Solutions to CS/MCS 401 Exercise Set \#3 (Fall 2007)

Exercise 2.3-1

Exercise D.

$C(0)=0=d \cdot 0$, so the result holds when $n=0$.
Let $n \geq 1$, and assume the result holds for all i with $i<n$. $\mathrm{C}(n)=d+\mathrm{C}(k)+\mathrm{C}(n-k)$ where $0 \leq k$ $\leq n-1$. Note $n-k-1 \leq n-1$. By the inductive hypothesis,

$$
\mathrm{C}(n)=d+d k+d(n-k-1)=d(1+k+(n-k-1))=d n
$$

so the result also holds for n. By induction it holds for all nonnegative integers.

Exercise E.

Let L, M, and R be sorted arrays of length $n / 3$ (possibly $\lfloor n / 3\rfloor$ or $\lceil n / 3\rceil$, so the sum of the lengths is n). For simplicity, assume n is a power of 3 , so always L, M, and R have length $n / 3$. Assume that each array has an extra element ∞ at the end. We can merge L, M, and R into a single sorted array A of length n using the algorithm below. Here i, j, and k represent the positions of the current elements in L, M, and R respectively; and x represents the smallest element not yet merged from M or R , provided x Valid is true. As usual, indentation indicates nesting of blocks.

```
i=1; j=1; k=1;
xValid = false;
for (q=1,2, ..,n )
    if(not xValid)
        if (M[j] \leq R[k])
            x = M[j];
            j=j+1;
        else
            x = R[k];
            k=k+1;
        xValid = true;
    if (L[i]\leqx)
        A[q] = L[i];
        i=i+1;
    else
        A[q] = x;
        xValid = false;
```

Comparisons are performed in the lines $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$. The comparison in line $\left({ }^{* *}\right)$ is performed on each pass through the loop - a total of n times. The comparison on line (${ }^{*}$) is always performed on the first pass ($q=1$). On the remaining passes, it is performed if the element merged to A on the previous pass came from M or R, but not if it came from L. Thus the total number of comparisons in line $\left(^{*}\right)$ is
n-(number of elements merged from L on the first $n-1$ passes)

$$
\begin{aligned}
& =n-(n / 3 \text { or } n / 3-1) \\
& =2 / 3 n \text { or } 2 / 3 n+1
\end{aligned}
$$

times. The total number of comparisons performed by the algorithm is $5 / 3 n$ or $5 / 3 n+1$.

Exercise F.

$\mathrm{C}(n)=3 \mathrm{C}(n / 3)+5 / 3 n, \mathrm{C}(1)=0$. We assume $n=3^{k}$, so $k=\log _{3}(n)$.
This recurrence has the correct form for the Master Theorem with $a=3, b=3, E=1, n^{E}=n$, $f(n)=5 / 3 n$. However, the Master Theorem tells us only that the solution is $\Theta\left(n \log _{3}(n)\right)$, whereas we are asked for an exact solution. In the proof of the Master Theorem, we showed that

$$
\mathrm{C}(n)=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\ldots+a^{k-1} f\left(n / b^{k-1}\right)+a^{k} d, \text { where } d=\mathrm{C}(1) .
$$

Substituting the appropriate values for $a, b, f(n)$, and d, we obtain

$$
C(n)=5 / 3 n+3(5 / 3)(n / 3)+3^{2}(5 / 3)\left(n / 3^{2}\right)+\ldots+3^{k-1}(5 / 3)\left(n / 3^{k-1}\right) .
$$

This sum contains k terms, each equal to $5 / 3 n$, so the sum is $5 / 3 n k=5 / 3 n \log _{3}(n)$.

By contrast, ordinary (2-way) mergesort uses approximately $n \lg (n)$ comparisons.

