 0

∂ts = 0

(2.8)

The Jacobian matrix for this system is given by

A(V ) =

 0 −1 0
−ρ2c2 0 ps

0 0 0

 , (2.9)

with eigenvalues

λ−1 = −ρc < λ0 = 0 < λ1 = ρc, (2.10)

right eigenvectors

r−1 =

ρ−1

c

0

 , r0 =

 ps
0
ρ2c2

 , r1 =

ρ−1

−c
0

 , (2.11)

and left eigenvectors

l−1 =

 ρc

1
ps(ρc)

−1

 , l0 =

 0
0

(ρc)−2

 , l1 =

 ρc

−1
ps(ρc)

−1

 . (2.12)

It is easy to verify that the flux term satisfies the equation

∂tF (V ) + A(V )∂xF (V ) = 0 (2.13)

Consider an interface which separates two states V − and V +. Lin-
earizing yields

(E−) : ∂tF (V ) + A(V −)∂xF (V ) = 0

(E+) : ∂tF (V ) + A(V +)∂xF (V ) = 0.
(2.14)

For (E−), the Riemann invariant associated with the eigenvalue ρ−c−

is given by

π− = l−1 · F (V ) =

 ρ−c−

−1
ps(ρ

−c−)−1

 ·
−up

0

 = −p− ρ−c−u; (2.15)
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For (E+), the Riemann invariant associated with the eigenvalue −ρ+c+

is given by

π+ = l+−1 · F (V ) =

 ρ+c+

1
ps(ρ

+c+)−1

 ·
−up

0

 = p− ρ+c+u. (2.16)

Using an upwind discretization method one can write

π−(V −) = π−(V int) and π+(V +) = π+(V int), (2.17)

which leads to the relation
pint =

ρ+c+p− + ρ−c−p+

ρ−c− + ρ+c+ + ρ−c−ρ+c+ u− − u+

ρ−c− + ρ+c+

uint =
ρ+c+p+ + ρ−c−p−

ρ−c− + ρ+c+ +
p− + p+

ρ−c− + ρ+c+

(2.18)

first derived by Braeunig (2007).

2.3 Numerical implementation

When we discretize the spatial domain Ω, we assign a volume frac-
tion α ∈ [0, 1] and a normal vector to each volume element. A volume
element with α = 0 contains only air, a volume element with α = 1
contains only water, and other values of α in mixed cells correspond to
intermediate fractional mixtures. In volume elements with α ∈ (0, 1)
the normal vector represents the normal direction to the interface.
From these two values we can reconstruct a linear approximation to
the interface in each cell.

The VFFC scheme uses a regular rectangular mesh, for which we
use a two-step directional splitting. At each time step we traverse the
grid in 1D, and for cells around the interface we use the method of
condensates developed by Braeunig (2007) [4]. In this method, we
consider a group of cells near an interface, calculate the evolution of
the interface in a Lagrangian framework, and project this back onto
the Eulerian grid, as shown in the following schematic:
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Figure 2.1: Using the condensate for mixed cells

The condensate is a 1D structure consisting of nc layers of different
materials, separated by nc−1 interfaces. Each layer is associated with
layer-centered conservative variables and each interface is associated
with a normal vector. The boundaries of a condensate are stationary
edges for which we compute Eulerian flux terms. For example, in
Figure 2.1, where nc = 2, the conservative variables are calculated as:

Ṽ1 =
V ol1V1 + V olpure1Vpure1

V ol1 + V olpure1

Ṽ2 =
V ol2V2 + V olpure2Vpure2

V ol2 + V olpure2
.

(2.19)

We calculate the evolution of the condensate based on (2.5) and (2.18).
For internal volume elements, the condensate is formed from adjacent
mixed cells and two bordering pure cells, and the CFL condition (1.23)
ensures that the interface will not move outside the condensate in a
single time step. Following the directional splitting, the normal vectors
for the interface are recalculated using a method by Youngs [3] based
on an approximation to the gradient of the volume fraction in a mixed

15



Figure 2.2: Reconstruction of the interface in 2D

cell i:

ni = − ∇αi
‖∇αi‖

, (2.20)

where

∂αi
∂x

=
(αNE + 2αE + αSE)− (αNW + 2αW + αSW )

8∆x
∂αi
∂y

=
(αNW + 2αN + αNE)− (αSW + 2αS + αSE)

8∆y

(2.21)

as in Figure 2.2.

2.4 Multiphase boundary conditions

In the multiphase problem, boundary conditions become more com-
plicated. The case of a wall boundary condition for a mixed cell has
been treated by Braeunig (2007). The flux term for the wall condition
is given by:

φwall = (0, pwalln, 0) =
ρ1c̃1F 2 + ρ2c̃2F 1

ρ1c̃1 + ρ2c̃2
, (2.22)
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Figure 2.3: Ghost cells

where the subscripts correspond to the two different fluids with con-
servative variables v1 and v2; c̃i = min(ci,

V olni
dtA ); and the F i terms are

calculated as the wall boundary flux terms for the single-phase case as
given in section 1.5.2.

To handle fluid boundary conditions for mixed cells, I introduce the
concept of ghost cells. This is a simple numerical technique which al-
lows us to combine the condensate method with the boundary fluxes for
single-phase flow presented in section 1.5.1. Given a mixed cell at the
boundary with fluid boundary conditions, we create a temporary cell
outside the domain to extend the condensate (see Figure 2.4). Using
the boundary flux φbdry we calculate the evolution of the condensate as
in section 2.3; we then project back onto the Eulerian mesh, discarding
the portion which lies outside the boundary. In this way we can handle
situations where the interface moves outside the domain, or even cases
where a new fluid interface enters the domain.
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Chapter 3

Numerical results

3.1 Test case: faucet flow

In this chapter I present numerical results for the problem of 2D
faucet flow. For this problem we have a slightly compressible inviscid
liquid falling under gravity in the presence of a compressible gas of
much lower density. The liquid falls with initial velocity U from a
pipe of width 2W at a height L above a horizontal surface. Due to
the symmetrical nature of this problem, we consider only the ’right’
half of the flow. Thus we have wall conditions on both the left and
lower boundaries, and a fluid entry condition on the upper boundary
extending W units from the left wall. The remaining portion of the
boundary is assigned Neumann-like boundary conditions, where the
external pressure is specified and the density and velocity direction are
taken to be constant for the outward flow.

The computational domain begins initially with air, and water enters
the domain at a given fixed mass flux. We expect the flow to stabilize as
t→∞. The stabilized flows are then compared with the corresponding
stable incompressible flows given by Christodoulides & Dias, [5]. We
use a scheme that is second-order in space and in time, but only a
first-order method at the interface (although a higher-order interface
scheme has been developed by Braeunig).

Below are the evolutions of several test cases, each with different
values of H and the Froude and Mach numbers. In all cases, W = 1.
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Figure 3.1: H = 3.0, F r = 1.5,Ma = 0.01175

The pressure is displayed as the last image of each grouping.
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Figure 3.2: H = 1.5, F r = 0.7,Ma = 0.0054775

Figure 3.3: H = 1.01, F r = 0.35,Ma = 0.00274
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Figure 3.4: H = 0.5, F r = 0.1,Ma = 0.0007285

Figure 3.5: H = 0.2, F r = 1.5,Ma = 0.1175
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3.2 Comparison with incompressible case

The flows presented above correspond to similar incompressible sta-
ble flows solved by Christodoulides & Dias, [5]. In their formulation, an
ideal fluid flows downward through a pipe of width W with velocity U,
and emerges at a height H above a horizontal plate. The authors use
Bernoulli’s equation and a conformal mapping to determine the shape
of the free surface for various velocities U. Their results are compared
below with the corresponding compressible results.

Figure 3.6: H = 3.0, F r = 1.5

Figure 3.7: H = 1.5, F r = 0.7
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Figure 3.8: H = 1.01, F r = 0.35

Figure 3.9: H = 0.5, F r = 0.1

Figure 3.10: H = 0.2, F r = 1.5
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