Dynamic Programming: Example 1 Order of Matrix Multiplication *Problem*: What is the optimal order for computing $M_1 \times M_2 \times ... \times M_n$, where M_i is an r_i by c_i matrix. *Optimal substructure:* If the optimal order for $M_1 \times M_2 \times ... \times M_n$ is of the form $(\mathbf{M}_1 \times \ldots \times \mathbf{M}_k) \times (\mathbf{M}_{k+1} \times \ldots \times \mathbf{M}_n).$ then $M_1 \times ... \times M_k$ is computed by optimal order, and $M_{k+1} \times ... \times M_n$ is computed by optimal order. number of scalar multiplications used in computing $m_{ii} =$ $M_i \times M_{i+1} \times ... \times M_i$ using optimal order $(1 \le i \le j \le n)$. (*) $m_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k \le j-1} (m_{ik} + m_{k+1,j} + r_i c_k c_j) & \text{if } i < j. \end{cases}$ v_{ij} = value of k giving minimum above, if i < j. We start with $m_{ii} = 0$ for i = 1, 2, ..., n, and compute and save all the m_{ii} and v_{ii} in order of increasing j-i. That way, when we compute m_{ii} , we will have already computed all the m_{ik} and $m_{k+1,i}$. When we are done, m_{1n} = number of scalar multiplications required to compute $M_1 \times M_2 \times ... \times M_n$ using the optimal order. $V = (v_{ii})$ contains the information needed to determine the optimal order in O(n) time.

Example: Compute $M_1 \times M_2 \times M_3 \times M_4 \times M_5 \times M_6$ using optimal order, where M₁ is an r by c matrix

where M_i is an r_i by c_i matrix.

i	r _i	c_i
1	5	20
2	20	10
3	10	7
4	7	60
5	60	8
6	8	40

We compute

i	j	m _{ij}	v _{ij}
1	1	0	
2	2	0	
3	3	0	
4	4	0	
5	5	0	
6	6	0	
1	2	1000	1
2	3	1400	2
3	4	4200	3
4	5	3360	4
5	6	19200	5
1	3	1350	2
2	4	9800	3
3	5	3920	3
4	6	5600	5
1	4	3450	3
2	5	5520	2
3	6	7120	5
1	5	4990	3
2	6	11920	5
1	6	6590	5

We compute a typical entry as follows:

 $m_{25} = \min(m_{22}+m_{35}+r_2c_2c_5, m_{23}+m_{45}+r_2c_3c_5, m_{24}+m_{55}+r_2c_4c_5)$ = min(0+3920+20.10.8, 1400+3360+20.7.8, 9800+0+20.60.8) = min(5520, 5880, 19400) k = 2= 5520 $v_{25} = 2$

So the number of scalar multiplications is 6590. We determine the optimal order by

 $v_{16} = 5$, so optimal order is $(M_1 \times M_2 \times M_3 \times M_4 \times M_5) \times M_6$. $v_{15} = 3$, so optimal order is $((M_1 \times M_2 \times M_3) \times (M_4 \times M_5)) \times M_6$. $v_{13} = 2$, so optimal order is $(((M_1 \times M_2) \times M_3) \times (M_4 \times M_5)) \times M_6$.