
Solutions to CS/MCS 401 Exercise Set #3 (Fall 2007) 

Exercise 2.3-1 

 
Exercise D.    

C(0) = 0 = d⋅0, so the result holds when n = 0.   

Let n ≥ 1, and assume the result holds for all i with i < n.  C(n) = d + C(k) + C(n−k)  where 0 ≤ k 
≤ n−1.  Note n−k−1 ≤  n−1.  By the inductive hypothesis,   

C(n) = d + dk + d(n−k−1) = d(1 + k + (n−k−1)) = dn, 
so the result also holds for n.  By induction it holds for all nonnegative integers. 

Exercise E. 
Let L, M, and R be sorted arrays of length n/3 (possibly ⎣n/3⎦ or ⎡n/3⎤ , so the sum of the 
lengths is n).   For simplicity, assume n is a power of 3, so always L, M, and R have length n /3.  
Assume that each array has an extra element ∞ at the end.  We can merge L, M, and R into a 
single sorted array A of length n using the algorithm below.  Here i, j, and k represent the 
positions of the current elements in L, M, and R respectively; and x represents the smallest 
element not yet merged from M or R, provided xValid is true.  As usual, indentation indicates 
nesting of blocks.
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i = 1;  j = 1;  k = 1; 
xValid = false; 
for ( q = 1,2, ..., n ) 
  if ( not xValid )  
    if ( M[ j] ≤ R[k] )    (*) 
      x = M[ j]; 
      j = j + 1; 
    else 
      x = R[k]; 
      k = k + 1; 
    xValid = true; 
  if ( L[i] ≤ x )        (**) 
    A[q] = L[i]; 
    i = i + 1; 
  else  
    A[q] = x; 
    xValid = false; 

Comparisons are performed in the lines (*) and (**).    The comparison in line (**) is performed 
on each pass through the loop — a total of n times.  The comparison on line (*) is always 
performed on the first pass (q = 1).   On the remaining passes, it is performed if the element 
merged to A on the previous pass came from M or R, but not if it came from L.   Thus the total 
number of comparisons in line (*) is 

 n − (number of elements merged from L on the first n−1 passes) 
    = n – (n/3 or n/3–1)  

 =  2/3 n  or  2/3n + 1 
times.  The total number of comparisons performed by the algorithm is  5/3 n  or  5/3n + 1. 

Exercise F. 
C(n) = 3C(n/3) + 5/3n,  C(1) = 0.   We assume n = 3k, so k = log3(n). 
This recurrence has the correct form for the Master Theorem with a = 3, b = 3, E = 1, nE = n, 
f (n) = 5/3n.  However, the Master Theorem tells us only that the solution is Θ(nlog3(n)), 
whereas we are asked for an exact solution.  In the proof of the Master Theorem, we showed that  

C(n) = f (n) + af (n/b) + a2f (n/b2) + ... + ak−1f (n/bk−1) + akd,  where d = C(1). 
Substituting the appropriate values for a, b, f(n), and d, we obtain 
   C(n) = 5/3n + 3(5/3)(n /3) + 32 (5/3)(n /32) + ... + 3k−1(5/3)(n/3k−1). 
This sum contains k terms, each equal to 5/3n, so the sum is 5/3nk = 5/3nlog3(n). 
The exact solution when n is a power of 3 is C(n) = 5/3 n log3(n)  ≈ 1.052 n lg(n). 

By contrast, ordinary (2-way) mergesort uses approximately n lg(n) comparisons.  


