
String Matching with Finite Automata 

A finite automaton (FA) consists of a tuple ( Q, q0, A,Σ, δ), where 
i) Q is a finite set of states, 
ii) q0 ∈ Q is the starting state, 
iii) A ⊆ Q is the set of accepting states, 
iv) Σ is the input alphabet (finite), 
v) δ:  Q × Σ → Q  is the transition function. 

 Example: 

 Q = {0,1,2,3,4,5}, 

 q0 = 0, 

 A = {2,4}, 

 Σ = {a,b}, 

 
We can represent our FA graphically like this: 
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State 0 = starting state. 

Double line boundary = 
accepting state 

Given any input string x over the alphabet Σ, a FA 
• starts in start q0, and  
• reads the string x, character by character, changing state after 

each character read. 
When the FA is in state q and reads character σ, it enters state δ(q,σ). 

The finite automaton 
• accepts the string x if it ends up in an accepting state, and 
• rejects x if it does not end up in an accepting state. 

Example:  Suppose our FA reads the string x = bababaabaaabbaab. 

symbol read  b a b a b a a b a a a b b a a b 
new state 0 3 1 3 1 3 1 2 4 2 2 2 4 5 5 5 5 

The final state (5) is not an accepting state.  So the FA rejects string x. 

Our FA accepts exactly those strings that contain two consecutive as 
but do not contain two consecutive bs. 

We can think of the states of our finite automaton as recording certain 
information about the characters read so far? 

State Have two consecu-
tive bs been found? 

Have two consecu-
tive as been found? 

Last char-
acter read 

0 no no none 
1 no no a 
2 no yes a 
3 no no b 
4 no yes b 
5 yes --- --- 



We can construct an FA to search for a pattern P = p1p2...pm in a text 
T = t1t2...tn. 

• The FA will have m+1 states, which we number 0, 1, ..., m. 

• State 0 will be the starting state, and state m will be the only 
accepting state. 

• In general, the FA will be in state k if k characters of the 
pattern have been matched. 

o In other words, the FA is in state k if the k most recently 
read characters of the text match the first k pattern 
characters. 
 
 

  T: t1   t2   ...   tj      tj+1    tj+2  ... tj+k−2  tj+k−1   tj+k  ... 
  P:     p1     p2      p3   ...  pk−1    pk      pk+1 ...   

• If the next text character tj+k equals pk+1, we have matched k+1 
characters, and the FA enters state k+1. 

o In other words, δ(k,pk+1) = k+1. 

• If the next text character tj+k differs from pk+1, then the FA 
enters a state 0, 1, 2, ..., or k, depending on how many initial 
pattern characters match text characters ending with tj+k.  

o We shift the pattern right till we obtain a match, or 
exhaust the pattern. 
 

  T: t1   t2   ...   tj      tj+1    tj+2  ... tj+k−2  tj+k−1   tj+k  ... 
  P:           p1      p2  ...   pk−2    pk−1    pk    ...            

                      If match, enter state k; else continue 

 

 

last char-
acter read 

     
  T: t1   t2   ...   tj      tj+1    tj+2  ... tj+k−2  tj+k−1   tj+k  ... 
  P:                   p1  ...   pk−3      pk−2   pk−1 ...                

      If match, enter state k−1; else continue 
 
We continue like this till we reach  
  T: t1   t2   ...   tj      tj+1    tj+2  ... tj+k−2  tj+k−1   tj+k  ... 
  P:                                                 p1   ...    
 

      if match, enter state 1 ; else state 0 

o If σ = tj+k ≠ pk+1, then δ(k,σ) = largest integer d such that 
   tj+k−(d−1) ... tj+k−2 tj+k−1 tj+k  = p1 ... pd−2 pd−1  pd               

o This makes it appear that δ(k,σ) depends on the subject as 
well as the pattern, but recall that to be in state k to begin 
with we must have a match 
 
  T: t1   t2   ...   tj      tj+1    tj+2  ... tj+k−2  tj+k−1   tj+k  ... 
  P:     p1     p2      p3   ...  pk−1    pk      pk+1 ...   
 
meaning  tj+i = pi+1  for i = 1,2,..., k−1.  So we can say that 
δ(k,σ) = largest integer d such that  
  pk−d+2 ... pk−1 pk σ  = p1 ... pd−2 pd−1  pd 

 

Thus δ(k,σ) depends only on the pattern, k, and σ. 

• If the FA reaches state m, a match has been found, and the FA 
remains in state m.  (In practice, the computation could stop at 
this point.) 

 

 

 



Example:  A finite automaton to match pattern ababc over 
alphabet Σ = {a,b,c}. 

Matching pattern ababc in text caabaabcabababccb. 

char read  c a a b a a b c a b a b a b c c b
new state 0 0 1 1 2 3 1 2 0 1 2 3 4 3 4 5 5 5 

 

Recall we compute the transition function by 

δ(m,  σ) = m  for all σ. 

δ(k, pk) = k+1. 

δ(k,  σ) = d   if σ ≠ pk, where d ≤ k is maximal subject to a match 
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Match succeeds – 
can stop here 

Straight from the definition, we can compute 

• δ(i,x) in O(m2) time,  

• all (m+1)|Σ| entries of δ in O(m3) time, if we treat |Σ| as 
constant. (It may be a fairly large constant, e.g., 256.) 

This isn’t too bad, since typically the pattern is fairly short 
compared to the text. 

But much more efficient constructions are known.  (They are 
fairly simple, and reduce the time to O(m) if |Σ| is treated as 
constant.) 

Once we have constructed a finite automaton for the pattern, 
searching a text  t1t2....tn for the pattern works wonderfully. 

• Search time is O(n). 

• Each character in the text is examined just once, in 
sequential order.  

state = 0; 
for ( i = 1, 2, ...., n ) 
  state = δ( state, ti); 
  if ( state == m ) 
   Match succeeds in position i–m+1; stop; 
 Match fails; 

 

 


