
Factorials 

We define  n!= n(n−1)(n−2) ⋅⋅⋅ 3 ⋅2 ⋅1 if n is a nonnegative integer. 

 An empty product is normally defined to be 1.   

 With this convention, 0! = 1. 

An alternative is to define n! recursively on the nonnegative integers. 

  n! =  

As n increases, n! increases very rapidly (exponentially).  

n n! 

5 120 
10 3628800 

15 1.307674×1012 

20 2.432902×1018 

30 2.652529×1032 

40 8.159153×1047 

50 3.041409×1064 

60 8.320987×1081 

70 1.197857×10100 

80 7.156946×10118 

For any fixed number a,  n! > an  for all n sufficiently large. 

On the other hand,  n! < nn  for all n. 

1     if  n = 0, 
n(n−1)!    if  n ≥ 1. 

Stirling’s Formula provides a good approximation to n! in closed 
form: 
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√2πn,  then  limn→∞ S0(n) /n! = 1.   

In fact, the limit approaches 1quite rapidly as n increases. 
When n = 5,    S0(n) /n! = 0.9835. 

When n = 10,  S0(n) /n! = 0.9917. 

When n = 50,  S0(n) /n! = 0.9983. 

An even better approximation is obtained by multiplying S0(n) by 
1 + 1/(12n).   
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When n = 1,    S1(n) /n! = 0.998982. 

When n = 5,    S1(n) /n! = 0.999883. 

When n = 10,  S1(n) /n! = 0.999968. 

When n = 50,  S1(n) /n! = 0.999999. 

Here are the approximations to n! for the values of n in the previous 
table. 
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5 120 118.019 119.986 
10 3628800 3598696 3628685 

15 1.307674×1012 1.300431×1012 1.307655×1012 

20 2.432902×1018 2.422787×1018 2.432882×1018 

30 2.652529×1032 2.645171×1032 2.652519×1032 

40 8.159153×1047  8.142173×1047 8.159136×1047 

50 3.041409×1064 3.036345×1064 3.041405×1064 

60 8.320987×1081 8.309438×1081 8.320979×1081 

70 1.197857×10100 1.196432×10100 1.197856×10100 

80 7.156946×10118 7.149494×10118 7.156942×10118 

Previously, we mentioned that n! grows more rapidly than an 

(a fixed) but less rapidly than nn. 

 By Stirling’s formula, n! grows about as rapidly as (n/e)n. 

Stirling’s formula also gives a good approximation to lg(n!): 

  lg(n!)  ≈ n lg(n) − n lg(e) + 0.5 lg(n) + 0.5 lg(2π) + lg(e) /(12n) 

                  or 

  lg(n!)  ≈ n lg(n) − 1.44n  

We sometimes write lg(n!) ≈ n lg(n), but the 1.44n term never 
becomes negligible for practical values of n. 

ln(1+x) ≈ x for |x| 
small.  Let x =1/(12n). 

Why is n! important in algorithms?   

 n! is the number of permutations of an n-element sequence with 
distinct elements.  In other words, it is the number of ways to 
arrange n distinct objects. 

 For example, there are 4! = 24 ways to arrange the letters a, b, c, d: 

abcd bacd cabd dabc 
abdc badc cadb dacb 
acbd bcad cbad dbac 
acdb bcda cbda dbca 
adbc bdac cdab dcab 
adcb bdca cdba dcba 

Any algorithm that looks at every possible arrangement of n 
objects would take time at least proportional to n! (and thus be 
practical only for very small n — say n less than 15 or 20). 

What if we have n elements that are not distinct?  Say there are k 
distinct elements, occurring with frequencies n1, n2, ..., nk, where 
n1+n2+..+nk  = n.   The number of arrangements is  

          n!          
   n1! n2! ⋅⋅⋅nk!  

Thus there are 5! / (3!1!1!) = 20 ways to arrange a, a, a, b, c: 

aaabc aacab abcaa baaac caaab 
aaacb aacba acaab baaca caaba 
aabac abaac acaba bacaa cabaa 
aabca abaca acbaa bcaaa cbaaa 



We have defined n! only on the nonnegative integers, but we can 
extend to the nonnegative real numbers (as well as certain negative 
real numbers). 

Consider  ∫0
∞
txe−tdt,  where x is any nonnegative real number.  

(Actually, we only need x > −1.) 

The value of the integral depends on x, so denote it by g(x). 

g(0) =  ∫0
∞
t0e−tdt = −e−t]

0

∞
  = −0 −(−1) = 1 

For x > 0,  

g(x) =  ∫0
∞
txe−tdt = ∫0

∞
u(t)v'(t)dt                 (u(t) = tx,  v(t) = −e−t)   

 =  u(∞)v(∞) − u(0)v(0) −  ∫0
∞
u'(t)v(t)dt           (u'(t) = xtx−1) 

 =  0 − 0 − x ∫0
∞

 t x−1 (−e−t) dt 

 =  x ∫0
∞

 t x−1e−tdt  = xg(x−1). 

Now g(0) = 1 and g(x) = xg(x−1) for all x > 0 implies g(x) = x! 
whenever x is a nonnegative integer.  So it is natural to define      

      x! =  ∫0
∞
txe−tdt  for all nonnegative real numbers x. 

Actually, this definition makes sense for x > −1.  When x = −1, 
the integral diverges. 

One can show that 

 (1/2)! = √π/2 ≈  0.8862 

 (3/2)! =  (3/2) (1/2)! =  3√π/4 ≈ 1.3293 

 (5/2)! =  (5/2) (3/2)! =  15√π/8 ≈ 3.3234 

 (−1/2)! = (1/2)! /  (1/2) =  √π  =  1.7724 

Note:  The function we defined as g(x) is essentially the Gamma 
function Γ(x), introduced by Euler.    

However, Γ(x) is defined as  ∫0
∞

 t x−1 e−tdt  whenever x > 0. 

So x! = Γ(x+1)  whenever x > −1. 


