Factorials

We define $n!=n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ if *n* is a nonnegative integer.

An empty product is normally defined to be 1. With this convention, 0! = 1.

An alternative is to define n! recursively on the nonnegative integers.

$$\mathbf{n}! = \begin{cases} 1 & \text{if } n = 0, \\ n(n-1)! & \text{if } n \ge 1. \end{cases}$$

As *n* increases, *n*! increases *very* rapidly (exponentially).

п	<i>n</i> !
5	120
10	3628800
15	1.307674×10^{12}
20	2.432902×10^{18}
30	2.652529×10^{32}
40	8.159153×10^{47}
50	3.041409×10^{64}
60	8.320987×10^{81}
70	1.197857×10^{100}
80	7.156946×10^{118}

For any *fixed* number a, $n! > a^n$ for all n sufficiently large. On the other hand, $n! < n^n$ for all n. *Stirling's Formula* provides a good approximation to *n*! in closed form:

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

If
$$S_0(n)$$
 denotes $\left(\frac{n}{e}\right)^n \sqrt{2\pi n}$, then $\lim_{n\to\infty} S_0(n) / n! = 1$.

In fact, the limit approaches 1quite rapidly as *n* increases. When n = 5, $S_0(n) / n! = 0.9835$. When n = 10, $S_0(n) / n! = 0.9917$. When n = 50, $S_0(n) / n! = 0.9983$.

An even better approximation is obtained by multiplying $S_0(n)$ by 1+1/(12n).

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + \frac{1}{12n}\right)$$

If
$$S_1(n)$$
 denotes $\left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + \frac{1}{12n}\right)$, then
When $n = 1$, $S_1(n) / n! = 0.998982$.
When $n = 5$, $S_1(n) / n! = 0.999883$.
When $n = 10$, $S_1(n) / n! = 0.999968$.
When $n = 50$, $S_1(n) / n! = 0.9999999$.

Here are the approximations to n! for the values of n in the previous table.

п	<i>n</i> !	$\left(\frac{n}{e}\right)^n \sqrt{2\pi n}$	$\left(\left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + \frac{1}{12n}\right)\right)$
5	120	118.019	119.986
10	3628800	3598696	3628685
15	1.307674×10^{12}	1.300431×10^{12}	1.307655×10^{12}
20	2.432902×10^{18}	2.422787×10^{18}	2.432882×10 ¹⁸
30	2.652529×10^{32}	2.645171×10^{32}	2.652519×10 ³²
40	8.159153×10^{47}	8.142173×10 ⁴⁷	8.159136×10 ⁴⁷
50	3.041409×10^{64}	3.036345×10 ⁶⁴	3.041405×10^{64}
60	8.320987×10^{81}	8.309438×10 ⁸¹	8.320979×10 ⁸¹
70	1.197857×10^{100}	1.196432×10^{100}	1.197856×10^{100}
80	7.156946×10^{118}	7.149494×10^{118}	7.156942×10^{118}

Previously, we mentioned that n! grows more rapidly than a^n (*a* fixed) but less rapidly than n^n .

By Stirling's formula, *n*! grows about as rapidly as $(n/e)^n$.

Stirling's formula also gives a good approximation to lg(*n*!):

 $lg(n!) \approx n lg(n) - n lg(e) + 0.5 lg(n) + 0.5 lg(2\pi) + lg(e)/(12n)$ or $lg(n!) \approx n lg(n) - 1.44n$ $ln(1+x) \approx x \text{ for } |x|$ small. Let x = 1/(12n).

We sometimes write $lg(n!) \approx n lg(n)$, but the 1.44*n* term never becomes negligible for practical values of *n*.

Why is *n*! important in algorithms?

n! is the number of permutations of an *n*-element sequence with distinct elements. In other words, it is the number of ways to arrange *n* distinct objects.

For example, there are 4! = 24 ways to arrange the letters a, b, c, d:

abc
acb
oac
oca
cab
cba

Any algorithm that looks at every possible arrangement of n objects would take time at least proportional to n! (and thus be practical only for very small n — say n less than 15 or 20).

What if we have *n* elements that are not distinct? Say there are *k* distinct elements, occurring with frequencies $n_1, n_2, ..., n_k$, where $n_1+n_2+..+n_k = n$. The number of arrangements is

<u>n!</u>	
$n_1! n_2! \cdots n_k!$	

Thus there are 5! / (3!1!1!) = 20 ways to arrange a, a, a, b, c:

aaabc	aacab	abcaa	baaac	caaab
aaacb	aacba	acaab	baaca	caaba
aabac	abaac	acaba	bacaa	cabaa
aabca	abaca	acbaa	bcaaa	cbaaa

We have defined *n*! only on the nonnegative integers, but we can extend to the nonnegative real numbers (as well as certain negative real numbers).

Consider $\int_0^\infty t^x e^{-t} dt$, where *x* is any nonnegative real number. (Actually, we only need x > -1.)

The value of the integral depends on x, so denote it by g(x).

$$g(0) = \int_0^\infty t^0 e^{-t} dt = -e^{-t} \Big]_0^\infty = -0 - (-1) = 1$$

For
$$x > 0$$
,
 $g(x) = \int_0^\infty t^x e^{-t} dt = \int_0^\infty u(t) v'(t) dt$ $(u(t) = t^x, v(t) = -e^{-t})$
 $= u(\infty)v(\infty) - u(0)v(0) - \int_0^\infty u'(t)v(t) dt$ $(u'(t) = xt^{x-1})$
 $= 0 - 0 - x \int_0^\infty t^{x-1} (-e^{-t}) dt$
 $= x \int_0^\infty t^{x-1} e^{-t} dt = xg(x-1).$

Now g(0) = 1 and g(x) = xg(x-1) for all x > 0 implies g(x) = x! whenever *x* is a nonnegative integer. So it is natural to define

 $x! = \int_0^\infty t^x e^{-t} dt$ for all nonnegative real numbers x.

Actually, this definition makes sense for x > -1. When x = -1, the integral diverges.

One can show that

 $(1/2)! = \sqrt{\pi}/2 \approx 0.8862$ $(3/2)! = (3/2)(1/2)! = 3\sqrt{\pi}/4 \approx 1.3293$ $(5/2)! = (5/2)(3/2)! = 15\sqrt{\pi}/8 \approx 3.3234$ $(-1/2)! = (1/2)! / (1/2) = \sqrt{\pi} = 1.7724$

Note: The function we defined as g(x) is essentially the Gamma function $\Gamma(x)$, introduced by Euler.

However, $\Gamma(x)$ is defined as $\int_0^\infty t^{x-1} e^{-t} dt$ whenever x > 0. So $x! = \Gamma(x+1)$ whenever x > -1.