Rate of Growth of Functions

(The special case in which $\lim_{n\to\infty} f(n) / g(n)$ exists)

Let g(n) be a fixed function.

$\omega(g(n))$

Functions f(n) such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

Functions f(n) that dominate g(n), for large n.

$\Theta(g(n))$

Functions f(n) such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, where $0 < c < \infty$.

Functions f(n) that are roughly proportional to g(n), for large n.

o(g(n))

Functions f(n) such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0.$

Functions f(n) that are insignificant compared to g(n), for large n.

 $\Omega(g(n))$

O(g(n))

Rate of Growth of Functions

(The general case: $\lim_{n\to\infty} f(n) / g(n)$ need not exist)

Let g(n) be a fixed function.

$\omega(g(n))$

Functions f(n) such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

O(g(n))

Functions f(n) such that for all n sufficiently large,

$$\frac{f(n)}{g(n)} \le c_2,$$

for some constant c_2 .

$$O(g(n)) \supseteq$$

o(g(n)) \cup $O(g(n))$.

Note $g(n)(1+\cos(n))$ is in O(g(n)) (Let $c_2 = 2$), but not in $o(g(n)) \cup \Theta(g(n))$.

$\Theta(g(n))$

Functions f(n) such that for all n sufficiently large,

$$c_1 \le \frac{f(n)}{g(n)} \le c_2,$$

for some constants c_1 and c_2 with $0 < c_1 < c_2 < \infty$.

$$\Omega(g(n))$$

Functions f(n) such that for all n sufficiently large,

$$\frac{f(n)}{g(n)} \ge c_1,$$

for some constant c_1 with $c_1 > 0$.

$$\Omega(g(n)) \supseteq \omega(g(n)) \cup \Theta(g(n)).$$

Note $g(n)/(1+\cos(n))$ is in $\Omega(g(n))$ (Let $c_1 = 0.5$), but not in $\omega(g(n)) \cup \Theta(g(n))$.

o(g(n))

Functions f(n) such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Note that, in the general case, some function f(n) are in none of the categories above.

For example, if

$$f(n) = g(n) \tan^2(n),$$

then f(n)/g(n) takes on both values arbitrarily close to 0, and values arbitrarily large, as n increases. This implies $\lim_{n\to\infty} f(n)/g(n)$ doesn't exist, and neither of the constants c_1 or c_2 exist.

Example: Here are various ways to write the approximation to lg(n!) given by Stirling's formula. Each line gives a more careful approximation than the line above it.

$$\begin{split} \lg(n!) &= \Theta(n \lg(n)) \\ \lg(n!) &= n \lg(n) + o(n \lg(n)) \\ \lg(n!) &= n \lg(n) + \Theta(n) \\ \lg(n!) &= n \lg(n) - \lg(e)n + o(n) \\ \lg(n!) &= n \lg(n) - \lg(e)n + \Theta(\lg(n)) \\ \lg(n!) &= n \lg(n) - \lg(e)n + 0.5 \lg(n) + o(\lg(n)) \\ \lg(n!) &= n \lg(n) - \lg(e)n + 0.5 \lg(n) + \Theta(1) \\ \lg(n!) &= n \lg(n) - \lg(e)n + 0.5 \lg(n) + 0.5 \lg(2\pi) + \Theta(1/n) \\ \end{split}$$