
Minimal Spanning Trees 

A graph is connected if, for every pair (u,v) of vertices, there is a 
path between u and v. 

A graph is acyclic if it has no cycles. 

A tree is a graph that is connected and acyclic. 

A connected graph  An acyclic graph  A tree 
     

 

Consider a finite graph G with n vertices. 

i) If G is connected, then G has at least n−1 edges.  It has 
exactly n−1 edges if and only if it is a tree. 

ii) If G is acyclic, it has at most n−1 edges.  It has exactly n−1 
edges if and only if it is a tree. 

A spanning tree for a connected graph G = (V, E) is a tree T = (V, S), 
with S ⊆ E.  

Every connected graph G contains a spanning tree T.  In fact,  

T = G ; 
while ( T contains a cycle ) 
 remove from T an edge on some cycle; 

always terminates with T a spanning tree for G. The key is that 
removing an edge lying on a cycle of a connected graph cannot 
disconnect the graph.   

 

If G = (V, E, W) is a weighted connected graph, a minimal spanning 
tree (or MST) for G is a spanning tree whose total weight is 
minimal, among all spanning trees. 

Every graph has an MST.  The MST need not be unique, but we 
will see that it is unique if all the edge weights of the graph are 
distinct. 
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 p, q = two vertices of G. 

 e = edge on a cycle of G. 

 1,2,3,4,e,5,6,7 = path from 
p to q, using edge e. 

 1,2,3,4, f,g,h,i,j,k,5,6,7 = 
alternate path from p 
to q, not using edge e. 

 

 

 

 

 
1 

2 3 4 

e 5 

6 

7 

f 
g 

h 

i 

k 

j 



Lemma.  Let G = (V, E) be a connected graph, and let T = (V, S) be a 
spanning tree.  Let e = xy be an edge of G not in T. 

For any edge f on the path from x to y in T,  
Tf→e = (V, (S∪{e}) −{ f}) is another spanning tree for G.  (In other 
words, we may substitute e for f and retain a spanning tree.) 
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p, ..., v4, v5, ..., q is a path from p to q in T, using edge f. 

p, ..., v4, v3, v2, v1, x, y, v5, ..., q is a path from p to q in Tf→e. 

Tf→e is a connected graph on V, and Tf→e has the same 
number of nodes as T, implying Tf→e is a spanning tree. 

An edge of T. 

An edge of G 
not in T. 

Proposition 1.  Let G = (V, E, W) be a weighted graph, let T = (V, S) 
be an MST for G, and let e = xy be an edge of G not in T.  Then  

i) w(e) ≥ w( f ) for any edge f on the path in T from x to y. 

ii) If w(e) = w( f ), then we may obtain another MST Tf→e for G 
by replacing f  by e in S. 

Proof.  By the Lemma, if we replace f by e in T, we obtain a 
spanning tree Tf→e of cost w(Tf→e) = w(T) + w(e) − w( f ).   

If w(e) < w( f ), then w(Tf→e) < w(T), contrary to T being a minimal 
spanning tree. 

If w(e) = w( f ), then w(Tf→e) = w(T), and so Tf→e also is an MST. 

Proposition 2.  If all the edge weights in G are distinct, then G has a 
unique MST.   

Proof.   If T = (V, S) and T' = (V, S') are 
two distinct MSTs for G, let e = xy be 
the cheapest edge of G that is in one of 
T or T', but not both.  (Since all the edge 
weights are distinct, there is a unique 
cheapest edge with this property.)   
Assume e is in T. 
 
By Proposition 1, w(e) ≥ w( f ) every 
edge f on the path in T' from x to y.  But 
since edge weights are distinct, w(e) > w( f ).  By the way e was 
chosen, every edge on the path in T' from x to y also lies in T.  But 
these edges of T, plus the edge e of T, form a cycle, contrary to T 
being a tree.
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path in T' from x to y. 



We want to build up an MST for G, one edge at a time. 

We know that (V, ∅) is contained in every MST for G. 

At some point, we will have a set A of edges of G, such that 
(V,A) is contained in an MST for G.  We want to add another 
edge to A, so (V,A) is still contained in a (possibly different) 
MST for G. 

A cut (C, V−C) of the vertex set V is a partition of V into two 
disjoint subsets (C and V−C).   

An edge of G crosses the cut if the edge has one endpoint in C 
and the other endpoint in V−C. 

A cut (C, V−C) respects a subset A of the edges of G (or respects 
a subgraph (V,A) of G) if no edge in A crosses the cut.  

This is equivalent to saying that C is a union of connected 
components of (V,A). 
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               edge of A.  

               edge of G not in A.  

The cut (C, V−C) respects 
the subgraph (V,A). 

Edges e, f, and g of G cross 
the cut. 

The edge of minimal weight 
crossing the cut is e.  
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Theorem. If (V,A) is a subgraph of G contained in an MST T for G, 
if (C, V−C) is a cut respecting the subgraph (V,A), and if e is an 
edge of G of minimal weight subject to crossing the cut, then 
(V, A∪{e}) is contained in an MST for G (not necessarily T). 

Proof.   If e is an edge of T,  then (V, A∪{e}) is contained T, and we 
are done. 

Otherwise let x and y be the endpoints of e, with x in C and y in 
V−C.   

 There is a path in T from x to y (not containing e).    

This path must cross the cut at least once, so there is an edge f 
on the path that does cross the cut.  This means f cannot be in A.  
By the way e was chosen, w(e) ≤ w( f ). 

On the other hand, Proposition 1 tells us that w(e) ≥ w( f ).   We 
must have w(e) = w( f ).   

Proposition 1 then tells we may replace f  by e in T, obtaining 
another MST, which we denoted Tf→e.  This MST contains 
(V, A∪{e})  since the removed edge f was not in A. 


