
Solutions to CS/MCS 401 Exercise Set #3 (Fall 2007)

Exercise 2.3-1

Exercise D.

C(0) = 0 = d⋅0, so the result holds when n = 0.

Let n ≥ 1, and assume the result holds for all i with i < n. C(n) = d + C(k) + C(n−k) where 0 ≤ k
≤ n−1. Note n−k−1 ≤ n−1. By the inductive hypothesis,

C(n) = d + dk + d(n−k−1) = d(1 + k + (n−k−1)) = dn,
so the result also holds for n. By induction it holds for all nonnegative integers.

Exercise E.
Let L, M, and R be sorted arrays of length n/3 (possibly ⎣n/3⎦ or ⎡n/3⎤ , so the sum of the
lengths is n). For simplicity, assume n is a power of 3, so always L, M, and R have length n /3.
Assume that each array has an extra element ∞ at the end. We can merge L, M, and R into a
single sorted array A of length n using the algorithm below. Here i, j, and k represent the
positions of the current elements in L, M, and R respectively; and x represents the smallest
element not yet merged from M or R, provided xValid is true. As usual, indentation indicates
nesting of blocks.

3 41 52 26 38 57 9 49

3 41 38 57 26 52 9 49

3 26 41 52 9 38 49 57

3 9 26 38 41 49 52 57

i = 1; j = 1; k = 1;
xValid = false;
for (q = 1,2, ..., n)
 if (not xValid)
 if (M[j] ≤ R[k]) (*)
 x = M[j];
 j = j + 1;
 else
 x = R[k];
 k = k + 1;
 xValid = true;
 if (L[i] ≤ x) (**)
 A[q] = L[i];
 i = i + 1;
 else
 A[q] = x;
 xValid = false;

Comparisons are performed in the lines (*) and (**). The comparison in line (**) is performed
on each pass through the loop — a total of n times. The comparison on line (*) is always
performed on the first pass (q = 1). On the remaining passes, it is performed if the element
merged to A on the previous pass came from M or R, but not if it came from L. Thus the total
number of comparisons in line (*) is

 n − (number of elements merged from L on the first n−1 passes)
 = n – (n/3 or n/3–1)

 = 2/3 n or 2/3n + 1
times. The total number of comparisons performed by the algorithm is 5/3 n or 5/3n + 1.

Exercise F.
C(n) = 3C(n/3) + 5/3n, C(1) = 0. We assume n = 3k, so k = log3(n).
This recurrence has the correct form for the Master Theorem with a = 3, b = 3, E = 1, nE = n,
f (n) = 5/3n. However, the Master Theorem tells us only that the solution is Θ(nlog3(n)),
whereas we are asked for an exact solution. In the proof of the Master Theorem, we showed that

C(n) = f (n) + af (n/b) + a2f (n/b2) + ... + ak−1f (n/bk−1) + akd, where d = C(1).
Substituting the appropriate values for a, b, f(n), and d, we obtain
 C(n) = 5/3n + 3(5/3)(n /3) + 32 (5/3)(n /32) + ... + 3k−1(5/3)(n/3k−1).
This sum contains k terms, each equal to 5/3n, so the sum is 5/3nk = 5/3nlog3(n).
The exact solution when n is a power of 3 is C(n) = 5/3 n log3(n) ≈ 1.052 n lg(n).

By contrast, ordinary (2-way) mergesort uses approximately n lg(n) comparisons.

