Rate of Growth:

Exponentials, Polynomials, and Logorithms

Theorem 1. [exponentials dominate polynomials]
Let a be any fixed real number with $a>1$, and let n be any fixed real number. Then

$$
\lim _{x \rightarrow \infty} \frac{a^{x}}{x^{n}}=\infty
$$

Proof. We may assume n is an integer, since if the theorem holds for $\lceil n\rceil$, it will hold for n. We use induction on n.

The assertion obviously holds if $n \leq 0$, since as $x \rightarrow \infty$, $a^{x} \rightarrow \infty$ while x^{n} is constant $(n=0)$ or $x^{n} \rightarrow 0(n<0)$.
If the theorem fails for some n, choose n minimal such that it fails. By the remark above, $n \geq 1$, and $\lim _{x \rightarrow \infty} x^{n}=\infty$. Since the theorem holds for $n-1$, $\lim _{x \rightarrow \infty} \frac{a^{x}}{x^{n-1}}=\infty$.

Let $f(x)=a^{x}$ and $g(x)=x^{n}$. L'Hopital's rule tells us that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{\ln (a) a^{x}}{n x^{n-1}} \\
& =(\ln (a) / n) \lim _{x \rightarrow \infty} \frac{a^{x}}{x^{n-1}}=(\ln (a) / n) \infty=\infty
\end{aligned}
$$

Theorem 2. [polynomials dominate logarithms]
Let n be any fixed positive real number, and let k be any fixed real number. Then

$$
\lim _{x \rightarrow \infty} \frac{x^{n}}{\left(\log _{c}(x)\right)^{k}}=\infty
$$

Proof. Since the ratio of $\left(\log _{c}(x)\right)^{k}$ to $(\ln (x))^{k}$ is a nonzero constant, namely $\left(\log _{c}(e)\right)^{k}$, we may restrict to the natural logarithm $(c=e)$. By the same reasoning as in Theorem 1, we may assume k is an integer. We use induction on k.
Again as in Theorem 1, the theorem is obviously true if $k \leq 0$.
If the theorem fails for some k, choose k minimal such that it fails. By the remark above, $k \geq 1$, and $\lim _{x \rightarrow \infty}(\ln (x))^{k}=\infty$. Since the theorem holds for $k-1$, $\lim _{x \rightarrow \infty} \frac{x^{n}}{\ln (x)^{k-1}}=\infty$.

Let $f(x)=x^{n}$ and $g(x)=(\ln (x))^{k}$. L'Hopital's rule tells us that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{n x^{n-1}}{k \ln (x)^{k-1}(1 / x)} \\
& =(n / k) \lim _{x \rightarrow \infty} \frac{x^{n}}{\ln (x)^{k-1}}=(n / k) \infty=\infty .
\end{aligned}
$$

The following theorem incorporates both Theorems 1 and 2.

Theorem 3. Let a and b be fixed positive real numbers, and let c be a fixed real number with $c>1$. Then if

$$
\lim _{x \rightarrow \infty} \frac{a^{x} x^{m} \log _{c}(x)^{j}}{b^{x} x^{n} \log _{c}(x)^{k}}=\infty
$$

i) $a>b$, or
ii) $a=b$ and $m>n$, or
iii) $a=b, m=n$, and $j>k$.

The limit is 1 if $a=b, m=n$, and $j=k$. In all other cases, the limit is 0 .

Notes:

1) Theorem 1 tells us, for example, that $1.001^{x}>x^{100}$ for all x sufficiently large. Moreover, $\lim _{x \rightarrow \infty} 1.001^{x} / x^{100}=\infty$.
In fact, $1.001^{x}>x^{100}$ for $x>1.42 \times 10^{6}$, approximately. If $x=2 \times 10^{6}, 1.001^{x} / x^{100}>10^{238}$.
2) Even an exponential function such as $f(x)=a^{\sqrt{x}}$ will dominate x^{n} for any fixed n. The same holds if we replace \sqrt{x} by $\sqrt[k]{x}$ for any fixed k.
On the other hand, $a^{\log _{c}(x)}$ does not dominate x^{n} for any fixed n. In fact, $a^{\log _{c}(x)}=x^{k}$, where $k=\log _{c}(a)$.
