Answers to CS/MCS 401 Week 12 Exercises (Fall, 2007)

(except exercises 15-1 and 15-6, to be discussed in class)

Exercise 15.4–1

The matrices (c_{ij}) and (b_{ij}) are constructed using the algorithm in the textbook (page 353). We obtain

		0) 1	2	3	4	5	6	7	8	9
	y	x	0	1	0	1	1	0	1	1	0
0	0	0) 0	0	0	0	0	0	0	0	0
1	1	0) 0 ↑	1 ↑_	1 ←	_ 1 _ ↑	1	1 ←	1 1	1 ↑_	1 ←
2	0	0) 1 ↑	1 ↑	2 ↑	2 ←	2 ←	2 ↑_	2 ←	2 ←	2 ↑_
3	0	0) 1 ↑	1 ↑	2 ↑_	2 ↑	2 ↑	3 ↑	3 ←	3 · ←	3
4	1	0) 1 ↑	2 ↑_	2 ↑	3 ↑_	3 1⊥	3 ↑	4 ↑	4 ↑_	4 L
5	0	0) 1 ↑	2 ↑	3 ↑_	3 ↑	3 ↑	4 ↑_	4 ↑	4 ↑	5 ↑
6	1	0) 1 ↑	2 ↑_	3 ↑	4 ↑_	4 1_	4 ↑	5 ↑	5 ↑	5 ↑
7	0	0) 1 ↑	2 ↑	3 ↑_	4 ↑	4 ↑	5 ↑_	5 ↑	5 ↑	6 ↑
8	1	0) 1 ↑	2 ↑	3 ↑	4 ↑_	5 ↓	5 ↑	6 ↑_	б 1_	6 ↑

A longest common subsequence of x and y has length c[8,9] = 6. We can read of the sequence by starting in the lower right corner and following the arrows, till we reach row 0 or column 0. Each time we move from square *i*, *j* to the upper left, we must have $x_i = y_j$, and we prepend x_i to the subsequence of x and y_j to the subsquence of y that we are building up. We obtain subsequences $x_1x_2x_3x_4x_6x_7$ of x and $y_2y_3y_6y_7y_8y_9$ of y which are provide a longest common subsequence of x and y — specifically, the subsequence **1,0,0,1,1,0**. **Problem 15-7** Reordering the jobs if necessary, we may assume $d_1 \le d_2 \le ... \le d_n$. Then we may assume that, once the jobs are selected, they are run in order of increasing deadline. (If this schedule is not feasible, no other one can possibly be.)

- Let $r[i,j] = \max \min profit$ that can be earned if we are restricted to jobs chosen from $\{a_1, ..., a_i\}$ and if all jobs must finish by time *j*. We are interested in $r[n, d_n]$.
- Note r[i, 0] = 0 for all i, r[0, j] = 0 for all j.

Now consider r[i, j].

- i) If we don't select job a_i , then r[i,j] = r[i-1,j]. (Job a_i didn't help.) Not choosing job a_i is always feasible.
- ii) Say we do choose job a_i . Then any jobs chosen from $\{a_1, ..., a_{i-1}\}$ must finish by time $\min(j, d_i) t_i$, in order job a_i may finish by time $\min(j, d_i)$. Thus

 $r[i,j] = p_i + r[i-1, \min(j,d_i) - t_i]$

Note that choosing job a_i is feasible only if $t_i \leq \min(j, d_i)$.

Combining (i) and (ii), we obtain

$$r[i,j] = \begin{cases} r[i-1,j] & \text{if } t_i > \min(j,d_i) \\ \max(r[i-1,j], p_i + r[i-1,\min(j,d_i) - t_i]) & \text{otherwise} \end{cases}$$

Now we can compute all the r[i, j] in $\Theta(nd_n)$ time by

Initialize:
$$r[i, 0] = 0$$
 for $i = 1,...,n$, and $r[0, j] = 0$ for $j = 0,...,d_n$.
for $(i = 1, 2, ..., n)$
for $(j = 1, 2,..., d_n)$
Compute $r[i, j]$ by the formula above.

The maximum profit is $r[n, d_n]$. To find the schedule that produces the maximum profit, note a_n is chosen if and only if $r[n,d_n] > r[n-1,d_n]$. We could print the list of jobs chosen by the recursive function $print_jobs()$, which is invoked initially as $print_jobs(n,d_n)$.

$$print_jobs(i, j)$$

if (i == 0)
return;
if (r[i,j] > r[i-1,j])
print a_i;
print_jobs(i-1, min(j, d_i) -t_i);
else
print_jobs(i-1,j);

Exercise O.

$$d_{1,10}^{0} = \infty$$

$$d_{1,10}^{1} = \infty$$

$$d_{1,10}^{2} = \infty$$

$$d_{1,10}^{3} = 60 \qquad \text{short}_{3}(1,10) = 1,3,10$$

$$d_{1,10}^{4} = 58 \qquad \text{short}_{4}(1,10) = 1,2,4,10$$

$$d_{1,10}^{5} = 55 \qquad \text{short}_{5}(1,10) = 1,2,5,3,10$$

$$d_{1,10}^{6} = 55 \qquad \text{short}_{6}(1,10) = 1,2,5,3,10$$

$$d_{1,10}^{7} = 50 \qquad \text{short}_{7}(1,10) = 1,6,7,5,3,10$$

$$d_{1,10}^{8} = 48 \qquad \text{short}_{8}(1,10) = 1,6,7,5,4,8,10$$

$$d_{1,10}^{9} = 46 \qquad \text{short}_{9}(1,10) = 1,2,9,8,10$$